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Abstract
Introduction Our understanding of the urine metabolome and its association with urinary tract disease is limited in cats.
Objectives We conducted a case–control study to characterise the feline urine metabolome, investigate its association with 
chronic kidney disease (CKD) and feline idiopathic cystitis (FIC), and assess its compositional relationship with the urine 
microbiome.
Methods The urine metabolome of 45 owned cats, including 23 controls, 16 CKD, and 6 FIC cases, was characterised by 
an untargeted metabolomics approach using high-performance chemical isotope labelling liquid chromatography–mass 
spectrometry.
Results We detected 9411 unique compounds in the urine of controls and cases and identified 1037 metabolites with high 
confidence. Amino acids, peptides, and analogues dominated these metabolites (32.2%), followed by carbonyl compounds 
(7.1%) and carbohydrates (6.5%). Seven controls from one household showed a significant level of metabolome clustering, 
with a distinct separation from controls from other households (p value < 0.001). Owner surveys revealed that this cluster 
of cats was fed dry food only, whereas all but one other control had wet food in their diet. Accordingly, the diet type was 
significantly associated with the urine metabolome composition in our multivariate model (p value = 0.001). Metabolites 
significantly altered in this cluster included taurine, an essential amino acid in cats. Urine metabolome profiles were not 
significantly different in CKD and FIC cases compared with controls, and no significant compositional relationship was 
detected between the urine metabolome and microbiome.
Conclusion Our study reveals in-depth diversity of the feline urine metabolome composition, and suggests that it can vary 
considerably depending on environmental factors.
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1 Introduction

Metabolomics is a systematic analytical approach that 
identifies and quantifies all metabolites and their deriva-
tives in a biological system, such as in cells, tissues, organ-
isms, or biological fluids. Capturing the complete set of 
metabolites in a biological system, i.e. the metabolome, 
and analysing the metabolome of individuals under dif-
ferent conditions provides an opportunity to understand 
physiological and pathological alterations of the metabolic 
phenotype (Weckwerth & Morgenthal, 2005).

As a biological fluid containing metabolic by-products 
excreted from the bloodstream, urine has been commonly 
analysed for metabolomics research to understand disease 
pathogenesis and progression and thereby to improve diag-
nostic and therapeutic approaches (Bouatra et al., 2013). 
An extensive body of research has identified around 3100 
metabolites in human urine (Bouatra et al., 2013), and 
revealed associations between the urine metabolome and 
various diseases (Alonso et al., 2016; Posada-Ayala et al., 
2014; Wittmann et al., 2014) and environmental conditions 
(Jain et al., 2019; Lindqvist et al., 2020). However, in cats, 
we are aware of only two studies that have characterised 
the urine metabolome (Broughton-Neiswanger et al., 2020; 
Rivera-Vélez & Villarino, 2018). While these reports have 
contributed to improving our knowledge of the feline urine 
metabolome, the set of the identified metabolites was rela-
tively limited (i.e. 125 and 114 compounds, respectively) 
(Broughton-Neiswanger et al., 2020; Rivera-Vélez & Vil-
larino, 2018), compared with the human urine metabolome 
(Bouatra et al., 2013), leaving the diversity of the feline 
urinary metabolome largely unexplored. In addition, these 
studies used only young, female, and intact cats from a 
commercial breeding company that were kept under stand-
ardised housing conditions. While such a study population 
enabled the analysis of the feline urine metabolome in a 
relatively controlled setting, the relevance of the results to 
owned cats where demographic (e.g. age, sex, breed) and 
environmental (e.g. diet and cohabitation) factors vary, 
potentially affecting urine metabolome composition, is 
unknown.

Furthermore, no studies have yet assessed the associa-
tion between the urine metabolome and urinary tract dis-
eases in cats. Chronic kidney disease (CKD) and feline 
idiopathic cystitis (FIC) are common causes of morbidity 
and mortality in cats. Not only is urine the route of excre-
tion of many metabolic by-products, but urine metabo-
lome composition could also be affected by kidney and 
bladder diseases locally altering the metabolism of these 
tissues (Posada-Ayala et al., 2014; Wittmann et al., 2014). 
Therefore, we hypothesised that cats with CKD and FIC 
have distinct metabolic patterns compared with cats that 

are free from these diseases. Assessing this hypothesis 
could provide novel insight into the associated biochemi-
cal processes, and possibly reveal new disease biomark-
ers. Finally, despite associations between the metabolome 
and microbiome observed in other body compartments 
(McHardy et al., 2013; Stewart et al., 2017), their asso-
ciation in the urine has not been investigated.

Here, we conducted a case–control study among cats 
attending first-opinion veterinary clinics in Hong Kong to 
(i) characterise the urine metabolome in control cats free 
from urinary tract diseases, (ii) assess associations of demo-
graphic and environmental factors with the urine metabo-
lome, (iii) compare the urine metabolome between control 
cats and cats diagnosed with stage 2 CKD (CKD2) or FIC, 
and (iv) assess a compositional relationship between the 
urine metabolome and microbiome.

2  Methods

2.1  Study design

This study was designed as a case–control study targeting 
cats attending two first-opinion veterinary hospitals in Hong 
Kong. The study used residual urine samples collected for 
diagnostic purposes with informed and written owner con-
sent, and was exempted from animal ethics approval by the 
Animal Research Ethics Sub-Committee, City University 
of Hong Kong. Demographic and clinical information were 
obtained from electronic patient records with owner consent, 
and dietary information was obtained by owner survey for 
each cat. Case and control definitions and their selection 
criteria are summarised in Table 1.

Residual urine was stored at 4 °C in the clinic, transported 
to City University of Hong Kong on ice, aliquoted for metab-
olomics (200 µL) and microbiome (1 mL) analyses, and then 
frozen at − 80 °C within 90 min of collection.

2.2  Metabolomics analysis

For in-depth urine metabolomics, a high-performance chem-
ical isotope labelling (CIL) liquid chromatography–mass 
spectrometry (LC–MS) was performed at the Li-Node of 
The Metabolomics Innovation Centre (TMIC), the Depart-
ment of Chemistry, University of Alberta (Edmonton, 
Canada) according to the published analytical workflow 
(Zhao et al., 2016, 2019). All samples were processed in 
one batch within 5 months after sample collection. Briefly, 
for each sample, a proprietary metabolome quantification 
kit from Nova Medical Testing Inc. (Edmonton, Canada; 
Product Number: NMT-6001-KT) was used to measure the 
total metabolite concentration in an aliquot of 25 µL follow-
ing the standard operating procedure of the kit. All samples 
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were then normalised to 16 mM with LC-MC grade water 
based on the total metabolite concentrations and centrifuged 
at 12,000×g for 10 min (Wu & Li, 2012, 2016). The super-
natant of each sample was split into 4 aliquots, diluted with 
LC–MS grade water to 4 mM in the total volume of 25 μL, 
and then subject to 12C or 13C isotope labelling. Separately, 
a pooled sample was prepared by mixing all 13C-labelled 
samples in equal volumes of 60 μL. The isotope labelling 
targeted the following four chemical-group-submetabolome 
channels: (i) amine/phenol, (ii) carboxyl, (iii) hydroxyl, 
and (iv) carbonyl. Finally, among samples labelled for the 
same channel, each 12C-labelled sample was mixed with the 
13C-labelled pooled sample in equal volumes and analysed 
by LC–MS. Four quality-control samples were included in 
the LC–MS analysis of each channel.

From the data generated by CIL LC–MS, only peak pairs 
that were present in at least 80% of samples in any study 
groups were retained (Smilde et al., 2005; Yang et al., 2016). 
Based on mass and retention time (where available), peak 
pairs were searched against a labelled metabolite library 
(CIL Library), linked identity library (LI Library), and then 
MyCompoundID library (MCID Library). Those matched 
to CIL, LI, and MCID libraries were classified as Tiers 1, 2, 
and 3 compounds, respectively. The identification of Tier 1 
(positively annotated) and Tier 2 (highly confidently anno-
tated) compounds was considered adequate for metabolic 
analyses requiring metabolite identification, whereas Tier 
3 classification was equivalent to unannotated metabolic 
features and chemical formulas. Therefore, Tiers 1, 2, and 
3 reported herein corresponded to the Metabolomics Stand-
ard Initiative Levels 1, 2, and 3, respectively (Sumner et al., 
2007).

2.3  Microbiome data

DNA extraction, PCR amplification, 16S rRNA gene 
sequencing, and bioinformatics were performed as described 
in Kim et al. (2021). We assessed the sequencing depth of 
individual microbiome samples based on how Shannon 
diversity, one of the alpha diversity metrics, changed over 
different counts of amplicon sequence variants (ASV) on a 
rarefaction curve. We then identified an ASV count from 
which Shannon diversity began to saturate in most samples 
and chose samples whose ASV count was above this thresh-
old for comparing the urine metabolome and microbiome, 
assuming that the sequencing depth was sufficient to repre-
sent microbial communities.

2.4  Statistical analysis

The t tests, fold-change, pathway analysis, and enrichment 
analysis of the metabolomics dataset were performed in 
MetaboAnalyst 5.0 (Pang et al., 2021). A t test with false Ta

bl
e 

1 
 C

as
e 

an
d 

co
nt

ro
l d

efi
ni

tio
ns

 a
nd

 se
le

ct
io

n 
cr

ite
ria

C
as

e 
an

d 
co

nt
ro

l d
efi

ni
tio

ns

St
ag

e 
2 

C
hr

on
ic

 K
id

ne
y 

D
is

ea
se

 (C
K

D
)

• 
U

rin
e 

sp
ec

ifi
c 

gr
av

ity
 (U

SG
) l

es
s t

ha
n 

1.
03

5
• 

A
nd

 se
ru

m
 c

re
at

in
in

e 
co

nc
en

tra
tio

n 
gr

ea
te

r t
ha

n 
14

0 
an

d 
le

ss
 

th
an

 2
50

 µ
m

ol
/m

l (
In

te
rn

at
io

na
l R

en
al

 In
te

re
st 

So
ci

et
y,

 2
01

9)
• 

A
nd

 n
o 

di
et

ar
y 

in
te

rv
en

tio
n 

fo
r C

K
D

Fe
lin

e 
id

io
pa

th
ic

 c
ys

tit
is

• 
Pr

es
en

te
d 

fo
r o

ne
 o

r m
or

e 
of

 lo
w

er
 u

rin
ar

y 
tra

ct
 si

gn
s (

LU
TS

), 
in

cl
ud

in
g 

po
lla

ki
ur

ia
, s

tra
ng

ur
ia

, p
er

iu
ria

, d
ys

ur
ia

, o
r h

ae
m

a-
tu

ria
• 

A
nd

 d
ia

gn
os

tic
 in

ve
sti

ga
tio

n,
 in

cl
ud

in
g,

 in
 a

ll 
ca

se
s, 

ph
ys

ic
al

 
ex

am
in

at
io

n,
 u

rin
al

ys
is

, u
rin

e 
cu

ltu
re

, a
nd

 a
bd

om
in

al
 u

ltr
a-

so
no

gr
ap

hy
, f

ai
le

d 
to

 id
en

tif
y 

a 
sp

ec
ifi

c 
ca

us
e 

of
 L

U
TS

C
on

tro
l

• 
Pr

es
en

te
d 

fo
r r

ea
so

ns
 o

th
er

 th
an

 C
K

D
 o

r L
U

TS
• 

A
nd

 n
o 

hi
sto

ry
 o

f L
U

TS
 in

 th
e 

la
st 

3 
m

on
th

s
• 

A
nd

 n
o 

ev
id

en
ce

 o
f C

K
D

 a
nd

 F
IC

 b
y 

di
ag

no
sti

c 
te

st 
re

su
lts

Se
le

ct
io

n 
cr

ite
ria

 In
cl

us
io

n 
cr

ite
rio

n
  •

 B
ot

h 
ur

in
al

ys
is

 a
nd

 u
rin

e 
cu

ltu
re

 re
su

lts
 av

ai
la

bl
e 

fo
r a

 sa
m

pl
e 

co
lle

ct
ed

 v
ia

 u
ltr

as
ou

nd
-g

ui
de

d 
cy

sto
ce

nt
es

is
 E

xc
lu

si
on

 c
rit

er
ia

  •
 S

ys
te

m
ic

 a
nt

im
ic

ro
bi

al
 tr

ea
tm

en
t o

r u
rin

ar
y 

ca
th

et
er

 p
la

ce
m

en
t i

n 
th

e 
la

st 
3 

m
on

th
s

  •
 O

r i
ns

uffi
ci

en
t r

es
id

ua
l u

rin
e 

fo
r m

et
ab

ol
om

ic
s (

<
 20

0 
µL

)
  •

 O
r c

ul
tu

re
-p

os
iti

ve
 u

rin
e 

cu
ltu

re



 Y. Kim et al.

1 3

19 Page 4 of 10

discovery rate (FDR) correction was conducted for each 
identified compound to compare its normalised peak ratios 
between different groups of cats. Annotated (Tiers 1 and 2) 
compounds were used for pathway analysis (i.e. over-rep-
resentation analysis and pathway enrichment analysis) and 
quantitative enrichment analysis. First, we identified meta-
bolic pathways associated with the annotated compounds 
through over-representation analysis, based on compound 
names. We then investigated metabolic pathways that were 
significantly altered between groups of cats with pathway 
enrichment and quantitative enrichment analyses, based on 
the normalised peak ratios of the compounds. Both pathway 
and quantitative analyses used the KEGG Pathway Database 
(www. genome. jp/ kegg/ pathw ay. html) for Homo sapiens as 
a reference pathway library because no database for Felis 
catus was available in the MetaboAnalyst interface. For 
pathway analysis of a given metabolic pathway, the global 
test was used to assess statistical significance for its enrich-
ment, and relative betweenness was used to measure the cen-
trality of the matched compounds on the metabolic pathway.

The remainder of the analytical workflow was performed 
in R.4.0.2 (R Core Team, 2020). First, we performed a mul-
tidimensional scaling (MDS) to assess the clustering of 
the urine metabolome between groups of cats. Briefly, we 
computed Bray–Curtis dissimilarity for all possible pairs of 
samples based on normalised peak ratios of all the identified 
compounds by using the vegdist function of the vegan pack-
age. Then, based on these values, we ordinated samples in 
reduced space through MDS by using the cmdscale function. 
We also performed the permutational multivariate analysis 
of variance (PERMANOVA) test by using the adonis func-
tion of the vegan package to assess statistical significance 
for the clustering of the urine metabolome between differ-
ent groups. Second, we performed a Procrustes analysis to 
investigate the association between metabolome and micro-
biome compositions using the procrustes function of the 
vegan package. We also performed procrustean randomisa-
tion tests using the protest function of the vegan package to 
assess statistical significance for the compositional associa-
tion between these two compositions. Finally, p value ≤ 0.05 
was considered to indicate statistical significance.

3  Results

This study was conducted on 45 cats, comprising 23 con-
trols, 16 CKD2, and 6 FIC cases. The interquartile range 
of age was between 7 and 12 years. All of the cats were 
neutered, with males comprising 55.6% (n = 25). Around 
half (n = 23) were domestic short hair, and the remaining 
cats were pure breeds (n = 22). There was a significant age 
difference by disease status, with CKD2 cases being older 
(p value < 0.001) and FIC cases being younger than controls 

(p value < 0.001) (Table S1). In contrast, sex and breed were 
not associated with disease status. The median number of 
cats per household was 1, ranging between 1 and 7 (Fig. S1).

A total of 9,411 unique compounds were detected in the 
urine samples, with the number per cat ranging between 
8514 and 9286 (median: 9178) (Supplementary Data). Of 
these, 1037 (11.0%) compounds were classified as Tier 1 or 
Tier 2 non-isomeric compounds (i.e. known chemical iden-
tity with positive annotation and highly confident annota-
tion, respectively). Amino acids, peptides, and analogues 
(32.2%) dominated these compounds with known subclass 
annotation, followed by carbonyl compounds (7.1%), car-
bohydrates and carbohydrate conjugates (6.5%), and fatty 
acids and conjugates (5.6%) (Tables S2, S3). The over-
representation analysis matched Tiers 1 and 2 compounds 
to 57 metabolic pathways from the KEGG database (Fig. 1 
and Table S3). Seventeen (29.8%) of these metabolic path-
ways were associated with the metabolism of amino acids, 
including those that must be provided to cats through diet 
as essential amino acids: taurine, arginine, methionine, and 
cysteine (Fig. 1 and Table S3).

We investigated factors associated with the urine metab-
olome composition of control cats. The MDS ordination, 
based on all detected compounds, showed that 7 control 
cats from one particular household (‘household A cats’) 
showed a significant level of metabolome clustering, with a 

Fig. 1  Pathway over-representation analysis of the urine metabolome 
of cats (n = 45). A list of Tier 1 and Tier 2 compounds was analysed 
by the MetaboAnalyst pathway analysis module to identify metabolic 
pathways associated with those compounds. The x-axis represents the 
pathway impact of a given metabolic pathway computed by the sum 
of relative-betweenness centrality of the matched metabolites, and the 
y-axis represents the log-transformed p-value from the hypergeomet-
ric test, with the circles with higher statistical significance expressed 
with more reddish colours

http://www.genome.jp/kegg/pathway.html
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distinct separation from other control cats (p value < 0.001, 
Fig. 2a). The owner surveys revealed that these cats were 
fed dry food exclusively, whereas all but one other control 
cat were fed wet food exclusively or in combination with 
dry food (p value < 0.001, Fig. 2b). This cluster of cats 
was also younger than the rest of the study population (p 
value < 0.001, Fig. 2c). However, in the final model account-
ing for both diet type and age, while diet type remained sig-
nificantly associated with urine metabolome composition (p 
value = 0.001), age did not (p value = 0.192). There was no 
evidence to support the association between urine metabo-
lome composition and sex (Fig. 2d).

The observed clustering of household A cats away 
from other control cats was confirmed by both metabo-
lite-level and pathway-level analyses. First, t tests showed 
that 944 (10.0%) compounds were significantly increased 
or decreased in household A cats. Of these, 83 were Tier 
1 or Tier 2 non-isomeric compounds (Tables S4, S5). In 
particular, some of these compounds were identified as 
important metabolites for amino acid metabolism, including 

essential amino acids and their derivatives, such as tau-
rine (fold change [FC]: 3.03, p value < 0.001) and 3-sul-
fino-l-alanine (FC: 5.07, p value < 0.001) for taurine and 
hypotaurine metabolism, and l-cystathionine (FC: 8.83, p 
value < 0.001) for methionine metabolism (Tables S4, S5). 
Second, significant perturbations in household A cats were 
identified in 28 metabolic pathways (FDR p value < 0.05) by 
the pathway enrichment analysis (Fig. 3a) and the quantita-
tive enrichment analysis (Fig. 3b) (Table S6). Some meta-
bolic pathways, for example, Metabolism of xenobiotics by 
cytochrome P450, had a relatively high enrichment ratio, 
whereas their matched metabolites had no pathway impact in 
terms of network topology (Table S6). Ten of those signifi-
cantly perturbed pathways were associated with the metabo-
lism of essential amino acids in cats (Table S6).

Including household A cats as controls could confound 
the association between controls and CKD2 or FIC cases, 
due to the significant level of their metabolome cluster-
ing. Therefore, these cats were removed from the control 
group for comparisons with CKD2 and FIC cases. The MDS 

Fig. 2  Multidimensional scaling 
(MDS) of the urine metabo-
lome of control cats (n = 23). 
Percentages on the MDS axes 
represent variance explained. 
Symbols represent individual 
cats, and colours represent their 
household (a), diet type (b), age 
group (c) and sex (d). In A, cats 
from different households (i.e. 
only one cat was sampled in the 
given household) were labelled 
as “other households”. In C, 
numbers next to symbols rep-
resent ages in years. Cats were 
coloured differently using the 
age of 9 as the threshold given 
that cats are considered to enter 
senior years and have increas-
ing risk of CKD at around this 
age (Conroy et al., 2019). The p 
values were obtained by the per-
mutational multivariate analysis 
of variance (PERMANOVA) 
test. Only cats from households 
A, B, and C were included in 
the PERMANOVA test for the 
association between the urine 
metabolome composition and 
household since only one cat 
was sampled per household for 
cats in “other households”. Age 
was provided as a continuous 
variable in the PERMANOVA 
test
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ordination showed no clear separation of CKD2 and FIC 
cases from controls, and there was only weak statistical evi-
dence for the overall difference in metabolome composition 
between these study groups (p value = 0.055) (Fig. 4). The 
pairwise comparison also revealed no evidence for a com-
positional difference between study groups (p value = 0.062 
for CKD2 cases vs controls, 0.368 for FIC cases vs controls). 
In line with this observation, no compounds or metabolic 
pathways were found significantly altered in CKD2 and FIC 
cases, compared with controls (FDR p value > 0.05).

After the 16S rRNA gene sequencing, the sequencing 
depth was deemed sufficient for 12 (27.9%) cats to represent 
their microbial communities (Kim et al., 2021). These cats 
included 6 CKD2 and 4 FIC cases, as well as 2 cats with 

no urinary tract diseases. The Procrustes analysis revealed 
that there was no significant compositional association 
between the urinary metabolome and microbiome of these 
cats (Fig. 5).

4  Discussion

Here, we characterised the feline urine metabolome of con-
trols, CKD2, and FIC cases, through a global untargeted 
metabolomics approach. Our in-depth untargeted metabo-
lomics assay revealed an unprecedented extent and diversity 
of metabolites in the urine of owned cats that were or were 
not affected by CKD2 and FIC. The metabolome profiles 
characterised herein were dominated by amino acids, pep-
tides, and their analogues, followed by carbonyl compounds, 
carbohydrates, and fatty acids. Cats of the same household 
that were fed dry food only showed a significant level of 
metabolome clustering, mainly determined by amino acids, 
including essential amino acids in cats. However, in contrast 
to our initial hypothesis, urine metabolome profiles were not 
found significantly altered in CKD2 and FIC cases, com-
pared with controls. The urine metabolome shared no signif-
icant compositional relationship with the urine microbiome.

We identified 1,037 metabolites with high confidence, 
significantly extending our previous understanding of feline 
urine metabolite composition. In addition, we detected 8374 
other unique chemical features, demonstrating the vast diver-
sity in the feline urine metabolome composition. As opposed 
to traditional LC–MS based metabolomics techniques, the 

Fig. 3  Pathway enrichment (a) and qualitative enrichment (b) analy-
ses comparing urine metabolome of cats from household A (n = 7) 
and other households (n = 16). In A, the x-axis, ‘pathway impact’, 
represents the sum of relative betweenness centrality of the metabo-
lites matched to each metabolic pathway. For each circle, its size is 
proportional to its pathway impact. In B, the x-axis, ‘enrichment 
ratio’, represents the observed Q statistic over the expected Q sta-

tistic. The Q statistic was obtained by averaging the squared covari-
ance between compound concentration changes and the outcome 
(i.e. household A vs other households) over all compounds. In both 
Figures, pathways with higher statistical significance expressed with 
more reddish colours. The FDR-adjusted p-values are provided in 
Table S6

Fig. 4  Multidimensional scaling (MDS) of the urine metabolome of 
control cats (n = 23), CKD (n = 16), and FIC cases (n = 6)
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methodological novelty of our study was the application of a 
high-performance CIL LC–MS based assay, which allowed 
a highly comprehensive characterisation of the metabolome 
with superior metabolite coverage. The unique solution that 
CIL LC–MS employs to extend the metabolite coverage is 
that it divides the metabolome into four chemical subgroups 
through CIL and then analyses these individual chemical-
group-submetabolomes by LC–MS (Zhao et al., 2016, 2019). 
In addition, our study was the first to employ any LC–MS 
to characterise the feline urine metabolome. Different ana-
lytical techniques, particularly the ones with a relatively 
narrow range of metabolite coverage, are known to have a 
bias towards certain chemical compound classes (Weckw-
erth & Morgenthal, 2005). Reflecting this, the metabolome 
composition of the studied cats tended to be different from 
a previous study that applied gas chromatography/time-of-
flight/mass spectrometry (GC-TOF-MS) (Rivera-Vélez & 
Villarino, 2018). Notably, while carbohydrates and their 
conjugates were dominant urine metabolites in that study, 
amino acids, peptides, and analogues dominated the urine 
metabolome in our study. More research using different ana-
lytical platforms will further increase our understanding of 
the feline urine metabolome, as it has been the case for the 
human urine metabolome (Bouatra et al., 2013).

The metabolome clustering observed in household A cats 
suggests that cats under the influence of the same environ-
ment likely have a more similar urine metabolome than to 
those from different environments. As has been the case for 
human urine metabolomics studies (Sampson et al., 2013; 
Saude et al., 2007), understanding such metabolome clus-
tering patterns provides essential information for planning 
metabolomics research on spontaneously occurring diseases, 

particularly when using owned cats as subjects. This is 
because the level of metabolome clustering within groups 
could influence the number of samples required to detect 
an association, i.e. the stronger the clustering, the larger the 
sample size required. Furthermore, when cats from the same 
group are associated with a particular outcome of interest, 
metabolome clustering could bias the association between 
the urine metabolome and the outcome. Indeed, all house-
hold A cats were recruited as controls, and therefore were 
subsequently excluded from comparisons with CKD2 and 
FIC cases to avoid false conclusions. However, this post hoc 
approach resulted in a smaller sample size, thereby reducing 
statistical power of the present study.

Our findings suggest that the diet type was likely involved 
in the clustering of household A cats. Some of the metabolic 
pathways significantly perturbed in the urine of these were 
associated with the metabolism of essential amino acids 
in cats, including taurine, methionine, cysteine, arginine, 
and phenylalanine. Essential amino acids must be supplied 
through the diet because they cannot be synthesised (suf-
ficiently) in the body. In particular, among amino acids cats 
require from their diet, taurine was significantly enriched 
in the urine of household A cats compared with the rest of 
the control cats. In addition, its by-product, 3-sulfino-l-ala-
nine was also significantly enriched. This, together with the 
results from the pathway analysis results, suggests that the 
significant alterations of essential amino acids and their by-
products in the urine of household A cats might have been 
influenced by excess bioavailability of these amino acids 
from the diet. In support of this, a previous study reported 
a significant increase in urinary taurine excretion among 
cats with excess dietary taurine intake (Glass et al., 1992). 

Fig. 5  Procrustes analysis of the association between the urine 
metabolome and microbiome composition of cats. Only samples that 
passed the rarefaction curve analysis of microbiome data (i.e. > 500 
16S rRNA sequences retained) were included (n = 12). The MDS 
ordination of metabolome data was based on Bray–Curtis dissimilar-
ity, and the ordination of microbiome data was based on Bray–Curtis 
dissimilarity (a), unweighted Unifrac (b), and weighted Unifrac (c). 
One of the two ordinations were uniformly scaled and rotated until 

the squared differences between them were minimized, followed by 
the procrustean randomization test to assess the correlation between 
the two ordinations. Samples from the same cats are connected by a 
line, with orange triangles and blue circles representing samples posi-
tioned by metabolome and microbiome composition, respectively. 
The result of this analysis suggested no statistical evidence for the 
association between metabolome and microbiome composition
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However, this conclusion remains speculative as we have no 
information on the ingredients and chemical composition of 
the cats’ diet beyond its type (wet or dry). For example, the 
difference in urinary taurine excretion was likely influenced 
also by other dietary factors influencing bile acid production 
because the conjugation of bile acids occurs almost exclu-
sively with taurine in cats (Rabin et al., 1976). Moreover, 
the great diversity of commercial cat foods (e.g. variation 
in protein source or being grain-free) and lack of regulation 
as to their contents may explain the diversity in feline urine 
metabolome, similar to the human urine metabolome, which 
was shown to be affected by dietary habits either directly or 
through alterations of the gut microbiome (Jain et al., 2019). 
In contrast to the majority of the other cats, household A 
cats were fed dry food exclusively, which is processed with 
dry heating during the manufacturing process, while wet 
food is processed with moist heating (i.e. autoclave). The 
heating process was suggested to influence the nutrient bio-
availability in cat food and other animal feed (Peng et al., 
2014, Samadi and Yu, 2011, Hamper et al., 2016, Hickman 
et al., 1992, Hickman et al., 1990, de-Oliveira et al., 2012). 
For example, heat processing of cat food was associated 
with decreased digestibility of crude protein (Hamper et al., 
2016), and with increased intestinal taurine loss (Hickman 
et al., 1990, 1992). These findings suggest that the amount 
of absorbed nutrients can vary depending on the type of diet 
and therefore influence energy metabolism in cats.

Recent metabolomics studies in humans have identi-
fied several urine metabolites as potential CKD biomarkers 
(Chen et al., 2019; Duranton et al., 2014; Posada-Ayala et al., 
2014; Weiss & Kim, 2012; Zhao, 2013) and painful bladder 
syndrome/interstitial cystitis (PBS/IC) (Fukui et al., 2009; 
Kind et al., 2016; Parker et al., 2016; Van et al., 2003; Wen 
et al., 2015), the latter of which shares similarities to FIC. 
Our study was the first to employ a metabolomics approach 
to investigate the association of the feline urine metabolome 
with CKD and FIC. Among the four different CKD stages 
(International Renal Interest Society, 2019), we focused on 
stage 2 (CKD2) to detect metabolic patterns differentiating 
the early CKD stages. Urine is created through complex fil-
tration, reabsorption, and secretion processes in the kidneys, 
and excreted through the lower urinary tract. Therefore, we 
hypothesised that the urine metabolome is altered in cats 
with these urinary tract diseases. However, we identified no 
significant alterations of urine metabolome profiles of cats 
with CKD2 and FIC, compared with control cats. Beyond 
biological reasons, the unexpected lack of associations could 
also be explained by potential study limitations. First, con-
sidering that FIC diagnosis is made by exclusion, FIC has 
a broad disease spectrum with diverse pathogenic mecha-
nisms. Therefore, FIC cases’ urine metabolome could still be 
heterogeneous, hampering the detection of associations with 
a small sample size. Another factor that may have hampered 

associations being identified between disease phenotype and 
urine metabolome is potential confounding by age. Consid-
ering that age has been associated with the urine metabo-
lome (Rist et al., 2017) and an independent risk factor for 
CKD (Sparkes et al., 2016), the age difference could have 
confounded the association of the urine metabolome with 
CKD and FIC. However, despite our intention, the avail-
ability of residual urine in our clinical settings did not allow 
us to better match the cats of the diseased and control groups 
by age. In particular, young cats seldom required urinalysis 
and urine culture for reasons other than LUTS. Also, old cats 
requiring urinalysis and urine culture generally had other 
accompanying diseases and were excluded from the control 
group. Recent studies that investigated the association of the 
urine metabolome with chronic hepatic diseases (Lawrence 
et al., 2019) and CKD (Ferlizza et al., 2020) in owned dogs 
recruited from veterinary hospitals also had similar issues 
with regard to controlling for potential confounders, such as 
age, sex, and diet. Although matching or focusing on specific 
strata could be used to account for potential confounding, 
such attempts likely make recruiting a sufficient number of 
study participants challenging in case–control studies target-
ing owned pets with stringent selection criteria. Therefore, 
future research should minimise selection bias and account 
for potential confounders while satisfying the practicality of 
urine sample collection in clinical settings.

Our study was also the first to explore the association 
between the feline urine metabolome and microbiome. The 
Procrustes analysis was unable to detect any statistically 
significant association between the urine metabolome and 
microbiome. This contrasts to a compositional similarity 
observed between the gut metabolome and microbiome 
in humans (McHardy et al., 2013). Non-significant results 
in this aspect are not surprising because the urinary tract 
microbiome is typically sparse, as shown in our previous 
study (Kim et al., 2021). In particular, none of the sam-
ples tested positive under routine culture, suggesting that 
the contribution of microbial metabolites to the overall 
metabolome composition was not significant in the present 
study. However, the Procrustes analysis likely had a limited 
statistical power due to the relatively small sample size. In 
particular, the feline urine microbiome was typically sparse 
and could therefore be highly variable influenced by host 
and environmental factors or sample collection and process-
ing steps. These considerations suggest that future studies 
might require a larger sample size and controlling for poten-
tial confounding to detect hypothesised associations (Kim 
et al., 2021).

In conclusion, our study reveals the diverse composi-
tion of the feline urine metabolome. A significant level of 
metabolome clustering in a group of cats suggests that the 
feline urine metabolome is influenced by environmental fac-
tors, potentially by diet, which should be considered when 
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selecting study participants in future metabolomics research 
on spontaneously occurring diseases in owned cats.
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