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Drift-diffusion explains response 
variability and capacity for tracking 
objects
Asieh Daneshi1, Hamed Azarnoush1, Farzad Towhidkhah1, Amin Gohari2 & Ali Ghazizadeh   2,3

Being able to track objects that surround us is key for planning actions in dynamic environments. 
However, rigorous cognitive models for tracking of one or more objects are currently lacking. In this 
study, we asked human subjects to judge the time to contact (TTC) a finish line for one or two objects 
that became invisible shortly after moving. We showed that the pattern of subject responses had 
an error variance best explained by an inverse Gaussian distribution and consistent with the output 
of a biased drift-diffusion model. Furthermore, we demonstrated that the pattern of errors made 
when tracking two objects showed a level of dependence that was consistent with subjects using a 
single decision variable for reporting the TTC for two objects. This finding reveals a serious limitation 
in the capacity for tracking multiple objects resulting in error propagation between objects. Apart 
from explaining our own data, our approach helps interpret previous findings such as asymmetric 
interference when tracking multiple objects.

Time to contact (TTC), which is the time it takes for an object to reach an observer or a particular place, is an 
important factor in a variety of real-world situations, such as catching and hitting balls in games, driving vehicles, 
or passing through a busy street. The ability to estimate TTC for one object has been assessed in several studies 
(for example see1–14).

The accuracy and precision of TTC estimation is related to the time perception ability, which is considered 
in several studies6,11,15–24. A type of task that is often considered in laboratory studies for TTC estimation is coin-
cidence anticipation (CA)5. In CA tasks, subjects must make a simple response (e.g. press a button) when the 
moving object reaches a particular place, called contact point5. In an important type of CA task, often referred to 
as prediction motion (PM) tasks, the moving object disappears before reaching the contact point or hides behind 
an occluder. Then, after a specific time, subject should indicate (often by pressing a button) the presumed time for 
the moving object to reach the contact point. The PM paradigm is used as a straightforward method to assess an 
individual’s ability to estimate absolute TTC (e.g.4). The main purpose of PM tasks is to understand how sensory 
and cognitive information are used to estimate TTC. To this aim, variables related to object’s motion, e.g., velocity, 
extrapolation distance and/or duration, are manipulated.

A few studies have looked at tracking multiple simultaneously moving objects. TTC judgment for two or 
more objects is required in a large number of everyday activities, such as crossing a multi-lane street or walking 
in crowded areas. One of the first studies which has considered multiple objects in TTC estimation tasks is done 
by Novak25. She presented multiple objects approaching a finish line, but the participants were asked to judge 
the TTC for only one of them. Most other studies presenting several objects simultaneously, have used relative 
judgment (RJ) tasks3,5,26,27. In such tasks, subjects determine which of the two (or more) moving balls arrives first 
at a designated goal, after disappearing5. Here again, participants may compute and compare several TTCs, but 
they are asked for only one TTC estimation. The most important difference between RJ tasks and multi-object 
PM tasks is that for the former, participants may misestimate TTC for some or all objects, but still give the correct 
answer, as long as they preserve the perceived order of arrivals. In contrast, in multi-object PM tasks, the absolute 
accuracy of TTC judgment is assessed.

Recently, Baures and colleagues have conducted some studies on the simultaneous estimation of the TTC 
for multiple objects28–31. However, their main focus has been on understanding how humans use their limited 
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sources of attention to estimate several TTCs simultaneously, without considering the mechanisms underlying 
TTC estimation by humans.

In this study, we used one and two-object PM tasks in human subjects. Based on the data obtained, we pro-
pose a mathematical model based on drift-diffusion to explain how people estimate TTC for one object, and then 
extend the model for simultaneously estimation of two objects TTC.

Materials and Methods
Eighteen students from Amirkabir University of Technology-Tehran Polytechnic (9 women, 9 men, age 26.61 
years ± 3.01 (mean ± SD), min age 23, max age 33) took part in these tests voluntarily. All participants had nor-
mal or corrected-to-normal vision. They were healthy and without any known oculomotor abnormalities. All 
experiment protocols were approved by Iran University of Medical Sciences review board (approval ID: IR.IUMS.
REC.1397.104). Participants were naive with respect to the purpose of the experiment, gave written informed 
consent to their participation in the experiment, and were paid for their participation. All experimental proce-
dures were in accordance with the Declaration of Helsinki.

Apparatus and experimental procedure.  Participants sat on a chair facing a 17″ computer display located 
at a viewing distance of approximately 50 cm, in a silent room with normal light (1 cm corresponding to 1.14 visual 
degree). Stimuli were generated with MATLAB and presented on an Asus computer equipped with a 2.90 GHz Intel 
Corei7 processor. The screen resolution was 1920 × 1080 pixels (horizontal by vertical) and the display rate was 60 Hz.

Experiment 1 (one-ball experiment).  In the first section (hereafter referred to as “one-ball experiment”), 
time-to-contact (TTC) estimates for a green ball (diameter of 1 cm) moving at constant speed on a 30 cm × 15 cm 
(horizontal by vertical) frontoparallel plane from left to right were obtained using a prediction motion (PM) task 
(see5). The constant speeds were randomly selected from three values: 2 cm/s, 4 cm/s, 6 cm/s. After 1.5 seconds, 
the ball passed behind an 18 cm × 8 cm dark grey rectangle (hereafter referred to as “occluder”) that obscured its 
trajectory. A 0.3 cm × 8 cm vertically-oriented red line was shown at one of five different positions on top of the 
occluder (at a distance of 2.5 cm, 5 cm, 7.5 cm, 10 cm, 12.5 cm from the starting point of the occluder).

Participants pressed the spacebar key to start the test. After an interatrial interval (ITI) of 2 s, a ball started to 
move at one of the above mentioned constant speeds, in a horizontal straight line towards the finish line. After 1.5 
s, the ball passed behind the occluder and continued its motion to reach the finish line. The ball did not reappear 
after it was occluded. Participants had 10 seconds to press the “down” arrow key to indicate the instant at which they 
judged the ball would collide with the red finish line. No feedback on TTC estimation error was provided, but a smi-
ley emoji was presented at the end of each trial if the individual finished the trial by pressing the down button and a 
sad emoji was presented if the subject did not press the down button in the 10-second interval and missed that trial. 
At the beginning of each trial we had a countdown from three to one, before the ball started moving corresponding 
to the 2s ITI. Figure 1(a) shows the schematics of the one-ball experiment. In this experiment, each trial condition 
(15 combinations of speed and finish line position) was presented 10 times in random order, for a total of 150 trials.

Experiment 2 (two-ball experiment).  After completing the one-ball experiment, participants were tested in 
a second condition (hereafter referred to as “two-ball experiment”), in which two balls were presented simultaneously 
and moved on parallel horizontal trajectories from left to right with different velocities. The initial point for each ball 
was determined so that (both balls) were visible for 1.5 seconds before going behind the occluder. Therefore, both balls 
started moving simultaneously and reached the cover simultaneously. TTC estimates were obtained using the same 
method as in the one-ball experiment. Subject reported their TTC estimates by pressing the ‘down’ arrow key one time 
for each ball. The number of conditions in the two-ball experiment was thirty (three speeds for one of the balls, two other 
speeds for the other ball, and five positions for the red finish line). Each condition was presented 5 times in random order 
in a session, resulting in the total number of 150 trials. Figure 1(b) shows the schematics of the two-ball experiment.

Mathematical background.  We have used the following distributions for fitting TTC estimate for each 
subject:
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for x > 0. where μ > 0 is the mean and λ > 0 is the shape parameter.
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for x > 0 and α, β > 0, where Γ(α) is the complete Gamma function.
	(4)	 Weibull distribution32:
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where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.
	(5)	 ex-Gaussian distribution33:
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The “dfittool” function in “MATLAB” was used to fit the desired distributions to data and to get a likelihood 
and an R2 as measures of goodness of each fit.

Plotting the subject data in Figs 2(b), 4(c) and 6(a–d) and model fitting was done after removal of outlier data 
points that were three scaled median absolute deviations (MAD) away from the median34,35.

Results
Figure 1(a,b) shows the schematics of the one-ball and two-ball experiments. First, response times (RTs) of 
the one-ball experiment were studied to find out their general trend. The response times for trials belonging to 
the same condition were averaged (each condition was repeated 10 times randomly during the session) in the 
one-ball experiment and plotted in different colours for each participant in Fig. 2(a).

Results in Fig. 2(a) show that the subjects’ estimated TTCs are close to the ideal TTCs, but on average, subjects 
tend to slightly underestimate TTCs (thick black line below dashed black line).

In addition, for each speed, increasing the distance of the finish line from the start point, resulted in an 
increase in the variability of the responses between subjects (more spread in coloured lines). In order to better 
study response variability, the variances of response times are plotted in Fig. 2(b). Figure 2(b), shows that the TTC 
estimate variability increases monotonically for longer ideal TTCs. Indeed, this monotonic increase can be fit in 
a linear fashion (Fig. 2(b) black line, R2 = 0.54). Given the evidence about scaling of standard deviation (SD) of 
responding with duration in temporal production tasks36,37 and to be able to judge whether variance or SD scales 
better with TTC, we also fit a quadratic function of TTC to variance (i.e. Var ~ TTC2). The quadratic function fit 
was slightly worse than the linear fit in terms of R2 thus variance seem to be better scaled with ideal TTC com-
pared to SD (Fig. 2(b) blue line, R2 = 0.51). Furthermore, we used a more general function Var ~ αTTCn for fitting 
variance data to find the best power ‘n’. Results show the best n = 1.18 which was not found to be different from 
1 but significantly different from 2 when using ideal TTC (105 bootstrap p = 0.13 for comparison versus 1 and 
p < 0.01 for comparison versus 2).

As mentioned previously, participants tended to underestimate the TTCs (Fig. 2(a)). Therefore, we hypoth-
esized that if the variability in TTC is to increase linearly with time, this relationship should be stronger if one 
considers the variability as a function of subjects estimated TTCs rather than the ideal TTCs. Indeed, the linear 
fit between TTC variability and estimated TTC resulted in a modest increase in the goodness of fit when using 
estimated TTC (R2 = 0.55). Again, the quadratic fit was worse than the linear fit (R2 = 0.52) arguing for scaling of 
variance rather than SD by the TTC times. The best power fit in this case (Var ~ αTTCn) was n = 1.25 which was 
closer to 1 than 2. (105 bootstrap p = 0.23 for comparison versus 1 and p < 0.01 for comparison versus 2).

To further characterize response variability, we looked at the probability density function of response times. 
Figure 2(c) shows the density of response times in all conditions and for all participants. For this figure, in each con-
dition we collected all the data for all the participants. Then we normalized estimated TTCs by z-scoring the data 
(mean value of zero and variance of one). It can be seen that the distribution of estimated TTCs is rightward-skewed.

To determine the distribution underlying the response variability, the estimated TTCs in each condition for 
every participant (10 similar trials are considered as one condition) were fit separately to each of the candidate 
distribution functions (see methods). The best distribution fit to the data from each condition and each partici-
pant was found using the AIC method (each condition is a combination of the speed of the ball and the position 
of the red line). Next, the number of conditions for which a given probability distribution was the best fit (had the 
smallest AIC) were counted across all conditions and all participants (Fig. 2(d)). As can be seen inverse Gaussian 
distribution provided a better fit to the data in an overwhelming majority of conditions and subjects.

In our study, subjects had to make a decision about when the ball reached the red line. One can assume that 
subjects can track the ball using a noisy internal timer that has to reach a bound corresponding to the ratio of the 
red finish line to the ball speed. Such a formulation is reminiscent of a drift-diffusion model (DDM) with a slope 
one drift. Although DDM has been widely used to model evidence accumulation, there is nothing intrinsic in 
its assumptions that limits its use outside this scope. Indeed, the DDM model has been used in interval timing 
tasks with the exact same logic as ours that the subjects must be using an internal clock with accumulated noise to 
reproduce their internally presented target times38–44 (also see reviews45,46).” These facts together with the point that 
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the density of estimated TTCs is best fit by an inverse Gaussian, and the scaling of variances with increasing the 
TTC, led us to propose the DDM as the cognitive process underlying the TTC estimation in our human subjects. 
Furthermore, DDM has been used previously to model decisions in temporal production tasks (e.g.41). Figure 3(a) 
shows the schematic of this model for one object. In this model, we assume that subjects track passage of time after 
each small time step Δt (similar to a pacemaker accumulator model)17,42,47–49 with an additive Gaussian noise at 
each time step. Such a system can be modelled with a stochastic process with the following formulation:

σ= +X t t W t( ) ( ) (7)

where X(t) indicates the subject’s estimated time (decision variable) with the decision threshold being P/v, 
where P is the position of the finish line, and v is the velocity of the ball. The right side of equation 7 is com-
posed of two terms: a constant drift t, that is the actual time, and the diffusion term σW(t), which represents 
Wiener noise drawn from a Gaussian distribution with increasing variance of σ2t over time representing the effect 
of noise accumulation. At each time point, X(t) is normally distributed with probability density p(X(t)) = N(t, 
σ2t)50. However, it can be shown that the time to hit a decision threshold in such a drift-diffusion model is 
rightward-skewed and follows an inverse Gaussian distribution51.

Therefore, drift-diffusion model could be a good candidate for TTC estimation. For one-ball experiment we 
have:

Figure 1.  Experimental paradigm. (a) Schematic of one-ball experiment: after an ITI of 2 seconds, subject 
saw a rightward moving green ball that was presented 1.5 seconds before disappearing under an opaque cover. 
Subjects had to estimate the TTC for this ball with respect to the red line drawn over the cover by pressing a 
key after the ball went under the occluder. If the subject pressed within 10 seconds a happy emoji would be 
presented for 0.5 seconds, otherwise, a sad emoji was presented for 0.5 seconds. No feedback about accuracy 
of TTC judgement was provided. (b) Schematic of two-ball experiment: same procedure as the one-ball 
experiment except that two green balls with different speeds moving rightward were shown. Both balls went 
under the cover at the same time and subjects had to press the down button to estimate the TTC of each ball 
with respect to the red line.
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where T indicates the time to hit the threshold (first passage time), and IG indicates the inverse Gaussian dis-
tribution. P is the position of the finish line, and v is the speed of the ball.

Thus the integration noise σ can be obtained from the expected value and variance of the estimated TTC:

σ =
var T
E T

( )
( ) (9)

2

As mentioned above (see Fig. 2(a)), participants tend to underestimate the TTCs. To account for this observa-
tion, we assume that subjects use a scaled decision threshold such that:

α =
E T
P v
( )
/ (10)

Thus, the full stochastic process will have the following formulation:

Figure 2.  TTC estimates and error patterns in one-ball experiment. (a) Estimated TTCs for one-ball 
experiment. Each marker on the horizontal axis represents one condition composed of a given ball speed and 
a given red line position: (ball speed (cm/s), red line position (cm)), and the vertical axis shows the estimated 
TTCs averaged on similar trials. The dashed black plot shows the ideal TTC, and the thick black line shows 
the average of all subjects’ responses (subject’s estimated TTC). The coloured plots show the averaged response 
times across conditions (each condition was repeated 10 times randomly interleaved) for each participant. 
(b) Estimated TTC variability versus ideal TTCs for each subject in the one-ball experiment. The grey points 
represent data for each subject in a given condition. (outliers removed by procedure described in method 
section). The red bars show mean of each condition across subjects ± SEM. The linear and quadratic fits to the 
data are shown with black and blue lines, respectively. (Number of dots = conditions × participants = 15 × 18, 
outliers = 11) (c) Aggregate density of z-scored estimated TTCs for all subjects in all trials (d) Number of 
conditions × subjects in which each of the five probability distributions namely Gaussian, inverse Gaussian, 
Gamma, Weibull and ex-Gaussian provided the best fit according to the AIC criterion.
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Figure 3(b–e) show the fitted values of σ and α for the one-ball experiment for each condition (each condition 
is a combination of the speed of the ball and the position of the red line) across all subjects. Results show that the 
effect of condition on both σ and α was significant (F(14,269) = 2.032, p = 0.016 for σ, and F(14,269) = 20.532, 
p < 0.001 for α). The integration noise seemed to increase with TTC and underestimation seemed lower at higher 
TTCs (Fig. 3(d–e). Furthermore, values of σ and α were significantly different across subjects (F(17,268) = 8.153, 
p < 0.001 for σ, and F(17,268) = 1.691, p = 0.045 for α).

(a)

(b) (c)

(d) (e)

Figure 3.  A biased drift-diffusion model for making TTC estimates. (a) Schematic of the drift-diffusion model 
for tracking one object. Red trace indicates the decision variable in a given trial, blue plot indicates the average 
of decision variables in a 100 trials, and the blue shade around it is the variance of this plot. The horizontal 
dashed line shows the decision threshold. When the decision variable reaches this threshold, a decision will be 
made. (b) σ values for all trials in the one-ball experiment sorted based on different trial conditions. (c) α values 
for all trials in the one-ball experiment sorted based on different trial conditions. (d) σ values for all trials in 
the one-ball experiment sorted based on ideal TTCs. (e) α values for all trials in the one-ball experiment sorted 
based on ideal TTCs.
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Figure 4(a,b) shows the distribution of σ and α in TTC estimation across subjects. As noted previously, the 
scaling of TTC variance with TTC mean depends on value of σ and α for each subject (equation 11). Given the 
heterogeneity of the σ and α across subjects, a better way of probing the scaling of TTC variance by TTC mean 
across subjects is obtained if one normalizes the TTC variance of each subject by his/her own value of σ and α. As 
can be seen in Fig. 4(c), accounting for inter-subject heterogeneity improved the R2 of model fits with the linear 
model still providing a better fit to the data.

Next, to see whether subjects congnitive model using drift-diffusion in one-ball experiment can extend to 
cases with more balls, we repeated similar analyses in the two-ball experiment (Fig. 1(b)). Figure 5(a,b) shows 
the estimated TTCs of the first ball and the second ball in the two-ball experiment. Once again, subjects’ esti-
mated TTC tended to be close to the ideal TTCs. However, there was a small tendency to overestimate TTC of 
the second ball with the speed of 4 cm/s and to underestimate it with the speed of 2 cm/s (ideal TTCs versus 
average of subjects’ estimated TTCs). Figure 5(c,d) shows the mean of TTC error across all trials and all par-
ticipants for the one-ball experiment and the first ball and the second ball in the two-ball experiment. While 
the error in TTC estimation was in general low, the absolute error seemed to be larger in the one-ball exper-
iment (F(2,8099) = 275.426, p < 0.001, post hoc between one-ball experiment and the first ball p < 0.001 and 
the second ball p = 0.006). The absolute error was not significantly different between the first and second ball 
(p = 0.015). However, the signed average TTC error was significantly different between the first and second ball 
in the two-balls experiment (Fig. 5(d), F(2,8097) = 166.283, p < 0.001 between three groups (one-ball experiment, 
and the first ball and the second ball in the two-ball experiment), also post hoc tests showed significant difference 
between each pair of three mentioned groups (p < 0.001)). The signed average TTC error for the one-ball condi-
tion (mean = −0.222, SD = 0.152) were significantly different from zero (t(17) = 6.165, p < 0.001). However, they 
were not significantly different from zero for the first ball (mean = −0.054, SD = 0.296), in the two-ball experi-
ment (t(17) = −0.776, p = 0.448); and for the second ball (mean = 0.108, SD = 0.338), in the two-ball experiment 
(t(17) = 1.352, p = 0.194).

In the two-ball experiment, the distribution of estimated TTCs again showed features consistent with an 
underlying drift-diffusion process, that is: 1) Fig. 6(a,b) show that the TTC estimate variability increases mono-
tonically for longer ideal TTCs (black lines in Fig. 6(a) R2 = 0.47 for first ball, and Fig. 6(b) R2 = 0.52 for second 
ball). The normalized TTC variance (by each subjects σ and α) scales linearly with ideal TTCs (black lines in 
Fig. 6(c) R2 = 0.57 for first ball, and Fig. 6(d) R2 = 0.54 for second ball). Similar to the one ball experiment, this 
increase was better explained when using estimated compared to ideal TTCs (R2 = 0.62 for first ball, R2 = 0.63 for 
second ball) and 2) the shape of estimated TTC distribution was best described in majority of conditions across 
all subjects with inverse Gaussian for both the first and second ball (Fig. 6(e,f)). As can be seen in Fig. 6(a–d) lin-
ear fit had a slightly larger R2 compared to quadratic fit, once again suggesting variance scaling was slightly better 
than SD scaling in TTC estimate distribution.

Given the task, an alternate plausible model for estimating TTC could have been via a two-stage system that 
work in series. First stage is the TTC estimation which can have a Gaussian distribution around the correct TTC. 
Second stage involves the actual reproduction of the estimated TTC, which can follow a Weber like distribution 
with the standard deviation being scaled by estimated TTC (e.g. an exponential distribution). Such a system 
results in an ex-Gaussian distribution of errors (convolution of a Gaussian pdf with an exponential pdf). As can 
be seen in Figs 2(d) and 6(e,f) while this distribution fits some of the data, overall in both one-ball and two-ball 
experiments it underperforms other distributions such as Weibull and Inverse Gaussian.

Theoretically, tracking objects in the two-ball experiment could be done either with a single decision var-
iable or with two decision variables that evolve independent from each other (Fig. 7(a,b)). The formulation of 
drift-diffusion process in the case of single DV is:

Figure 4.  (a) The histogram of σ values for all participants in the one-ball experiment. (b) The histogram of α 
values for all participants in the one-ball experiment. (c) Variance of estimated TTCs for the one-ball experiment 
divided by σ2α versus ideal TTCs for each subject in the one-ball experiment. The format is the same as Fig. 2b.
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where X(t) describes the drift-diffusion model for both balls, but the threshold to make a decision for each ball is 
different. The threshold for the first ball is P

v
1

1

α  and for the second ball P
v
2

2

α , where v1 and v2 are respectively the 
speed of the first ball and the second ball. And P represents the position of the red finish line for both balls. IG 
indicates the inverse Gaussian distribution.

In the case of two independent DVs one can write:
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Figure 5.  TTC estimates and error patterns in the two-ball experiment (a) Estimated TTCs for the first ball 
and (b) for the second ball in the two-ball experiment. Format is the same as Fig. 2a. (c) Absolute average TTC 
error for one-ball and two-ball experiments. Error bars throughout the paper show the standard error of mean 
(SEM). (d) Average signed TTC error for one-ball and two-ball experiments.
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where X1(t) and X2(t) indicate two independent the drift-diffusion models for the first ball and the second ball, 
respectively. W1(t) and W2(t) are independent Wiener processes.

To know whether a single or double process was used by our subjects, one can look at the relationship between 
the errors of estimated TTCs between the two balls. The prediction is that if subjects used a single DV, the error 
in the estimated TTC of the first and second ball would be correlated. That is if one was to underestimate the first 
ball he/she would be more likely to underestimate the second ball and vice versa. But in the two DV condition, the 
errors would be uncorrelated. Figure 7(c) shows that the estimation error of the second ball versus the first ball in 

Figure 6.  TTC distribution in the two-ball experiment (a) Estimated TTC variability versus ideal TTCs 
for each subject in the first ball experiment of the two-ball experiment. The red bars show the average of 
estimated TTCs for all subjects in each condition ± SEM. The outlier points (deviated more than two times the 
standard deviation from the mean value) are not considered. (b) Same as (a), for the second ball of the two-
ball experiment. (c) Estimated TTC variability divided by σ2α, versus ideal TTCs for each subject in the first 
ball experiment of the two-ball experiment. (d) Same as (c), for the second ball of the two-ball experiment. In 
(a–d) the format is the same as Fig. 2b. (Number of dots = conditions × participants = 9 × 18 for the first ball, 
outliers = 10, Number of dots = conditions × participants = 8 × 18 for the second ball, outliers = 8) (e) Number 
of conditions × subjects in which each of the five probability distributions provided the best fit according to the 
AIC criterion for the first ball in the two-ball condition. (f) the same plot as (e) for the second ball in the two-
ball condition.
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the two-ball experiment are highly correlated. The slope of the line fitted to the data is 0.88, and the correlation 
between the error values of the second ball versus the error values of the first ball is 0.45.

Also, the use of a single DV for tracking both balls predicts that the integration noise σ for tracking the first 
ball and second ball in a given trial should be the same. While we cannot estimate the σ in one trial we can esti-
mate it in a given condition (given ball speeds and end line position). Figure 7(d) shows σ to the second ball ver-
sus the first ball in the two-ball experiment. The slope of the line regressed to these point is was not significantly 
different from unity as expected from a single DV model (slope = 1.09, 106 bootstrap SD = 0.22, t(999999) = 1.83, 
p = 0.07).

If one forms the variance of subtracted estimated TTCs for the first and second ball in the single DV condi-
tion, one would have:

Figure 7.  Two alternative drift-diffusion models can be used for TTC of two balls. (a) Schematic of the TTC 
model, when the participant considers a single decision variable for both balls. Here, the participant estimates 
the TTC of the first ball when the decision variable hits the first decision threshold and TTC of the second ball 
when the same decision variable now hits the second decision threshold. (b) Schematic of the drift-diffusion 
model for two objects, when the participant considers a separate decision variable for each ball. Here, the 
participant estimates TTC of the first ball when the first decision variable hits the first decision threshold 
and TTC of the second ball when the second decision variable hits the second decision threshold. (c) TTC 
estimation errors for the second ball versus estimation errors for the first ball. (d) σ values for the second ball 
versus σ values for the first ball in the two-ball experiment. Each dot belongs to one participant in a given 
condition. Number of dots = conditions × participants = 15 × 18. (e) The variance of difference in TTC estimate 
for ball one and ball two in two ball experiment is plotted along with the sum of variances and subtraction of 
variances of two TTC estimates. (f) Fitted λ values for each subject in the two-ball experiment. Each blue dot 
shows the average of λs for one participants in all fifteen conditions (n = 18). The blue histograms at the right 
part of the panel show the distribution of fitted λ values for a 100,000 simulated samples of two completely 
dependent DDMs (upper histogram), and for a 100,000 simulated samples of two completely independent 
DDMs (lower histogram).
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− = −Var t t abs var t var t( ) ( ( ) ( )) (14)2 1 1 2

and in the two independent DVs condition, one would have:

− = +Var t t var t var t( ) ( ) ( ) (15)2 1 1 2

Figure 7(e) shows the values of actual variance of the t1 − t2, and the subtraction and sum of t1 and t2 vari-
ances for all participants, and all trials. These values are calculated for a given condition in the two ball experi-
ment (given speed of the first and second balls and redline position) the variance of subjects estimated TTCs for 
each ball and the variance of the difference between the two estimated TTCs for each condition. Then, the sum 
and subtraction of variances were formed for that condition and subject. Next, these three values (the sum and 
subtraction of variances and the variance of subtracted TTCs) were averaged across all conditions × subjects 
(15 × 18) and shown in Fig. 7(e). Interestingly, results show that the variance of subtraction is significantly dif-
ferent from the sum of variances (F(2,53) = 14.039, p < 0.001, post hoc p < 0.001) and instead is very close to 
subtraction of variances (post hoc p = 0.66). This means that on average participants tended to use a single DV for 
both balls in the two-ball experiment.

To do a more formal analysis of the dependence between two drift diffusion processes, we considered the 
following two models:

λ σ λ σ

λ σ λ σ

= + + −

= + + −

X t t W t W t
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1 1 2

2 1 3

2 2

2 2

Here X1(t) and X2(t) represent two drift diffusion processes that can have arbitrary dependence in their diffu-
sion term (λ = 0 full independence to λ = 1 full dependence, W1(t) is the shared noise term while W2(t) and W3(t) 
are the independent noise terms). Given the fact that σ for the two balls were similar for simplicity one σ was used 
for all noise terms. It can be seen that in this case the variance of difference in the two TTC estimates is related to 
the degree of dependence in the noise via the parameter λ as the following (for full derivation see Appendix I):
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using equation 17 one can estimate lambda for each subject using the sample absolute mean and sample 
variance for difference of TTC estimates in each condition. As can be seen in Fig. 7(f). The results show that the 
average lambda across all subjects is 0.82 (median = 0.85). These results are obtained by fitting lambda for each 
subject under the constraint that it 0 < λ < 1 (otherwise equation 16 becomes undefined). To know whether this 
average lambda is different from prediction of full dependence and full independence, its value was compared 
with a distribution of fitted lambdas from fully dependant and fully independent simulated processes. Results 
show that the average subject lamda not to be significantly different from prediction of fully dependant process 
(ranksum test, median = 0.834, p = 0.43) but is significantly different from fully independent process prediction 
(ranksum test, median = 0.099, p < 0.001).

To further probe the differences for tracking the two balls in the two-ball experiment, σ and α values for the 
two-ball experiment are calculated and shown in Fig. 8. Figure 8(a,b) show the σ values for the first ball and the 
second ball, and Fig. 8(c,d) show the α values for the first ball and the second ball in the two-ball experiment. 
Results show that the effect of condition on σ and α for both balls was significant (F(8,161) = 1.746, p = 0.092 for 
σ of the first ball, and F(8,161) = 5.080, p < 0.001 for α of the first ball and F(7,143) = 2.142, p = 0.043 for σ of the 
first ball, and F(7,143) = 5.798, p < 0.001 for α of the second ball).

Figure 8(e,f) show the average of σ and α values for all participants and all trials in one-ball experiment 
and two-ball experiment. ANOVA for σ values showed that there was a significant difference between σ values 
(F(2,53) = 5.132, p = 0.009, post hoc one-ball with first ball p = 0.026 and second ball p = 0.003). But, the differ-
ence between the first ball and the second ball in the two-ball experiment was not significant (p = 0. 439). Also, 
ANOVA for α values showed that there was a significant difference between α values (F(2,53) = 10.615, p < 0.001, 
post hoc one-ball with first ball p = 0.005 and second ball p < 0.001). Again the difference between the first ball 
and the second ball in the two-ball experiment was not significant (p = 0.105). The fact that that σ and α values 
for the first and second ball were similar on average is consistent with the fact that a single DV was used to track 
both balls.

Discussion
We aimed to construct a cognitive model for human subjects tracking objects in a prediction motion task. We 
asked human subjects to estimate TTC of a ball hitting a finish line after it disappeared from sight. They had 
to make a decision about when the ball reached the finish line. Our results based on pattern of TTC estimates 
showed that variance of TTC error scaled with absolute TTC estimate and followed a rightward-skewed distribu-
tion that was best fit by an inverse Gaussian distribution (Fig. 2(c,d)). One natural way for estimating TTC is by an 
internal timer that has some added noise that is accumulated in each time step. Such formulation is reminiscent 
of a drift-diffusion process with a slope one drift (Fig. 3(a)). The over/underestimation of TTC was accounted for 
in the model by adjusting the decision bound (bias term in equation 11). Results show that the integration noise 
for the decision variable was relatively stable across speeds and end line positions but showed some dependence 
on the total TTC (Fig. 3(b,d)). When tracking two balls simultaneously subjects’ average performance was not 
much worse compared to one-ball condition with the bias and integration noise being comparable in the one-ball 
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and two-ball condition (Figs 3(d,e) and 8). The actual TTC error was somewhat better in two ball experiment 
(Fig. 5(c,d)). This result is consistent with previous reports of good performance in concurrent interval timing in 
animal models52,53.

Interestingly, analysis of pattern of TTC errors for the two-ball experiment showed that subjects were using a 
single decision variable for simultaneous tracking of two balls, resulting in dependence between TTC estimates 
for the first and the second ball (Fig. 7(c)). This finding suggests that the errors in estimating the TTC for the first 
ball can easily propagate to cause miscalculation of the second ball TTCs. Our finding thus explains previous 
results on how errors on leading objects can affect errors for trailing objects11,28,29,31. It should be mentioned that 
in our two-ball experiment both balls went behind the occluder at the same time. Whether the same strategy can 
be used for cases where two balls are to disappear at different times, or to other studies of concurrent interval 
timing with or without onset asynchrony52 needs to be tested in future experiments. Ultimately, we believe that 
the decision to use a single process or multiple processes should be guided by cost-benefit consideration by the 
organism, that is if the task at hand is too important and if there is free capacity, it may be beneficial to use mul-
tiple independent processes and incur higher mental cost. This is an intriguing possibility which remains to be 
tested in the future.

(a) (b)

(c) (d)

(e) (f)

Figure 8.  Bias and integration noise for the balls in the two ball experiment. (a) σ values for the first ball in 
all conditions of the two-ball experiment. (b) σ values for the second ball in all conditions of the two-ball 
experiment. (c) α values for the first ball in all conditions of the two-ball experiment. (d) α values for the second 
ball in all conditions of the two-ball experiment. (e) average of σ values, and (f) average of α values for one-ball 
and two-ball experiments.
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In the one-ball experiment, increasing the ideal TTC caused α values to increase, saturating at about α = 1 
for longer durations (Fig. 3(e)). This indicates that on average subjects tended to respond faster than they should 
in short but not long TTCs in the one-ball experiment. While the reason for this dependence is not clear at the 
moment this may be related to subjects’ effort not to miss short TTCs. Such underestimation of time is also 
seen for the faster ball with the closest end line positions as well (Fig. 8(c)). Although trends of changes in alpha 
between the two balls were not always easy to interpret (Fig. 8(d)). Also, increasing the ideal TTCs caused a slight 
increment in the σ values in both one-ball and two-ball experiments (Figs 3(d) and 8(a,b)). These changes in σ 
values, although small, may indicate higher order effects that are not sufficiently modeled by a simple biased 
drift-diffusion model.

Our finding indicates that subjects can be surprisingly accurate on average in their TTC estimates in both 
one and two object tracking conditions (Figs 2(a) and 5(a,b)) despite the fact that we never provided feedback 
about the accuracy of TTC estimates to our subjects. We found a slight overall underestimation of TTC times in 
one-ball experiment (but not necessarily in two-ball experiment). This result is somewhat different from some 
of the previous literature which found larger average errors in TTC28,29,31 (but see other studies which reported 
small errors consistent with our results54–57). While there is evidence that suggests speed discrimination thresh-
old to plateau after 0.2s of viewing time58,59, it is possible that longer viewing time in our task compared to some 
previous tasks (1.5s versus 0.8s in28 and29) improved performance for example by supporting a better memory 
of ball speeds during the occluded period. Our subjects might have been further helped by the fact that the time 
under occluder was comparable to the visible time before the occlude a factor that is shown to facilitate temporal 
estimation7,60.

Some studies have shown that TTC estimates for each condition tends to be biased toward the mean TTC 
across all conditions4,6,7,61. We did not observe such pattern in our experiments. One likely reason for this dif-
ference could be due to lack of feedback in our experiment. Such feedback can result in forming priors for the 
subjects centred around the mean TTC which would bias estimates toward the mean in each trial. Furthermore, 
the overall underestimation of TTCs similar to ours have been reported previously8,55.

Our result show that mean of TTC estimates correlated slightly better with the variance rather than stand-
ard deviation (SD) of TTC (Figs 2(b), 4(c) and 6(a,b)). This is in contrast to broadly accepted scalar property 
in interval timing experiments with roots in Weber-Fechner law that suggests the SD to scale with the interval 
duration62,63. It is likely that this difference be due to the fact that tracking objects are supported by different 
mechanism from other time production experiments. Although, there are some evidence that challenge the scalar 
property in time estimation in humans and monkeys52,64.

In summary, we provided a rigorous cognitive model for object tracking based on a biased drift-diffusion 
model. Our model can predict the pattern of TTC errors and can provide a mechanism for explaining the 
dependence of errors when tracking two objects simultaneously. The fact that two objects were tracked with 
a single decision variable can show a serious limitation in working memory capacity for tracking two objects. 
Such a limitation can have catastrophic consequences for human observers in dealing with their environment 
for instance when trying to estimate TTC of incoming vehicles as miscalculation for one object can adversely 
affect TTC estimate for other objects. Future experiments should address whether this limitation generalizes to 
other configurations and occlusion asynchronies and with more objects to track. Furthermore, the neural basis 
for tracking objects and its overlap or dissociation from areas involved in pure time-lapse estimate needs to be 
studied.
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