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A widespread epidemic of Zika virus (a mosquito-borne flavivirus) infection was reported from
2015 in South and Central America. A major concern associated with the infection is the
significantly increased incidence of microcephaly in fetuses born to the mothers infected with
Zika virus (Mlakar et al., 2016). Researchers studying monkeys have shown that one infection with
Zika virus protects the animal against future infections. Neutralizing antibodies are detected at 21
days post-infection. Re-challenge at 10 weeks after the initial inoculation resulted in no detectable
viral replication, indicating successfully protective immunity against the virus (Dudley et al., 2016).
They also found that non-pregnant animals could clear the virus within 10 days post-infection,
however the virus persisted in the blood of pregnant monkeys for 35–70 days (Dudley et al., 2016).
One possible explanation for the persistence of the virus in pregnancy is that the immune system
of the mother was compromised, and she simply was not able to clear the virus as fast as the
non-pregnant one. However, the pregnant animal (woman) still has a certain level of immunity.
Both type I interferons and type III interferons are apparently induced by Zika virus infections, and
the interferons have an ability to restrict Zika virus replication in human trophoblast cells (Bayer
et al., 2016; Quicke et al., 2016). The other explanation, more provocative hypothesis is that the
persistence of the virus is indicative of the fetal infection, and what they observed in the maternal
serum was the shedding of virus by the fetus back into the mother’s blood (Driggers et al., 2016).
We cannot conclusively claim that the persistence of the virus does not reflect the fetal infection
or there is no persistence found in non-pregnant animals (people), as it is possible that Zika virus
may persist in immune-privilege cells (Hazlett and Hendricks, 2010). However, an analysis of the
clinical data implies that the virus may take ∼5 weeks to reach the fetus for most cases (Noronha
et al., 2016; Soares de Souza et al., 2016; Yuan et al., 2017a). Therefore, the virus detected in the
pregnant monkey within 35 days of infection is unlikely the backflow from the fetus back into the
mother’s bloodstream.

VIRAL SECRETION IN THE EXOSOME MAY BE CENTRAL TO ITS
IMMUNE EVASION

Then why was the long-time persistence of the virus only observed in pregnancy? We previously
hypothesized that Zika virus may hide in the exosome, which forms a shield against the mother’s
immune system (Zhang et al., 2017). There is evidenced that Hepatitis C virus, another flavivirus,
can be transmitted through exosomes and utilize the autophagy pathway for viral transmission
thus evading antibody-mediated immune responses (Ramakrishnaiah et al., 2013; Longatti, 2015;
Shrivastava et al., 2015). Like Hepatitis C virus, Zika virus may infect trophoblast cells by entering
the endoplasmic reticulum of the trophoblast to become a sort of cargo of the placental exosome
(Adibi et al., 2016; Zhang et al., 2017), which is closely linked with the “secretory autophagy”
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process. In contrast to degradative autophagy (fusion with the
lysosome), the secretory autophagy may result in secretion
or expulsion of viral particles instead of their degradation
(Figure 1) (Chahar et al., 2015; Ponpuak et al., 2015; Carneiro
and Travassos, 2016).

THE ROLES OF AUTOPHAGY IN
FLAVIVIRUS ENTRY AND REPLICATION

The roles of autophagy in flavivirus entry and replication have
been well-studied. In general, the virus customizes autophagy
proteins for efficient viral entry (Li et al., 2012; Dong and
Levine, 2013; Jackson, 2015). For Hepatitis C virus, autophagy
appears be required for initiation of, but not maintenance of,
viral replication (Dreux et al., 2009). For Dengue virus, viral
entry, replication, and translation have all been linked to the
autophagic pathways (Panyasrivanit et al., 2009). Zika virus
infection is accompanied with the observation of a lot of double
membrane autophagosomes (Hamel et al., 2015; Souza et al.,
2016; Lennemann and Coyne, 2017). While the co-detection of
the virus envelope protein and the autophagy marker protein
LC3 (cytosolic microtubule-associated light chain 3) has been
reported (Hamel et al., 2015). Thus, some autophagosome

FIGURE 1 | Putative Zika virus entry pathway and the exosome pathway in

the trophoblast cell. For Zika virus, upon binding to the receptor, the virus

enters the early endosome through the endocytic process. Several minutes

later, the virus particle fuses with the endosomal carrier vesicle (ECV)

membrane predominantly. However, for a short time, viral nucleocapsids

remain trapped in the ECV lumen, until ECV fuses back with the late

endosome membrane. Then the nucleocapsid is released. Alternatively, the

virus may enter the autophagosome, and then to be degradated by fusing with

the lysosome or become a sort of cargo of the placental exosome by blocking

the autophagosome-lysosome fusion. Exosome may provide the virus with a

shield from the mother’s immune system. Neutralizing antibodies or other

antiviral factors cannot work on the virus embedded in the exosome. Torin 1 or

rapamycin induces exosome aggregation with the virus embedded in, if the

lysosomal fusion step was blocked. While Beclin 1 or trehalose rescues the

impaired fusion step, which results in lysosomal degradation of the virus.

formation inhibitors (such as 3-methyladenine and wortmannin)
strongly reduced viral copy numbers in some cell lines (Nour
et al., 2013; Hamel et al., 2015). However, some opposite reports
suggest that the roles of autophagy in flavivirus infections are
controversial (Li et al., 2016; Rolfe et al., 2016). ATG16L2
(Autophagy related 16-like 2) was identified among the top
30 down-regulated genes in human neural stem cells after the
Zika virus infection (Rolfe et al., 2016). LC3 transcript was
also repressed by the Zika virus infection in mouse brain cells
(Li et al., 2016). However, in these two opposite reports, the gene
expression analyses were performed at 56–72 h after the virus
inoculation, which are late infection stages. Declines of some
autophagy-related genes at the late infection stages do not mean
that autophagy was inhibited at the early infection stages or at the
entry steps.

Depletion of autophagy-related (ATG) protein ATG5 does
not affect replication of West Nile virus in some cell lines
(Vandergaast and Fredericksen, 2012). Some other reports
even indicated that flavivirus replication levels were increased
in autophagy-deficient cells. For example, West Nile virus
replication was increased in mouse embryonic fibroblast cells
depleted of ATG5 (Kobayashi et al., 2014). For Japanese
Encephalitis virus, either depletion in ATG7 or deficiency in
ATG5 would result in higher viral replication levels in mouse
embryonic fibroblast cells (Sharma et al., 2014). However,
these results do not mean that autophagy down-regulates viral
replication directly. Autophagy may play a positive role in the
early infection stages; however it becomes dysfunctional when
the misfolded proteins accumulate at the late stages. Autophagy-
deficient cells may be highly susceptible to virus-induced cell
death (Sharma et al., 2014; Martín-Acebes et al., 2015). Therefore,
higher viral loads were detected in these susceptible cells.

FLAVIVIRUS INFECTION INHIBITS
AUTOPHAGOSOME-LYSOSOME FUSION

In the case of Dengue virus, early after the infection, basal,
and activated autophagic fluxes were enhanced. However, during
the established viral replication, basal, and Torin 1-activated
autophagic fluxes were declined because of a block to autophagic
vesicle formation and reduced autophagic degradation capacity
(Metz et al., 2015). During the late stages of Dengue
virus infection, autophagic vesicles increased as a result of
inefficient fusion of autophagosomes with lysosomes, although
the lysosomal activities were increased (Metz et al., 2015). Similar
autophagosome-lysosome fusion defect may also occur in the
Zika virus infection, since that a lot of genes required for
the lysosomal fusion were down-regulated by the Zika virus
infection (Li et al., 2016), such as RAB7 (a member of the
Rab GTPase superfamily) (Pankiv et al., 2010) and genes of
class C Vacuolar protein sorting (Vps)/HO motypic fusion
and Protein Sorting (HOPS) tethering complex (Vps16, Vps18,
Vps33) (Wurmser et al., 2000). If the lysosomal fusion step
was blocked, up-regulating autophagosome formation may cause
exosome aggregation with the virus embedded in Zhang et al.
(2017). This assumption is supported by the fact that Torin
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1 (a classic mechanistic target of rapamycin mTOR-dependent
autophagy activator) greatly enhanced Zika virus replication
(Hamel et al., 2015), and rapamycin treatment significantly
enhanced Dengue virus replication (Lee et al., 2013; Chu et al.,
2014). Because of the impaired autophagosome-lysosome fusion,
the Zika virus may become a cargo of the placental exosome,
other than to be degradated in the lysosome, which may be
central to its immune evasion as observed in the pregnant
animals (Figure 1).

TREHALOSE MAY BE AN IDEA DRUG
WITH A HIGH SAFETY

Trehalose induces autophagosome formation in an mTOR-
independent pathway and rescues the impaired lysosomal fusion
(Ejlerskov et al., 2013). The roles of trehalose on autophagy in
some other diseases have been reported before. For example, the
defect in autophagosome-lysosome fusion has been observed in
the amyotrophic lateral sclerosis (ALS) model mice of motor
neuron degeneration. Interestingly, like flavivirus infections,
rapamycin showed adverse effects to the ALS disease progression
(Zhang et al., 2011). On the contrary, trehalose rescued the
impaired fusion step, which resulted in aggregated autophagic
degradation in the motor neurons. Trehalose is able to attenuate
the autophagic flux defect and improve ALS disease course
(Zhang et al., 2014; Yuan et al., 2017b). Besides ALS, a
similar block to the autophagy-lysosome degradative pathway
has been also reported in the mouse model of human tauopathy.
Stimulation of autophagy by trehalose reduced tau aggregates
and improved neuronal survival in the cerebral cortex and the
brainstem (Schaeffer et al., 2012). Trehalose also enhances the
degradative capacity of macrophages and is considered as a
therapy for atherosclerotic vascular disease (Sergin et al., 2017).
Therapeutic effects of trehalose on virus infections have been
proved recently that trehalose had a profound inhibitory effect on
Human cytomegalovirus replication and strongly inhibited viral
spread through activating degradative autophagy presumably
(Belzile et al., 2015).

As discussed in our previous analysis (Yuan et al., 2017a),
the placental transfer of Zika virus may be a time-consuming
process. The virus may take about 5 weeks to reach the fetus
(or over 12 weeks, if the infection occurs early in pregnancy).
People could postulate that if most Zika virus was cleared before
it reaches the fetus, the incidence of microcephaly may be largely
decreased. Trehalose promotes the autophagosome-lysosome
fusion and prevents the virus from entering the exosome, and
therefore induces viral degradation or makes the virus exposed
to the mother’s immune system (Figure 1). Hence the trehalose
treatment might help to clear the virus within 5 weeks. Trehalose
therefore may be useful for early Zika virus infections. However,
trehalose may not prevent Zika virus induced microcephaly in
the late infection stages when the virus has been already reached
the fetus. Considering that the mother’s immune system would
spend more than 10 days to clear the virus, trehalose treatment
should be applied as soon as possible after the infection.

During pregnancy, when the number of candidate drugs is
exceedingly limited and the bar for the clinical approval is

extremely high, people must be very cautious when testing any
potential therapies that could be used in human pregnancy.
Trehalose is non-reducing disaccharide, with stable chemical
property and multiple protective effects to organisms and
biological macromolecules (Richards et al., 2002). It is a kind
of food, but not a drug, and does not produce any significant
side effects. Trehalose at effective intracellular concentrations
does not impair of mouse or rat fetus development or show
any teratogenic effect (Richards et al., 2002; Eroglu et al.,
2003). However, clinical trials to assess its embryotoxicity or
teratogenicity to humans are still lacking. Therefore, only after
careful toxicological tests in humans, trehalose treatment could
be used as a promising therapy for the pregnant women infected
with Zika virus.

FUTURE CLINICAL APPLICATIONS

The optimal dosage of trehalose for humans needs clinical
investigations. In the mouse experiments, 2% trehalose
containing water was given to the mouse through ad-libitum
consumption, and these oral administrations showed significant
therapeutic effects (Schaeffer et al., 2012; Zhang et al., 2014).
Whether similar trehalose treatments should be given for
humans needs further studies. There is no recommendation
from the FDA on this sugar. It would be well to follow the
WHO guideline and restrict intake of all sugars to 50 g per
day (46). The normal person daily potable water quantity is
about 1,500–2,500 ml. Two percentages trehalose means 30–50 g
per day. Thus, the WHO guideline may be a feasible one.
However, pregnant women also intake other sugars from their
diets. High maternal intake of free sugars during pregnancy
is associated with increased risks of many diseases in the
offspring, such as atopic asthma and allergic asthma (Bédard
et al., 2017; Torjesen, 2017). Appropriate oral dose needs further
studies.

Nevertheless, a large part of trehalose would be broken down
into glucose by the trehalase on the intestinal mucosa (Richards
et al., 2002), oral administration may not be a very effective
method. Trehalose injection might be an alternative option
(Echigo et al., 2012; Sergin et al., 2017), although the tests
in the rhesus macaque model should be performed before the
advancement to human clinical trials.
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