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ABSTRACT

Background: Colorectal cancer is one of the most frequent neoplasms worldwide, and the majority 
of patients are diagnosed in advanced stages. Metastatic colorectal cancer (mCRC) harbors several 
mutations with different prognostic and predictive values; KRAS, NRAS, and BRAF mutations are 
the best known. Indeed, RAS and BRAF molecular status are associated with a different response to 
monoclonal antibodies (Anti-epidermal growth factor receptor and anti-vascular endothelial growth 
factor receptor agents), which are usually added to chemotherapy in first-line, and thus allow to select 
the optimal therapy for patients with mCRC. Furthermore, sidedness is an important predictive and 
prognostic factor in mCRC, which is explained by the different molecular profile of left and right-
sided tumors. Recently, microsatellite instability-high has emerged as a predictive factor of response 
and survival from immune checkpoint inhibitors in mCRC. Finally, several other alterations have been 
described in lower frequencies, such as human epidermal growth factor receptor-2 overexpression/
amplification, PIK3CA pathway alterations, phosphatase and tension homolog loss, and hepatocyte 
growth factor/mesenchymal-epithelial transition factor pathway dysregulation, with several targeted 
therapies already demonstrating activity or being tested in currently ongoing clinical trials.
Aim: To review the importance of studying the predictive and prognostic roles of the molecular profile 
of mCRC, the changes occurred in recent years and how they would potentially change in the near 
future, to guide physicians in treatment decisions.
Relevance for Patients: Today, several different therapeutic options can be offered to patients in the 
first-line setting of mCRC. Therapies at present approved or under investigation in clinical trials will 
be thoroughly reviewed, with special emphasis on the molecular rationale behind them. Understanding 
the molecular status, resistance mechanisms and potential new druggable targets may allow physicians 
to choose the best therapeutic option in the first-line mCRC.

1. Introduction

In 2020, there were 1,931,590 new cases of colorectal cancer (CRC), accounting for 10% 
of all new cases of cancer worldwide, with the third and second most frequent incidences in 
men and women, respectively. Furthermore, CRC caused 935,173 deaths in 2020, making it 
the malignant neoplasm with the fifth highest mortality worldwide. This high mortality rate 
is explained because a majority of cases are diagnosed in an advanced stage [1].

CRC develops more frequently in patients over 50  years of age, especially in those 
with a history of smoking, alcoholism, obesity, heavy red meat consumption, and lack of 
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physical activity [2]. Although its exact origin is not yet known, 
CRC develops in the context of well-known acquired genetic 
aberrations, some of which have been shown to be prognostic 
while some others allow to predict the benefit from different 
biological agents [3,4].

RAS and BRAF mutational status and the analysis of 
microsatellite instability (MSI) are mandatory in patients with 
metastatic CRC (mCRC) for prognostic as well as therapeutic 
purposes. Moreover, some other genetic alterations are increasingly 
being tested to expand the array of druggable alterations in current 
daily practice in mCRC, and several agents against some other 
potentially targetable genetic aberrations are being tested in 
clinical trials [5,6]. Applying one of Sun Tzu’s principles from 
his Art of War (“Know your enemy and know yourself, and you 
will be victorious in a thousand battles”), we aim to dissect the 
molecular biology and druggable mutational landscape of CRC 
to guide treatment decisions in the first-line setting, as well as its 
future perspectives.

2. Knowing Your Enemy: Molecular Pathways and 
Mutational Status in mCRC

The past 15 years saw the advent of the biological therapies 
for mCRC through the appearance of anti-vascular endothelial 
growth factor (VEGF) and anti-epidermal growth factor receptor 
(EGFR) agents. However, it was soon evidenced that not all 
mCRC patients benefited from anti-EGFR agents. First, KRAS 
exon 2 mutations were unveiled to confer resistance to cetuximab 
and panitumumab, and later KRAS exon 3 and 4, NRAS exons 2, 
3, and 4, and BRAF mutations were also established as resistance 
mutations to EGFR blockade. Subsequently, it also became clear 
that patients with right-sided mCRC derived less benefit from anti-
EGFR agents. More recently, other molecular alterations such as 
MSI, HER-2 amplification/overexpression, and NTRK fusions, 
among others, have been shown to be targetable in mCRC. 
Therefore, it is of utmost importance that clinicians are aware of 
the molecular biology of CRC and the biological rationale behind 
treatment decisions in mCRC.

2.1. The EGFR-related pathway

EGFR belongs to the erythroblastosis oncogene B (ErbB)/
human epidermal growth factor receptor (HER) family, which 
consists of four members: ErbB1 (EGFR/HER1), ErbB2 (Neu/
HER2), ErbB3 (HER3), and ErbB4 (HER4) [7,8]. Overexpression 
of EGFR has been observed in 25-77% of CRCs and might also 
associate with poor prognosis [9-11]. The typical ErbB receptor 
consists of 3 domains: a ligand-binding domain outside the cell, a 
transmembrane domain and an intracellular domain with distinct 
tyrosine residues in the C-terminal region where subsequent 
phosphorylation may take place on activation [12].

The union of the EGF ligand with the EGFR initiates the 
activation of the EGFR and its subsequent phosphorylation 
(pEGFR), allowing the formation of a coupling site for GRB2 
and its union to SOS in the cytosol. The resulting complex 
(pEGFR united to SOS) promotes nucleotide exchange and 

RAS activation   [13-15]. Subsequent RAF activation leads to 
phosphorylation of mitogen-activated protein kinase (MAPK) 
and activation of extracellular signal-related kinase (ERK), which 
might then translocate inside the nucleus to regulate the expression 
of transcription factors and the activation of specific genes that 
stimulate cancer progression. Downstream intracellular signaling 
pathways, including the Phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI3K)/AKT and JAK/signal transducer and activator of 
transcription (STAT)3 pathways, are also triggered to regulate cell 
growth, survival, and migration [16-18].

2.2. RAS status: Cornerstone mutation of mCRC

RAS proteins are part of a large family of small guanosine 
triphosphate (GTP) nucleotide-binding proteins [19]. The human 
RAS superfamily consists of more than 100 members that can be 
divided into six subfamilies, the most characteristic being HRAS, 
NRAS, and KRAS [20,21]. KRAS mutations are the most common 
predictive mutations, occurring in 40-45% of all mCRC [22]. The 
vast majority of KRAS mutations (85-90%) occur in codons 12 
and 13 of exon 2, while the rest are found in codons 61, 146, 
and other residues [23,24]. The patients with KRAS mutations 
are most often adult women with mucinous differentiation [25]. 
HRAS and NRAS mutations are found in <5% of patients [26]. 
Patients with NRAS mutations are also usually women with left 
sided tumors [27].

Among RAS family members, KRAS is the only one which is 
essential for normal development, as demonstrated by genetic studies 
in laboratory animals [13,28,29]. KRAS can be expressed as two 
different variants: 4A and 4B. Variant 4B is the dominant form, which 
is commonly known as KRAS, a cell membrane-bound GTPase that 
alternates between an active and an inactive form. GTPase activator 
proteins hydrolyze the nucleotide GTP leading to phosphate loss 
and formation of nucleotide guanosine diphosphate (GDP), while 
guanosine nucleotide exchange factors (GEF) facilitate the exchange 
of GDP to GTP. Both factors control the transition from the inactive 
form of KRAS to its active form  [19,30,31].

Mutations in specific codons in KRAS alter the position of a 
glutamate residue at codon 61 [19,32]. KRAS activation occurs 
without the need for binding of the phosphorylated EGFR 
protein complex to GEF SOS, resulting in the reduction of the 
GTPase activity of KRAS, decreasing the hydrolysis rate of 
GTP approximately 3-9  times compared to the non-mutated 
KRAS   [21,33,34]. The main effect of RAS signaling occurs 
through the RAF/MEK/ERK pathway and the secondary 
molecular cascade to the PI3K/AKT pathway, which control 
growth processes and cell survival [13]. This is achieved in part 
by activating transcription factors that promote ERK-regulated 
cell cycle progression and by AKT-mediated inactivation of 
apoptosis [35].

Various studies have shown that RAS mutations play a 
significant role in cell proliferation, suppression of apoptosis 
and in changing the tumor microenvironment that ultimately 
promote tumor cell survival and progression of cancer. Additional 
functions of KRAS have been described, such as regulation of cell 
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migration, endocytosis, cytoskeleton modification, and calcium 
signaling [36-38].

2.3. BRAF mutations: A particular event

BRAF mutations are found in 8%–10% of CRCs and do not 
usually overlap with RAS mutations, being considered mutually 
exclusive [39-41]. Two-thirds of the patients with BRAF mutations 
have primary tumors on the right side of the colon, being associated 
with a higher frequency of peritoneal involvement, lymph node 
metastases, and a lower frequency of pulmonary metastases  [40]. 
Up to one-third of BRAF mutant tumors harbor a high MSI 
(MSI-H) and the same proportion of MSI-H tumors have BRAF 
mutations. BRAF appears to act through the dentate/methylating 
pathway and, indeed, BRAF-mutant tumors are characterized by 
the methylation of CpG islands that cause the epigenetic repression 
of tumor suppressor genes, known as CpG island methylating 
phenotype tumors [42-44]. The BRAF oncogene encodes a serine/
threonine kinase that acts in the MAPK pathway. BRAF mediates 
its effect through the activation of MAPK, thus promoting cell 
proliferation. BRAF V600E mutations account for 90% of BRAF 
mutations in CRC. Their occurrence has been associated with older 
adult women with a history of smoking [45]. The BRAFV600E 
mutation is the result of the transversion of thymidine to adenine 
at nucleotide 1799 in the kinase domain, resulting in a substitution 
of valine for glutamate leading to constitutive activation of MEK 
and uninhibited EGFR-independent cell proliferation [46,47]. The 
fact that BRAF and KRAS/NRAS are mutually exclusive mutations 
in CRC supports the hypothesis that BRAF is the main effector 
of KRAS/NRAS in the MAPK pathway and that both have similar 
effects on tumorigenesis [48,49].

2.4. The VEGF/VEFGR pathway

Angiogenesis, a physiological process by which new vessels 
form or reform from existing vessels, plays a key role in tumor 
initiation, growth, and metastasis. Angiogenesis is under a complex 
regulation involving various proangiogenic and antiangiogenic 
factors, such as VEGF [50-52]. The VEGF family consists of five 
members (VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PIGF), 
which may bind to endothelial cells via tyrosine kinase VEGF 
receptors (VEGFRs). VEGF, VEGFR, VEGF-A, VEGF-B, and 
PIGF contribute predominantly to angiogenesis, while VEGF-C and 
VEGF-D tend to regulate lymphangiogenesis. VEGFRs are divided 
into three types, VEGFR-1, VEGFR-2, and VEGFR-3, along with 
the non-tyrosine kinase co-receptors neuropilin-1 and NP-2 [53-56].

VEGFR-1 regulates cell differentiation, migration and 
promotes differentiation of epithelial cells [57,58]. Meanwhile, 
VEGFR-3 mediates the differentiation, migration, proliferation, 
and survival of lymphatic endothelial cells [59]. VEGFR-2 is 
actively involved in vascular formation and is mostly expressed in 
blood and lymphatic epithelial cells [60]. VEGF-A and VEGF-B 
mainly bind to VEGFR-1 and VEGFR-2. VEGFR-1, VEGFR-2, 
and VEGFR-3 activation leads to phosphorylation of tyrosine 
residues and activation of various pathways, including the RAS/
RAF/ERK/MAPK pathways that promotes epithelial cell growth, 

and the PI3K/AKT pathway, by which cell apoptosis may be 
avoided and contributes to the differentiation, proliferation, 
migration, and apoptosis resistance of epithelial cells [52,56,59]. 
The proangiogenic effects of VEGF-VEGFR are important in 
local sites, favoring tumor progression and migration, as well 
as for neovascularization in metastatic sites to support cancer 
survival and growth [61].

3. KRAS, NRAS, and BRAF Status: Personalizing the 
First-line Treatment Today

Fluoropyrimidines are a main part of the backbone of combination 
regimes in mCRC. Randomized clinical trials have shown that 
fluoropyrimidine-based combinations with oxaliplatin or irinotecan 
(FOLFOX, FOLFIRI or XELOX) in the first-line significantly 
improve treatment efficacy, achieving a response rate of 34-55%, 
a time to progression of 7-8 months and a median overall survival 
(mOS) of 14-21 months. The triple therapy with FOLFOXIRI has been 
compared with FOLFOX or FOLFIRI, demonstrating superiority 
for FOLFOXIRI in terms of efficacy outcomes, notably with a 25% 
survival and a 30% increase in response rate. However, because of 
marked grade 3-4 toxicity, triple therapy is reserved for patients with 
mCRC with a good performance status, that are highly symptomatic 
and were the main therapy objective is response rate. In addition, in 
the past 15 years, monoclonal antibodies have been added to first-line 
chemotherapy regimens in mCRC [62-64]. Inhibition of the EGFR 
by panitumumab or cetuximab leads to KRAS becoming GDP-bound, 
which inhibits downstream signaling [39]. Cetuximab was approved 
by the FDA in mCRC in 2004, although it was not until 2012 that 
it was approved in the first-line setting. The OPUS and COIN trials 
demonstrated a higher objective response rate (ORR) with the first-
line chemotherapy plus cetuximab in exon 2 KRAS wild-type mCRC 
patients in comparison with chemotherapy. However, no differences 
were reported in mOS and median progression-free survival (mPFS) 
[36,65]. The CRYSTAL study demonstrated numerically longer 
mOS (14.1  vs. 10.3  months, HR=0.91, P=0.7), and mPFS (8  vs. 
5.6 months, HR=0.93, P=0.86), and a higher ORR (19.2% vs. 15.2%, 
P<0.0001) with FOLFIRI/Cetuximab in comparison with FOLFIRI 
alone in patients with KRAS wild-type/BRAF mutant. Benefit was 
superior with cetuximab regimen in patients with KRAS wild-type/
BRAF wild-type mCRC for mOS (25.1 vs. 21.6 months, HR=0.83, 
P=0.0549), mPFS (10.9 vs. 8.8 months, HR=0.68, P=0.0016) and 
ORR (61% vs. 42.6%, P<0.0001) [66]. The FIRE-3 trial evaluated 
the anti-EGFR cetuximab versus the anti-VEGF bevacizumab, both 
in combination with chemotherapy in patients with KRAS/NRAS/
BRAF wild-type mCRC. 8 months longer mOS was achieved with 
cetuximab/FOLFIRI in comparison with bevacizumab/FOLFIRI 
(33.1 vs. 25 months, HR=0.697, P=0.0059). In addition, ORR with 
cetuximab/FOLFIRI was higher (72% vs. 56.1%, OR 2.01, 0=0.003) 
[67]. Furthermore, anti-EGFR agents have also demonstrated 
its value in the neoadjuvant setting. The CELIM trial evaluated 
FOLFOX6/FOLFIRI and cetuximab in mCRC with unresectable 
liver metastasis, achieving a response rate of 70% in KRAS codon 
12/13/61 wild-type patients, allowing liver resection in 93% of 
the studied population [68]. Likewise, the POCHER trial found a 
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similar response rate (79%) with chemotherapy/cetuximab in a 
similar population [69]. In mid-2021, the JACCRO trial achieved a 
median depth of response of 57.4% in KRAS wild-type mCRC with 
mFOLFOXIRI/Cetuximab, compared to a 46% with mFOLFOXIRI/
Bevacizumab (P=0.001). Median depth of response was higher in 
the left vs. right-sided mCRC (60.3% vs. 46.1%, P=0.0007) [70].

Panitumumab was approved by the FDA for first-line mCRC 
in 2014. The PRIME trial evaluated panitumumab/FOLFOX4 
versus FOLFOX4 in the first-line mCRC. This trial found superior 
mOS (23.9  vs. 19.7  months, HR=0.83, P=0.072), mPFS (9.6  vs. 
8 months, HR=0.80, P=0.02) and ORR (57% vs. 48%, P=0.018) 
with panitumumab/FOLFOX4 in KRAS wild-type mCRC 
[34]. Further analysis reported modest benefit in mPFS (6.9  vs. 
5.5 months, HR=0.68, P=0.006) and mOS (18.7 vs. 15.4 months, 
HR=0.83, P=0.15) with panitumumab/FOLFOX4 in patients with 
KRAS/NRAS/BRAF wild-type [71]. The PEAK trial evaluated 
panitumumab/chemotherapy versus bevacizumab/chemotherapy in 
KRAS/NRAS wild-type mCRC patients. mPFS with panitumumab/
chemotherapy was 13.1 months compared to 10.1 months (HR=0.61, 
P=0.0075) with bevacizumab/chemotherapy. mOS was also superior 
survival benefit (41.3 vs. 28.9 months, HR=0.63, P=0.058) [72]. In 
the neoadjuvant setting, the phase II VOLFI trial reported the highest 
ORR in mCRC with liver metastasis to date. FOLFOXIRI plus 
panitumumab achieved an ORR of 85.7% compared to 60.6% with 
FOLFOXIRI alone (OR=3.9; P=0.0098). In addition, ORR achieved 
90.6% in left-sided and 86% in RAS/BRAF wild-type mCRC [73]. 
Anti-EGFR plus chemotherapy became the treatment of choice in 
RAS and BRAF wild-type mCRC [39].

The AVF 2107 phase III study evaluated the combination 
of bevacizumab/FOLFIRI versus FOLFIRI alone in first-line 
mCRC. mPFS (10.6 vs. 6.2 months, HR=0.54, P<0.0001), mOS 
(20.3 vs. 15.6 months, HR=0.66, P<0.001), and ORR (45% vs. 
35%; P=0.004) were superior with bevacizumab/FOLFIRI [74]. 
Likewise, the NO16966 trial reported a longer mOS (21.2 m vs. 
19.9 m, HR=0.89, 0.76-1.03, P=0.07) and mPFS (9.4 m vs. 8.0 m, 
HR=0.83, P=0.023) with bevacizumab/FOLFOX4 compared to 
FOLFOX4 alone [75]. In the phase III AVEX trial, bevacizumab 
remained relatively safe and effective when treating elderly 
patients with mCRC, achieving a mPFS of 9.1  months with 
capecitabine/bevacizumab and 5.1 months with capecitabine alone 
(HR=0.53, P<0.0001). Grade 3-4 adverse events were 40% in the 
combination group and 22% in the capecitabine-alone group [76]. 
A  meta-analysis of 6 randomized trials including 3060  patients 
concluded that bevacizumab achieved a significantly longer PFS 
(HR=0.72, P<0.00001) and OS (HR=0.84, P<0.00001). Further 
investigation found that both KRAS mutant and KRAS wild-
type mCRC may benefit from bevacizumab. A  pooled analysis 
evaluated the efficacy and safety of bevacizumab in mCRC. This 
study included 3763 patients from different randomized trials and 
the addition of bevacizumab to chemotherapy was associated 
with statistically significant increases in OS (HR=0.80, 0.71-
0.90) and PFS (HR=0.57, 0.46-0.71). The effects on OS and PFS 
across subgroups defined by the chemotherapy backbone, extent 
of disease, age, ECOG and KRAS status were consistent with the 
overall analysis. Interestingly, the benefit with bevacizumab was 

found even in mCRC patients with KRAS mutation [74,77-79].
In patients with mCRC who responded to bevacizumab plus 

chemotherapy, maintenance therapy with bevacizumab may 
be considered. In the prospective BRiTE study in patients with 
first-line mCRC, maintenance with bevacizumab dramatically 
improved mOS compared with no maintenance (31.8  vs. 
19.9  months, HR=0.48, P<0.001) [80]. The MACRO trial 
reported that continuing with bevacizumab plus capecitabine or 
bevacizumab alone after bevacizumab plus CAPOX achieved a 
similar mOS (23 vs. 19 months, HR=1.09, P=0.38) [81]. In the 
phase III CAIRO3 trial, maintenance with bevacizumab plus 
capecitabine after bevacizumab/CAPOX achieved a mPFS2 of 
11.7  months compared to 8.5  months in the capecitabine-alone 
group (HR=0.63, P<0.001) [82]. Maintaining bevacizumab 
beyond progression has also been evaluated in different trials. 
The ML18147 study reported that patients who continued 
bevacizumab plus chemotherapy after progression achieved a 
modest improvement in mOS compared to chemotherapy alone 
(11.2 vs. 9.8 months, HR=0.81, P=0.0062) [83]. However, in the 
BEBYP trial, the combination of bevacizumab plus chemotherapy 
beyond progression in the first-line setting achieved only a modest 
improvement in mPFS (6.8 vs. 5 months, HR=0.7, P=0.01) [84]. 
Finally, other antiangiogenic agents such as aflibercept and 
ramucirumab have been tested, respectively, within the VELOUR 
and RAISE studies in the second-line setting [85,86].

The most relevant studies of first-line therapy in mCRC will be 
discussed below and are summarized in Table 1.

4. Sidedness Matters in mCRC: Right Versus Left 
Colon Cancer

Primary tumor sidedness is a main clinical criterion that, combined 
with RAS and BRAF mutational status, is usually considered when 
choosing the best therapeutic option in mCRC  [87]. It is well known 
that left and right colon cancers have a different embryological 
origin. Left colon develops from the hindgut, receiving irrigation 
from the inferior mesenteric artery, while the right colon develops 
from the midgut and is irrigated from the superior mesenteric artery. 
Right and left colon cancers have different molecular backgrounds 
and distinct clinical behaviors. Indeed, compared to left sided CRC, 
right colon cancer has a higher frequency of the BRAF, KRAS, 
PIK3CA mutations, more commonly harbors MSI-H, and more 
frequently shows mucinous differentiation. On the other hand, left 
colon cancer has a higher EREG expression, and more commonly 
shows18q loss, 20q gain, and EGFR and HER2 gains [88]. This 
particular molecular profile confers right colon cancer a worse 
prognosis and response to therapy. Left colon cancer usually has a 
less aggressive evolution and better prognosis. Furthermore, right 
colon cancer shows less benefit from anti-EGFR agents even in RAS 
and BRAF wild-type tumors [89,90]. Therefore, anti-VEGFR agents 
are the biologicals of choice to be combined with chemotherapy in 
right-sided mCRC independently of RAS and BRAF status and in 
left-sided mCRC with RAS or BRAF mutations, while anti-EGFR 
agents are the treatment of choice in the left-sided RAS/BRAF wild-
type mCRC [91-93].



	 Motta et al. | Journal of Clinical and Translational Research 2021; 7(6): 771-785� 775

 DOI: http://dx.doi.org/10.18053/jctres.07.202106.011

5. The New Weaponry: Immunotherapy in MSI-H CRC

The terminology regarding MSI is not homogeneous. However, 
MSI is commonly described as a hyper-mutable phenotype, 
resulting from a defective DNA mismatch repair (MMR) 
system   [94]. The MMR system is responsible for correcting 
errors in DNA replication. Mutations in MMR genes lead to the 
accumulation of mutations favoring malignant transformation. 
Therefore, MSI-H tumors are associated with the production and 
accumulation of hundreds of somatic mutations, which lead to 
a high neoantigen exposure that favor the initiation of a robust 
antitumor immune response [22,23]. Response to immunotherapy 
has been studied in this particular population in recent years.

As when playing chess, and as depicted in Figure  1, 
immunotherapy has recently been added to the existing weaponry 
to combat mCRC.

The Keynote 028 and Keynote 164 trials demonstrated the efficacy 
of pembrolizumab, an anti-PD1 agent, in patients with heavily 
pretreated MSI-H mCRC. Furthermore, a whole exome sequencing 
study within Keynote 028, found that patients with DNA mismatch 
repair had a much higher mutational load than patients without 
DNA repair deficiency (1782  vs. 73, P=0.007). Checkmate-142, 
a multi-cohort phase II trial, evaluated the ORR with nivolumab, 
another anti PD-1, in heavily pretreated patients with MSI-H mCRC. 
ORR was 31.1% (95% CI 20.8-42.9) while the median duration 
of response (DOR) was not reached. Treatment with nivolumab 
achieved a 1-year PFS of 50.4% and a 1-year OS of 73.4%. Another 
cohort from Checkmate-142 evaluated the addition of ipilimumab, 

an anti CTLA-4 agent. The combination of ipilimumab/nivolumab 
in heavily pretreated mCRC achieved an ORR of 55% (95% CI, 
45.2-63.8), and a 1-year OS and PFS of 71% and 85%, respectively; 
and the combination showed a favorable impact in quality of life, 
with grade 3-4 adverse events occuring in 32% of patients [95-99].

Another cohort from Checkmate-142 evaluated the 
combination of nivolumab/ipilimumab in the first line setting. 
ORR achieved 60% (95% CI, 49-78%) with a non-reached 
median DOR and a 1-year PFS, and 1-year OS of 77% and 
83%, respectively [100]. Updated results after a median follow-
up of 29  months, reported a 69% ORR and a 2-year PFS and 
OS of 74% and 79%, respectively, while median DOR, PFS 
and OS had not been reached yet. Of note, only 7% of patients 
developed grade 3-4 adverse events with this regimen, and the 
nivolumab/ipilimumab combination was finally FDA-approved 
as first-line therapy of MSI-H mCRC in July 2018 [101]. More 
recently, the Keynote-177 study evaluated pembrolizumab versus 
chemotherapy in the first-line MSI-H mCRC. Median PFS was 
twice longer with pembrolizumab than with chemotherapy 
(16.5  months vs. 8.2  months, HR=0.6 [95% CI 0.5-0.80], 
P<0.002). ORR was also higher with pembrolizumab (43% vs. 
33%, P=0.275) and median DOR had not been reached in the 
immunotherapy arm. Toxicity with pembrolizumab was easily 
manageable. Notably, at 24-months follow-up, 48% of patients 
in the pembrolizumab arm remained free of disease progression 
compared to 19% in the chemotherapy arm [102]. Keynote-177 
was considered a practice-changing trial and pembrolizumab was 
added to the therapeutic options for MSI-H mCRC (Figure 2), 

Table 1. Most relevant trials of first‑line therapy in biomarker‑selected populations
Trial Phase Treatment Target mPFS mOS

CRYSTAL III FOLFIRI+Cetuximab
vs.
FOLFIRI

EGFR 10.9 m
8.8 m

P=0.0549

25.1 m
21.6 m

P=0.0016
PRIME III FOLFOX+Panitumumab

vs.
FOLFOX

EGFR 6.9 m
5.5 m

P=0.006

18.7 m
15.4 m
P=0.15

PEAK II FOLFOX+Panitumumab
vs.
FOLFOX+Bevacizumab

EGFR 13 m
10.1 m

P=0.0075

41.3 m
28.9 m

P=0.058
FIRE‑3 III FOLFIRI+Cetuximab

vs.
FOLFIRI+Bevacizumab

EGFR 10 m
10.3 m
P=0.77

33.1 m
25 m

P=0.0059
AVF‑2107 III FOLFIRI+Bevacizumab

vs.
FOLFIRI

VEGFR 10.6 m
6.2 m

P<0.0001

20.3 m
15.6 m

P<0.001
NO16966 III FOLFOX+Bevacizumab

Vs.
FOLFOX

VEGFR 9.4 m
8.0 m

P=0.023

21.2 m
19.9 m
P=0.07

CHECKMATE‑142 II Ipililumab/Nivolumab PD‑1/CTLA‑4 NR NR
KEYNOTE‑177 III Pembrolizumab

vs.
Chemotherapy

PD‑1 54 m
24.9 m

P<0.002

NR
36.7 m

EGFR: Epidermal growth factor receptor, VEGFR: Vascular endothelial growth factor receptor, PD‑1: Programmed cell death protein‑1, CTLA‑4: Cytotoxic T‑lymphocyte antigen 4, NR: Not 
reached, mPFS: Median progression free survival, mOS: Median overall survival. vs.: Versus
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being FDA-approved for first-line mCRC in June 2020. In 
addition, after 36 months of follow-up, the pembrolizumab arm 
achieved a mPFS of 54  months, compared to 24.9  months in 
the chemotherapy arm. The 3-year PFS rate reached 60% in the 
pembrolizumab arm compared to 39% in the chemotherapy arm 
(HR=0.61, 0.44 – 0.83). ORR was also higher with pembrolizumab 
(45.1%) compared to chemotherapy (33.1%).

On the other hand, the anti PD-1/anti CTLA-4 combination, 
as already mentioned, achieved a much higher ORR (69%), 
although a significant benefit in OS is unclear yet. 3-year OS rate 
was higher with pembrolizumab compared with the chemotherapy 
arm, although without statistical significance (61% versus 50%, 
HR=0.74, 0.53-1.03). mOS was not reached with pembrolizumab, 
while patients in the chemotherapy arm achieved a 36.7 months 
mOS [103]. Further follow-up to determine the benefit in OS of 
the pembrolizumab arm is still needed.

6. Potential New Weapons: Future Perspectives in the 
First-line Treatment

All future potential treatment options are summarized in 
Table  2.

6.1. Targeting HER2 overexpression/amplification

HER2 overexpression/amplification is found in 1.3-6.3% 
of patients with CRC, especially those with RAS and BRAF 
wild-type left-sided tumors [104-108]. HER2 overexpression 
is most commonly analyzed by immunohistochemistry (IHC), 
while its amplification is usually determined by fluorescent 
in situ hybridization (FISH) [109]. Unlike other neoplasms, 
criteria for positivity have not yet been standardized in CRC. 
Recently, an international collaborative project established as 
criteria for HER2 positivity in CRC an IHC score of 3+ or 2+ 
associated with a FISH HER2/CEP17 ratio ≥2.0 in >10% of 
tumor cells [110].

The HER2 oncogene is located in the 17q21 chromosome and 
encodes a transmembrane receptor tyrosine kinase. HER2 is a 
member of the human epidermoid receptor family that includes the 
EGFR (HER1), HER2, HER3, and HER4 receptors [111]. HER2 
has no known ligand but can form heterodimers with EGFR, HER3, 
and sometimes HER4. Following dimerization, the intracellular 
tyrosine residues autophosphorylate and subsequently trigger a 
cascade of multiple important signaling pathways including RAS/
RAF/MEK/ERK, PI3K/AKT/mTOR, tyrosine Src kinase, and 
STAT pathways. Since HER2 overexpression activates almost 
constitutively, part of the downstream signaling that is shared by 
EGFR, this explains the resistance to anti-EGFR agents of HER2 
positive mCRC [112-115].

Reports indicate that patients with with RAS/BRAF wild-type, 
HER2 amplified, mCRC have shorter PFS and OS than those 
without HER2 amplification. Results of anti-HER2 therapies in 
mCRC have been contradictory [116,117]. The HERACLES-A 
study found benefit (ORR 29.6%) with dual anti-HER2 blockade 
with trastuzumab and lapatinib in a cohort of patients with 
HER2-positive heavily pretreated RAS wild-type mCRC [118]. 
However, the HERACLES-B study did not find a positive impact 
on survival (PFS 4.1  months) or response rate (ORR 9.7%) 
with the combination of pertuzumab and T-DM1 in a similar 
population [119]. Treatment with trastuzumab and pertuzumab 
achieved a 32% ORR in patients with HER2-amplified mCRC 
enrolled within the MyPAthway program   [120]. Recently, 
the DESTINY-CRC01 trial reported benefit with trastuzumab 
deruxtecan in pretreated patients with HER2 positive (IHC 3+ 
or IHC 2+/ISH+) mCRC. ORR was 45.3%, mPFS 6.9 months 
and mOS 15.5  months [121]. Siena et al. [122] coherently 
suggest the possible incorporation of anti-HER2 agents as first-
line therapy in a near future, although stronger evidence is still 
needed. Trastuzumab and new anti-HER agents, such as pyrotinib 
and zanidatamab, are being currently studied in first-line 
clinical trials (NCT00003995, NCT03929666, NCT04380012, 
NCT03043313, NCT03365882).

6.2. Targeting PI3K pathway

PI3K is a key component of the PI3K/AKT1/MTOR pathway 
with an important role in CRC pathogenesis [123,124]. Gain-
of-function mutations in PIK3CA (PI3K catalytic subunit alpha 
gene) activate the p110a enzyme, the key catalytic subunit of 

Figure 1. Checkmating the king with the knight and bishop is one 
of the most complicated chess moves. The first monoclonal antibody 
approved by the FDA for the treatment of mCRC was bevacizumab 
in 2004. Subsequently, cetuximab and panitumumab joined the fight, 
with their corresponding approvals in 2009 and 2014, respectively. The 
recently FDA-approved pembrolizumab and nivolumab/ipilimumab add 
to the present weaponry against mCRC. VEGFR: Vascular endothelial 
growing factor receptor, EGFR: Epidermal growth factor receptor, 
mCRC: Metastatic colorectal cancer.
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PI3K, stimulating the AKT-MTOR pathway and resulting in 
cancer growth and proliferation [125]. Mutations in the helicase 
and kinase domains of exons 9 and 20 of PIK3CA occur in 10-
20% of CRC and are associated with other molecular alterations 
such as BRAF and KRAS mutations and high-grade CpG island 
methylator phenotype. PIK3CA mutation frequency increases 
from the rectum to the proximal colon and its prognostic value 
is controversial [126-131]. A number of studies indicate that anti-
EGFR agents show no benefit in survival in patients with exon 20 
PIK3CA mutations regardless of RAS and BRAF status [132,133].

Some PI3K inhibitors have been developed and evaluated in 
phase I trials. Copanlisib prevents the growth of malignant cells 
through the induction of apoptosis via protein p53 upregulated 
modulator of apoptosis (PUMA) [134]. A  phase I study 
demonstrated a manageable safety profile and a 40% disease 
control rate (DCR) with copanlisib in a cohort of patients with 
solid tumors, including mCRC [135]. Dactolisib, a dual PI3K 

and mTOR inhibitor, binds to the ATP-binding cleft of PI3K 
and mTOR kinase, inhibiting their catalytic activities [136]. 
Dactolisib effectively inhibits the growth of human colon cancer 
cells (SW480) by targeting the PI3K/mTOR signaling pathway 
and inducing apoptosis [137]. Another phase Ib dose-escalation 
study evaluated apitolisib, another PI3K inhibitor, in combination 
with capecitabine (Arm A: 19  patients) or mFOLFOX6 + 
bevacizumab (Arm B: 11  patients) in advanced solid tumors, 
including CRC. Partial response was observed in only one 
mCRC patient with mutations in PIK3CA and KRAS. Further 
evaluation in the CRC expansion cohort, found that 2 additional 
patients achieved partial responses. In general, treatment was well 
tolerated; the most common grade 3 or higher adverse event was 
hyperglycemia (40%), followed by stomatitis, hypophosphatemia 
and neutropenia  [138]. Another phase I trial evaluating the safety 
of PI3K inhibitors in patients with advanced solid tumors, reported 
that buparlisib in combination with mFOLFOX6 significantly 

Figure 2. Molecular status and primary tumor sidedness are relevant predictive factors in mCRC. Pembrolizumab and Ipilimumab/nivolumab 
showed benefit in patients with MSI-H mCRC. Patients with the left sided wild-type RAS/BRAF mCRC are the most benefited with Cetuximab and 
Panitumumab (Anti-EGFR agents). If patients harboring any mutation (NRAS, KRAS or BRAF) and/or with a right-sided mCRC, bevacizumab (anti-
VEGFR agent) is the best biological companion. CT: Chemotherapy, mCRC: Metastatic colorectal cancer, VEGFR: Vascular endothelial growing 
factor receptor, EGFR: Epidermal growth factor receptor, MSI-H: Microsatellite instability high.

Table 2. Randomized trials with new targeted therapies in mCRC
Target pathway Trial Phase Treatment Endpoint Other results

HER2 Overexpression/Amplification HERACLES‑A
HERACLES‑B
MyPAthway
DESTINY‑CRC01

II
II
IIa
II

Trastuzumab/lapatinib
Pertuzumab/TDM‑1
Trastuzumab/Pertuzumab
trastuzumab deruxtecan 

RR=29.6%
RR=9.7%
RR=32%
RR=45.3%

mPFS=21 w, mOS=46 w
mPFS 4.1 m
mPFS=5.3 m, mPFS=14m
mPFS=6.9 m, mOS=15.5 m

Targeting PI3K pathway Rosen et al.
Yang et al.
Coleman et al.

I
Ib
I

Apitolisib/CT
Buparlisib/FOLFOX
Sapanisertib/Metformin

RR=3/30 pts
Safety
RR=0/2 pts

Safety=AEs in>20%
‑
Safety

Loss of PTEN Jansen et al.
Garrido‑Laguna et al.

I
I/II

Decitabine
Decitabine/Panitumumab

Safety
Safety

‑
‑

Targeting HGF/MET pathway Van Cutsem et al.
Bendell et al.
Eng et al.

I/II
II
I/II

Rilo or Ganitumab/Pani
Onartuzumab/CT
Tivantinib/Cetu/CT

RR=31%/22%
Safety
mPFS=8.3 m

mPFS=5.2/13.8 m, mOS=5.3/10.6 
m
mDOR=6.4 m
Safety

mCRC: Metastatic colorectal cancer, HER2: Human epidermal growth factor receptor‑2, RR: Response rate, mPFS: Median progression free survival, mOS: Median overall survival, 
mDOR: Median duration of response, CT: Chemotherapy, Rilo: Rilotumumab, PTEN: Phosphatase and tension homolog, HGF: Hepatocyte growth factor, MET: mesenchymal‑epithelial transition
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increased toxicity compared to buparlisib or mFOLFOX6 
alone, and therefore buparlisib is not being developed further in 
CRC  [139]. However, PI3K inhibitors are still being studied. In 
mid-2021, a phase I study evaluated sapanisertib in combination 
with metformin in patients with mTOR/AKT/PI3K pathway 
alterations and heavily pre-treated advanced solid malignancies. 
Thirty patients were included (only 2  patients with mCRC) 
and PI3KCA was the most common genomic alteration (27%). 
Disease control rate was 60% with the combination, although 
patients with mCRC were not among responders [140]. The 
complexity of the PI3K/AKT/mTOR signaling network involves 
numerous feedback loops and extensive crosstalk nodes with 
other signaling pathways and compensatory pathways, and 
therefore, unfortunately intrinsic and acquired resistance currently 
limits the therapeutic efficacy of PI3K inhibitors in mCRC [141]. 
These agents, alone or in combination, are being studied in the 
first line setting in ongoing trials (NCT04495621, NCT04753203, 
NCT02861300, NCT03711058, NCT04753203).

6.3. Targeting phosphatase and tension homolog (PTEN) loss

PTEN is a multifunctional suppressor protein of the PI3K/AKT 
pathway [142]. This protein dephosphorylates PI3K products by 
counteracting the PI3K/AKT signaling cascade. PTEN controls 
cell proliferation, promotes apoptosis, regulates cell migration/
adhesion and the formation of new vasculature [143,144]. Loss of 
PTEN results in the development of cancer due to the activation 
of the PI3K/AKT pathway and is found in 20-40% of patients 
with mCRC [145]. PTEN alterations seem to be more frequently 
correlated with right-sided tumors, MSI, BRAF mutations, lymph 
node metastases, and a higher tumor stage [146]. Loss of PTEN 
may be associated with resistance to anti-EGFR treatment, but 
clinical studies have shown conflicting results [147].

In a recent review, Salvatore et al. [146], discuss potential 
ways of targeting PTEN in CRC. Potentiating PTEN 
transcription by removing an epigenetic block or modifying 
the exposure to activating or inhibitory transcription factors 
is a means of increasing PTEN function [148]. Decitabine, a 
DNA methyltransferase inhibitor, significantly decreased cell 
proliferation, induced apoptosis and cell cycle arrest of a colon 
carcinoma cell line in vitro [149]. The safety of decitabine 
through hepatic arterial infusion was investigated in patients 
with unresectable liver metastases from solid tumors in a dose 
escalation phase I clinical trial. Decitabine was administered at 3 
different dose levels as a 1-h hepatic arterial infusion in 9 patients 
(4 with mCRC). Decitabine infusion was safe, with grade  1-2 
hematological toxicity being the most frequent treatment-
related adverse event with no treatment-limiting adverse events. 
However, there were no objective tumor responses [150]. DNA 
methyltransferase inhibitors remove methyl groups from DNA, 
causing the demethylation of DNA. The combination of decitabine 
and panitumumab was well tolerated and showed activity in KRAS 
wild-type mCRC patients previously treated with cetuximab 
in a phase I/II trial [151]. Some of the transcription factors can 
be pharmacologically stimulated: PPARγ (via rosiglitazone), 

EGR-1 (via irradiation), and NFAT (through butyrate, a fatty 
acid produced by colonic microbiota fermentation) [152]. At the 
post-transcriptional level, PTEN expression can be impaired by 
microRNAs (miRNAs) or RNA-binding protein (RBP). miRNAs 
bind mRNAs causing loss of PTEN expression and activation of 
the PI3K/AKT signaling cascade. Modulation of those regulatory 
RNAs and RNA-RBPs represent a therapeutic strategy aiming 
at restoring PTEN translation and expression, exploiting its 
antitumor activity, and increasing cellular drug sensitivity [153]. 
Some PTEN isoforms originating from different start codon 
translations have been identified. Of those, PTEN-L was shown 
to counteract the PI3K/AKT pathway, leading to cell death, both 
in vitro and in vivo [154]. Finally, post-translational modifications 
at specific aminoacidic residues can directly modulate PTEN 
catalytic or binding activity subsequently impacting on PTEN 
function [155]. Reverting those post-translational modifications 
or targeting the enzymes involved could be effective at restoring 
PTEN function in PTEN positive neoplasms [156]. The long 
noncoding RNA Linc02023 specifically binds to PTEN and 
blocks its ubiquitination, promoting CRC cell proliferation and 
survival. Thus, Linc02023 may serve as a novel therapeutic target 
for restoring PTEN tumor suppressor activity  [157].

6.4. Targeting the hepatocyte growth factor (HGF)/
mesenchymal-epithelial transition (MET) pathway

The HGF and the tyrosine kinase receptor known as MET factor 
play an important role in proliferation, survival, metastasis, and 
acquired resistance to cancer treatment [158]. HGF is produced 
primarily by mesenchymal tissue and is the only known ligand for 
MET. Patients with CRC have an elevated serum HGF at diagnosis. 
MET is a member of the transmembrane surface receptor family 
expressed on endothelial cells and both normal and malignant 
epithelial cells [87]. Tissue and serum expression of HGF and 
elevated levels of MET protein and mRNA associate with a poor 
prognosis in CRC [159,160]. MET mutations and amplifications 
represent, respectively, 2-5% and 0.5-2% of all mutations in CRC. 
Overexpression of HGF/MET mRNA and HGF/MET protein 
occur in 70% and 50% of CRC tissue samples, respectively. HGF-
induced translocation of metastasis-associated in colon cancer 
1 from plasma to nucleus and its binding to the MET promoter 
initiates transcription in the MET pathway [161]. The activation 
of MET signaling starts with the binding of HGF to the MET 
receptor at the cell membrane level, triggering the formation of 
a multifunctional intracellular coupling site from two tyrosine 
residues that bind to subsequent substrates. Activation of the HGF/
MET pathway initiates signaling pathways, including MAPK/
ERK, PI3K/AKT, and STAT/JAK, the nuclear factor kB complex, 
regulates hematopoiesis, and promotes organ regeneration and 
wound healing [162]. Subsequent studies supported the theory that 
MET over-activation promotes HGF transcription and expression, 
leading to subsequent MET activation and expression in a loop 
manner that can be increased via paracrine HGF produced by 
reactive stromal cells in the tumor microenvironment or in 
situations such as hypoxia or inflammation [163].
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Unfortunately, clinical trials with HGF and MET inhibitors have 
shown negative results. A  randomized phase I/II trial evaluating 
panitumumab in combination with rilotumumab, ganitumab, or 
placebo in patients with KRAS-wild type mCRC reported ORRs of 
31%, 22%, and 21% respectively, while mPFS and mOS were 5.2 
and 13.8 months, 5.3 and 10.6 months, and 3.7 and 11.6 months, 
respectively. Exploratory biomarker analyzes, including MET 
and IGF-related protein expression, failed to demonstrate a clear 
predictive value [164]. A phase II trial of onartuzumab combined 
with mFOLFOX-6 and bevacizumab did not improve survival in 
previously untreated MET IHC-positive mCRC and MET expression 
by IHC was not predictive of response [165]. Another phase I/II 
trial investigated the addition of the oral MET inhibitor, tivantinib 
to cetuximab/irinotecan (CETIRI). The combination of tivantinib 
and CETIRI was well tolerated but did not significantly improve 
PFS in previously treated KRAS-wild type mCRC  [166]. Finally, 
in a phase II study enrolling patients with MET-high-amplified, 
KRAS wild-type mCRC, treated with ≥ 1 prior systemic therapy 
and showing tumor progression on cetuximab or panitumumab 
within 3 months before enrollment, treatment with tivantinib plus 
cetuximab showed only modest results in ORR and PFS [167]. 
Future trials will evaluate the role of HGF and MET inhibitors in 
mCRC (NCT03592641, NCT02205398, NCT04515394).

7. Conclusions

mCRC harbors molecular alterations that besides being 
prognostic, also allow physicians to make the most adequate 
treatment decisions for each patient. RAS and BRAF mutational 
status and MSI are at present mandatory determinations in all 
newly-diagnosed advanced CRCs to choose between anti-EGFR, 
anti-VEGF, and immune checkpoint inhibitory agents. However, 
other more recently described alterations such as those in HER2, 
PIK3, PTEN, and others, have been shown to be targetable and 
constitute promising therapeutic options in the first-line setting. 
It is, therefore, of utmost importance that physicians are aware of 
the rapidly-evolving molecular biology and therapeutic advances 
in advanced CRC to offer the most appropriate and individualized 
management approaches for these patients.
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