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Abstract
Pathologists are responsible for rapidly providing a diagnosis on critical health issues. Challenging cases benefit from additional opinions of
pathologist colleagues. In addition to on-site colleagues, there is an active worldwide community of pathologists on social media for
complementary opinions. Such access to pathologists worldwide has the capacity to improve diagnostic accuracy and generate broader consensus
on next steps in patient care. From Twitter we curate 13,626 images from 6,351 tweets from 25 pathologists from 13 countries. We supplement
the Twitter data with 113,161 images from 1,074,484 PubMed articles. We develop machine learning and deep learning models to (i) accurately
identify histopathology stains, (ii) discriminate between tissues, and (iii) differentiate disease states. Area Under Receiver Operating Characteristic
(AUROC) is 0.805–0.996 for these tasks. We repurpose the disease classifier to search for similar disease states given an image and clinical
covariates. We report precision@k= 1= 0.7618 ± 0.0018 (chance 0.397 ± 0.004, mean ±stdev ). The classifiers find that texture and tissue are
important clinico-visual features of disease. Deep features trained only on natural images (e.g., cats and dogs) substantially improved search
performance, while pathology-specific deep features and cell nuclei features further improved search to a lesser extent. We implement a social
media bot (@pathobot on Twitter) to use the trained classifiers to aid pathologists in obtaining real-time feedback on challenging cases. If a social
media post containing pathology text and images mentions the bot, the bot generates quantitative predictions of disease state (normal/artifact/
infection/injury/nontumor, preneoplastic/benign/low-grade-malignant-potential, or malignant) and lists similar cases across social media and
PubMed. Our project has become a globally distributed expert system that facilitates pathological diagnosis and brings expertise to underserved
regions or hospitals with less expertise in a particular disease. This is the first pan-tissue pan-disease (i.e., from infection to malignancy) method
for prediction and search on social media, and the first pathology study prospectively tested in public on social media. We will share data through
http://pathobotology.org. We expect our project to cultivate a more connected world of physicians and improve patient care worldwide.

Introduction

The United Nations’ Sustainable Development Goal 3: Good
Health and Well-Being suggests that it is essential to “ensure
healthy lives and promote well-being for all at all ages” [1]. In
the furtherance of this goal, it is suggested to “[s]ubstantially
increase [...] the recruitment, development, training, and
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retention of the health workforce in developing countries” to
universally achieve “access to quality essential health care
services” [1]. We therefore take connecting pathologists
worldwide to be important. Indeed, Nix et al. [2] find
pathologists in developing countries (e.g., India, Brazil, and
Pakistan) frequently use social media, and 220/1014 (22%) of
the posts they analyzed involved “asking for opinions on
diagnosis”. The use of social media by pathologists occurs
worldwide for both challenging cases and education [3–5].
This suggests social media can facilitate global collaborations
among pathologists for novel discoveries [6]. We expand on
these approaches by combining (i) real-time machine learning
with (ii) expert pathologist opinions via social media to
facilitate (i) search for similar cases and (ii) pathological
diagnosis by sharing expertise on a particular disease, often
with underserved hospitals.

For machine learning to work in general practice, it must
be trained on data (i) of sufficient diversity to represent the
true variability of what is observed (ii) in a sufficiently
realistic setting that may differ from tightly controlled
experimental conditions [7]. We therefore (i) collaborate
with pathologists worldwide where we (ii) use for training
the images that these pathologists share to obtain opinions,
which are often histopathology microscopy pictures from a
smartphone. We did not observe many images from whole-
slide scanners, which at a global scale have been adopted
slowly, due in part to cost and complexities of digital
pathology workflows [8, 9].

For machine learning to work accurately, it must be
trained on a sufficiently large dataset. Our first aim is
therefore to curate a large dataset of pathology images for
training a machine learning classifier. This is important
because in other machine learning domains, e.g., natural
vision tasks, datasets of millions of images are often used to
train and benchmark, e.g., ImageNet [10] or CIFAR-10
[11]. Transfer learning allows limited repurposing of these
classifiers for other domains, e.g., pathology [12–15].
Indeed, we [16] are among many who start in computational
pathology [17] with deep neural networks pretrained on
ImageNet [18–20], and we do so here.

However, computational pathology datasets annotated
for supervised learning are often much smaller than millions
of images. For example, there are only 32 cases in the
training data for a Medical Image Computing and Computer
Assisted Intervention challenge (available at http://miccai.
cloudapp.net/competitions/82) for distinguishing brain
cancer subtypes, and this includes both pathology and
radiology images. Other studies are larger, such as the
TUmor Proliferation Assessment Challenge (TUPAC16)
dataset of 821 cases [21] all 821 cases being whole slide
images from The Cancer Genome Atlas (TCGA) (http://ca
ncergenome.nih.gov/). TCGA has tens of thousands of
whole slide images available in total, but these images are

only hematoxylin and eosin (H&E) stained slides, and do
not represent nonneoplastic lesions such as infections,
which are clinically important to correctly diagnose [22].
The main limitation is that obtaining annotations from a
pathologist is difficult due to outstanding clinical service
obligations, which prevented our earlier efforts from scaling
up [23]. We overcome this limitation by curating a large and
diverse dataset of 13,626 images from Twitter and 113,161
images from PubMed, where text annotations came from
social media post text, hashtags, article titles, abstracts, and/
or figure captions.

Equipped with our large dataset, we then address our
second main aim, which is to utilize machine learning
trained on this dataset to facilitate prospective disease state
predictions and search from pathologists in real time on
social media. To that end, we capitalize on a common and
systematic approach to diagnosis in which a disease is in
one of three classes [22]. Specifically, we use machine
learning on pathology images from social media and
PubMed to classify images into one of three disease states:
nontumor (e.g., normal, artifact (Fig. S1), injury, infection,
or nontumor), low grade (e.g., preneoplastic, benign, or
low-grade malignant potential), or malignant.

We then implement a social media bot that in real time
applies our machine learning classifiers in response to
pathologists on social media to (i) search for similar cases,
(ii) provide quantitative predictions of disease states, and
(iii) encourage discussion (Fig. 1). When this bot links to a
similar case, the pathologist who shared that case is notified.
The ensuing discussions among pathologists are more
informative and context-specific than a computational pre-
diction. For instance, to make a diagnosis of Kaposi’s sar-
coma, first-world countries have access to an HHV8
histopathology stain, but a pathologist in a developing
country may instead be advised to check patient history of
HIV because the HHV8 stain is prohibitively expensive.
Obviously, a computational prediction of cancer/non-cancer
is far less helpful than what humans do: discuss.

In order for machine learning approaches to be useful in a
clinical setting, it is critical that these approaches be inter-
pretable and undergo rigorous prospective testing [24]. Fur-
thermore, these approaches need to be accompanied by
quantified measures of prediction uncertainty [25]. It may be
argued whenever human life is at risk—(i) interpretability, (ii)
uncertainty quantification, and (iii) prospective testing are
essential—whether the context is medicine or self-driving cars
[26, 27]. Our social media bot and methods are the first in
computational pathology to meet all of these criteria in that (i)
we provide multiple levels of interpretability (e.g., Random
Forest feature importance and deep learning activation heat-
maps), (ii) we statistically quantify prediction uncertainty
using ensemble methods, and (iii) we prospectively test in full
public view on social media. Concretely, this means (i) a
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pathologist can interpret what concepts the machine learning
finds to be diagnostic in general or what parts of a particular
image suggest a specific disease state, (ii) statistical sig-
nificance, confidence intervals, or boxplots of computational
predictions are presented to a pathologist for assessment (e.g.,
the boxplot in Fig. 1H lower left), and (iii) in real time a
pathologist can interact with our social media bot and method
to appraise performance on a case-by-case basis, as well as
evaluate the public history of pathologist–bot interactions on
social media.

Materials and methods

This study was approved by the Institutional Review Board
at Memorial Sloan Kettering Cancer Center.

Social media data

From Twitter we curate 13,626 images from 6,351 tweets
from 25 pathologists from 13 countries. We chose Twitter
primarily for its brevity, i.e., one Tweet is at most 280
characters, so we did not expect to need complicated text
processing logic to parse tissues or diagnoses. Written
permission to download and use the data was obtained from
each collaborating pathologist. One pathologist publicly
declared their data free to use, so we use these data with
acknowledgement. One pathologist donated his glass slide
library to another pathologist, and the receiving pathologist
shared some received cases on social media, which we treat
as belonging to the receiving pathologist. Images are
annotated with their tweet text and replies. We use these
data for supervised learning.

Fig. 1 Graphical summary. Pathologists are recruited worldwide (A).
If a pathologist consents to having their images used (B), we download
those images (C) and manually annotate them (D). Next, we train a
Random Forest classifier to predict image characteristics, e.g., disease
state (E). This classifier is used to predict disease and search. If a
pathologist posts a case to social media and mentions @pathobot (F),

our bot will use the post’s text and images to find similar cases on
social media and PubMed (G). The bot then posts summaries and
notifies pathologists with similar cases (H). Pathologists discuss the
results (I), and some also decide to share their cases with us, initiating
the cycle again (A). “Procedure overview” in the supplement explains
further (Section S5.4).
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PubMed data

To represent PubMed data, we download the PubMed
Central “Open Access Subset” of 1,074,484 articles. We
first trained a classifier to distinguish H&E images from all

others on social media (Figs. 2, S4, and S5), then used the
classifier to identify PubMed articles that have at least one
H&E figure. From the identified 30,585 articles we retain
113,161 H&E images to comprise our PubMed dataset.
Images are annotated with figure caption, article abstract,

Fig. 2 Technique, tissue, and disease diversity. Panel set A shows
diverse techniques in our data. Initials indicate author owning image.
A1 RSS: papanicolaou stain. A2 LGP: periodic acid–Schiff (PAS)
stain, glycogen in pink. A3 LGP: PAS stain, lower magnification. A4
LGP: H&E stain c.f. Panel A3. A5 LGP: H&E stain, human appendix,
including parasite Enterobius vermicularis (c.f. Fig. S2). A6 LGP:
Higher magnification E. vermicularis c.f. Panel A5. A7 LGP: Gömöri
trichrome, collagen in green. A8 LGP: Diff-quik stain, for cytology.
A9 RSS: GMS stain (“Intra-stain diversity” in supplement details
variants, Section S5.3.1), fungi black. A10 MPP: Giemsa stain. A11
AM: immunohistochemistry (IHC) stain, positive result. A12 AM:
IHC stain, negative result. A13 RSS: Congo red, polarized light,
plaques showing green birefringence. A14 MPP: fluorescence in situ
hybridization (FISH) indicating breast cancer Her2 heterogeneity. A15
SY: head computed tomography (CT) scan. A16 LGP: esophageal
endoscopy. In panel set B we show differing morphologies for all ten
histopathological tissue types on Twitter. B1 CS: bone and soft tissue.
We include cardiac here. B2 KH: breast. B3 RSS: dermatological. B4

LGP: gastrointestinal. B5 OOF: genitourinary. B6 MPP: gynecologi-
cal. B7 BX: otorhinolaryngological a.k.a. head and neck. We include
ocular, oral, and endocrine here. B8 CS: hematological, e.g., lymph
node. B9 SY: neurological. B10 SM: pulmonary. In panel set C we
show the three disease states we use: nontumor, low grade, and
malignant. C1 MPP: nontumor disease, i.e., herpes esophagitis with
Cowdry A inclusions. C2 KH: nontumor disease, i.e., collagenous
colitis showing thickened irregular subepithelial collagen table with
entrapped fibroblasts, vessels, and inflammatory cells. C3 AM: low
grade, i.e., pulmonary hamartoma showing entrapped clefts lined by
respiratory epithelium. C4 RSS: low grade, i.e., leiomyoma showing
nuclear palisading. We show IHC completeness but it is not included
for machine learning. C5 BDS: malignant, i.e., breast cancer with
apocrine differentiation. C6 LGP: malignant, i.e., relapsed gastric
adenocarcinoma with diffuse growth throughout the anastomosis and
colon. Gross sections (e.g., Fig. S3) shown for completeness but
not used.
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and article title. This expanded dataset may contain disease
that is too rare to be represented in social media data.

Image processing

We manually curate all social media images, separating
pathology from non-pathology images. “Defining an
acceptable pathology image” (Section S5.11) details this
distinction in the supplement (Fig. S4). Some pathologists
use our Integrated Pathology Annotator tool to browse their
data and manually curate the annotations for their cases
(Figs. S6, S7). We retain non-pathology data publicly
posted by consenting pathologists that cannot be publicly
distributed to enable building a machine learning classifier
that can reliably distinguish pathology from non-pathology
images.

Text processing

“Text data overview” (Section S5.5) in the supplement
discusses our text processing to derive ground truth from
social media posts (Fig. S8). We use hashtags, e.g.,
#dermpath and #cancer, as labels for supervised learning.
We process the text of the tweet and the replies, searching
for terms that indicate tissue type or disease state. For

instance, “ovarian” typically indicates gynecological
pathology, while “carcinoma in situ” typically indicates
low-grade disease (specifically, preneoplastic disease in our
low-grade disease state category). Our text processing
algorithm (Fig. S8) is the result of author consensus.

Random Forest classifier

We train a Random Forest of 1000 trees as a baseline for all
tasks. A white-balanced image is scaled so its shortest
dimension is 512 pixels (px). White balancing helps correct
images with reduced blue coloration due to low lighting
(Fig. S5D). The 512 × 512 px center crop is then extracted,
and 2412 hand-engineered image features are calculated for
this crop (Figs. 3 and S9).

Customized hybrid deep-learning-Random-Forest
model and clinical covariates

Image preprocessing and data augmentation

For image preprocessing, a white-balanced image is scaled
to be 512 px in its shortest dimension, and for deep learn-
ing, 224 × 224 px patches are sampled to train a deep con-
volutional neural network. For deep learning, we use data

Fig. 3 Deep learning methods summary. A An overall input image
may be of any size, but must be at least 512 × 512 pixels (px). B We
use a ResNet-50 [29] deep convolutional neural network to learn to
predict disease state (nontumor, low grade, or malignant) on the basis
of a small 224 × 224 px patch. This small size is required to fit the
ResNet-50 and image batches in limited GPU memory. C For set
learning, this network transforms each of the 21 patches sampled
evenly from the image in a grid to a 100-dimensional vector. These 21
patches span the overall input image entirely. For instance, if the
overall input image is especially wide, the 21 patches will overlap less
in the X dimension. The ResNet-50 converts these 21 patches to 21
vectors. These 21 vectors are summed to represent the overall image,

regardless of the original image’s size, which may vary. This sum
vector is concatenated with tissue covariates (which may be missing
for some images), marker mention covariate, and hand-engineered
features. A Random Forest then learns to predict disease state on this
concatenation that encodes (i) task-agnostic hand-engineered features
(Fig. S9) near the image center, (ii) task-specific features from deep
learning throughout the image, (iii) whether IHC or other markers
were mentioned for this case, and (iv) optionally tissue type. Other
machine learning tasks, e.g., histology stain prediction and tissue type
prediction, were simpler. For simpler tasks, we used only the Random
Forest and 2412 hand-engineered features, without deep learning.
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augmentation of random rotations, random flips, random
zoom/rescaling, random brightness variations, Gaussian
noise, and Mixup [28]. This means that throughout training
hundreds of times over our data we make many small
changes to the data each time, e.g., to teach the neural
network that rotating an image does not change the diag-
nosis. “Deep learning” (Section S5.11.1) in the supplement
discusses further.

Deep learning and deep features

To maximize performance by learning disease-state-specific
features, we additionally consider deep learning for the
most challenging task of disease state prediction. Our deep
learning architecture is a ResNet-50 [29] (Fig. 3B) pre-
trained on ImageNet, which we train end-to-end without
freezing layers (Fig. S13). This means the ResNet-50 deep
convolutional neural network is initially trained to classify
natural images, e.g., cats and dogs, but every neuron may be
adjusted in a data-driven manner for histology-specific
learning on our pathology Twitter dataset. To determine
how deep feature representations change before and after
training the ResNet-50 on histopathology images and cov-
ariates, we analyze both (i) ImageNet2048 features from the
ResNet-50 that has not been trained on histopathology data,
and (ii) 100 deep features based on the same ResNet-50
where all neurons have been further trained on histo-
pathology data. We define ImageNet2048 features as the
2048 outputs from the ResNet-50’s final Global Average
Pooling layer, summed over 21 image patches in a grid
fashion and concatenated with other features for Random
Forest learning (Fig. 3C). For histopathology deep learning,
we append a 100-neuron fully-connected layer atop the
ResNet-50, connecting to the ResNet-50 and covariates, and
sum over the same 21 image patches in a grid fashion
(Fig. 3B). “Deep learning instance and set feature vectors”
(Section S5.8.1) in the supplement discusses this and the
feature interpretability related to the Heaviside step function
(Eqs. 6 and 8).

Clinical covariates

To best predict disease state and find similar cases, we seek
to include as much patient-related context as possible in our
computational pathology machine learning models, so we
additionally include clinical information, i.e., tissue type
and marker mentions. To represent the tissue type covariate,
we include a ten-dimensional one-hot-encoded binary vec-
tor to encode which one of the ten possible tissue types is
present for this case. If the tissue type is unknown, tissue
type is all zeroes for the neural network while being missing
values for the Random Forest. We also include a binary
one-dimensional marker mention covariate, which is 1 if

any pathologist discussing the case mentions a marker test,
e.g., “IHC” or “desmin”.

Disease state classifier repurposed for similarity-
based search

After we train a Random Forest classifier (see “Random
Forest classifier” in “Materials and methods”) to predict/
classify disease state from a variety of deep and non-deep
features (Fig. 3C), we then use this classifier’s Random Forest
similarity metric for search [30, 31]. Specifically, our Random
Forest consists of 1000 Random Trees, each of which predicts
disease state. If any given Random Tree makes an identical
sequence of decisions to classify two histopathology images
(each with optionally associated clinical covariates), the
similarity of those two images is incremented by one.
Aggregating across all Random Trees, the similarity of any
two images can therefore be quantified as a number between 0
(not similar according to any Random Tree) and 1000 (similar
according to all 1000 Random Trees). Equipped with this
similarity metric, we repurpose the classifier for search: the
classifier takes in a search image and compares it to each
other image using this similarity metric, then provides a list of
images ranked by similarity to the search image. This
approach provides the first pan-tissue (i.e., bone and soft
tissue, breast, dermatological, gastrointestinal, genitourinary,
gynecological, head and neck, hematological, neurological,
pulmonary, etc.) pan-disease (i.e., nontumor, low grade, and
malignant) case search in pathology.

Three levels of sanity checking for search

To inform the physician and to avoid mistakes, sanity checks
are important in medicine, or wherever human life may be at
risk. Quantifying uncertainty is particularly important [25] in
medicine, to assess how much trust to put in predictions that
will affect the patient’s care. We are the first to offer three
sanity checks for each individual search: (i) prediction
uncertainty, (ii) prediction as a check for search, and (iii)
prediction heatmaps. “Machine learning sanity checking for
search” discusses further (Section S5.9). Briefly, “prediction
uncertainty” relies on an ensemble of classifiers to assess if
prediction strength is statistically significant, and if not, the
prediction and search using this image should not be trusted.
Second, “prediction as a check for search” indicates that if the
disease state classification for a given image is assessed as
incorrect by a pathologist, search results using this image
should not be trusted, because the same classifier is used for
both prediction and search. Third, we use “prediction heat-
maps” to show disease state predictions for each component
of a given image, based on deep learning. If a pathologist
disagrees with these heatmaps, deep-learning-based search for
that image cannot be trusted. A failure of any one of these
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three checks indicates that search results may be incorrect,
and they are flagged as such.

Five levels of method interpretability

Interpretability is critical in medicine [24] for physicians to
understand whether or not the machine learning is mis-
interpreting the data. For example, machine learning may
uncover that pneumonia patients with a history of asthma
have lower mortality risk, suggesting that asthma is protective
against pneumonia mortality. However, this would not make
sense to a physician, who would instead realize that such
patients have lower mortality because they are more likely to
be admitted directly to an intensive care unit [32, 33]. Asthma
is not protective from pneumonia mortality, intensive care is.

Ideally, interpretability facilitates both deductive and
inductive human reasoning about the machine learning find-
ings. Deductively, interpretability allows human reasoning
about what machine learning finds in specific patient cases,
e.g., explaining the malignant prediction overall for a patient
by spatially localizing malignancy-related feature activations.

Inductively, interpretability allows human reasoning about
broad principles that may be inferred from the
machine learning findings overall for a task, e.g., texture
importance in disease state prediction. To the best of our
knowledge, it is novel to offer both in a pan-tissue pan-disease
manner in computational pathology. We do this with (i) hand-
engineered feature interpretability (Fig. S9), (ii) Random
Forest feature importance (Fig. 4), (iii) before-and-after
histopathology-training feature importance comparison of
deep features to hand-engineered features (Fig. 4 vs. Fig. S10),
(iv) deep feature activation maps (Figs. 5D and S11), and (v)
cluster analyses (Fig. 6). “Machine learning interpretability for
search” in the supplement discusses further (Section S5.10).

Histopathology-trained deep features represent edges,
colors, and tissue

To understand what deep features learn to represent after
training on histopathology data, we compare Random For-
est feature importances of (a) ImageNet 2048 deep features
[not trained on histopathology data] with hand-engineered

Fig. 4 Random Forest feature importance for prioritizing deep
features, when non-deep, deep, and clinical features are used
together for learning. We use the mean decrease in accuracy to
measure Random Forest feature importance. To do this, first, a Ran-
dom Forest is trained on task-agnostic hand-engineered features (e.g.,
color histograms), task-specific deep features (i.e., from the ResNet-
50), and the tissue type covariate that may be missing for some
patients. Second, to measure the importance of a feature, we randomly
permute/shuffle the feature’s values, then report the Random Forest’s
decrease in accuracy. When shuffling a feature’s values this way, more
important features result in a greater decrease in accuracy, because
accurate prediction relies on these features more. We show the most
important features at the top of these plots, in decreasing order of
importance, for deep features (A) and non-deep features (B). The most
important deep feature is “r50_46”, which is the output of neuron 47 of
100 (first neuron is 0, last is 99), in the 100-neuron layer we append to

the ResNet-50. Thus of all 100 deep features, r50_46 may be prior-
itized first for interpretation. Of non-deep features, the most important
features include Local Binary Patterns Pyramid (LBPP), color histo-
grams, and “tissue” (the tissue type covariate). LBPP and color his-
tograms are visual features, while tissue type is a clinical covariate.
LBPP are pyramid-based grayscale texture features that are scale-
invariant and color-invariant. LBPP features may be important because
we neither control the magnification a pathologist uses for a pathology
photo, nor do we control. staining protocol. For a before-and-after
training comparison that may suggest the histopathology-trained deep
features represent edges, colors, and tissue type rather than texture, we
also analyze feature importance of only natural-image-trained Ima-
geNet2048 deep features in conjunction with hand-engineered features
(Fig. S10). “Marker mention and SIFT features excluded from Ran-
dom Forest feature importance analysis” discusses other details in the
supplement (Section S5.10.2).
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features and tissue covariate (Fig. S10), to (b) 100 deep
features [trained on histopathology data] with hand-
engineered features and tissue covariate (Fig. 4). Before
the deep neural network is trained on histopathology data,
the tissue covariate as well as edge and color hand-
engineered features are important (Fig. S10). However, after
the deep neural network is trained on histopathology data,
tissue is less important while texture hand-engineered fea-
tures are more important (Fig. 4). Therefore, we reason that
the deep neural network learns histopathology-relevant
edge, color, and tissue features from histopathology data
(which reduces the importance of e.g., hand-engineered
edge and color features after learning), but the deep neural
network may forget histopathology-relevant texture features
during learning (which increases the importance of hand-
engineered texture features after learning).

Interpretability uncovers spatial prediction-to-feature
correspondences of disease

Considering both introspective/inductive interpretability
(Fig. 4) and demonstrative/deductive interpretability (Fig. 5),
we find a correspondence between important deep features
(Fig. 4) and the spatial localization of deep learning predic-
tions (Fig. 5). We find that using (Eq. 14) the three

most important interpretable deep features slightly but sig-
nificantly improve search performance (Table S1). “Deep set
learning feature interpretation” discusses further (Section
S5.11.2).

Deep features trained on histopathology logically cluster
patients by disease state, whereas pathology-agnostic
features do not

Through cluster analysis we interpret which features (i.e.,
hand-engineered, only natural-image-trained, or histo-
pathology-trained), if any, separate patients into mean-
ingful groups, and if the features “make sense” to describe
patient histopathology. As expected, neither hand-
engineered features (Fig. 6A1) nor only natural-image-
trained ImageNet2048 deep features (Fig. 6B1) cluster
patient cases by disease state, presumably because these
features are not based on histopathology. These approa-
ches also do not cluster patients by contributing pathol-
ogist (Fig. 6A2, B2) or by tissue type (Fig. 6A3, B3). In
addition, we do not find that reducing dimensionality
through principal components analysis qualitatively
changes the clustering (Fig. S12). In contrast, deep fea-
tures trained on histopathology data do cluster patients
together by disease state (Fig. 6C1), but not by pathologist

Fig. 5 Interpretable spatial distribution of deep learning predic-
tions and features. A An example image for deep learning prediction
interpretation, specifically a pulmonary vein lined by enlarged
hyperplastic cells, which we consider to be low-grade disease state.
Case provided by YR. B The image is tiled into a 5 × 5 grid of
overlapping 224 × 224 px image patches. For heatmaps, we use the
same 5 × 5 grid as in Fig. 1C bottom left, imputing with the median of
the four nearest neighbors for 4 of 25 grid tiles. C We show deep
learning predictions for disease state of image patches. At left
throughout the image, predictions have a weak activation value of 0
for malignant, so these patches are not predicted to be malignant. At
middle the centermost patches have a strong activation value of 1, so
these patches are predicted to be low grade. This spatial localization
highlights the hyperplastic cells as low grade. At right the remaining
normal tissue and background patches are predicted to be nontumor
disease state. Due to our use of softmax, we note that the sum of

malignant, low-grade, and nontumor prediction activation values for a
patch equals 1, like probabilities sum to 1, but our predictions are not
Gaussian-distributed probabilities. D We apply the same heatmap
approach to interpret our ResNet-50 deep features as well. D1 the most
important deep feature corresponds to the majority class prediction,
i.e., C1, malignant. D2 The second most important deep feature cor-
responds to prediction of the second most abundant class, i.e., C2, low
grade. D3 The third most important deep feature corresponds to pre-
diction of the third most abundant class, i.e., C3, nontumor. The fourth
(D4) and fifth (D5) most important features also correspond to non-
tumor. D6 The sixth most important deep feature does not have a clear
correspondence when we interpret the deep learning for this case and
other cases (Fig. S11), so we stop interpretation here. As expected, we
did not find ImageNet2048 features to be interpretable from heatmaps,
because these are not trained on histpathology (Fig. S11A5).
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(Fig. 6C2) or tissue (Fig. 6C3). We conclude that these
deep features primarily reflect representations of disease
state in a non-tissue-specific manner. It is important to
note that any clustering-based result must be carefully
scrutinized, because features may suffer from artifacts,
e.g., which pathologist shared the patient case. If taken to
an extreme, learning to predict disease state on the basis
of pathologist-specific staining/lighting/camera artifacts
amounts to learning concepts such as, “if pathologist X
typically shares images of malignant cases, and a new
image appears to be from pathologist X, then this image
probably shows malignancy”, which does not “make
sense” as a way to predict disease state. Although we did
not observe robust clustering by pathologist, even vague
grouping by pathologist (Fig. 6A2 at gray arrows)

highlights the importance of critically assessing results.
Artifact learning risk is one reason why we (i) rigorously
test search through leave-one-pathologist-out cross-
validation, and (ii) provide sanity checks.

Experimental design and evaluation

We evaluate our classifiers using ten-fold cross-validation
to estimate bounds of accuracy and AUROC performance
metrics. “Supplementary experimental design and evalua-
tion” explains further (Section S5.14). Because we intend
for our methods to accurately find similar cases for any
pathologist worldwide, we rigorously test search using
leave-one-pathologist-out cross-validation and report
precision@k. Leave-one-pathologist-out cross-validation

Fig. 6 Disease state clusters based on hand-engineered, natural-
image-trained deep features, or histopathology-trained deep fea-
tures. To determine which features meaningfully group patients
together, we apply the UMAP [34] clustering algorithm on a held-out
set of 10% of our disease state data. Each dot represents an image from
a patient case. In general, two dots close together means these two
images have similar features. Columns indicate the features used for
clustering: hand-engineered features (at left column), only-image-
trained ImageNet2048 deep features (at middle column), or
histopathology-trained deep features (at right column). Rows indicate
how dots are colored: by disease state (at top row), by contributing
pathologist (at middle row), or by tissue type (at bottom row). For

hand-engineered features, regardless of whether patient cases are
labeled by disease state (A1), pathologist (A2), or tissue type (A3),
there is no strong clustering of like-labeled cases. Similarly, for only
natural-image-trained ImageNet2048 deep features, there is no obvious
clustering by disease state (B1), pathologist (B2), or tissue type (B3).
However, for histopathology-trained deep features, patient cases
cluster by disease state (C1), with separation of malignant (at dotted
arrow), low grade (at dashed arrow), and nontumor (at solid arrow).
There is no clear clustering by pathologist (C2) or tissue type (C3).
The main text notes that hand-engineered features may vaguely group
by pathologist (A2, pathologists 2 and 16 at solid and dotted arrows).
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isolates pathologist cases from one another, so a test set is
independent from the corresponding training set. This iso-
lates to a test set pathologist-specific or institution-specific
imaging artifacts that may occur from microscopy, lighting,
camera, or staining protocol. Thus our leave-one-
pathologist-out cross-validation measurements quantify
our method’s reproducibility, which is critical to measure in
medical machine learning [7].

Social media bot for public prospective testing

We present the first pathology-specific social media bot,
@pathobot, on Twitter. This bot is a case similarity search
tool that applies our methods. Pathologists on Twitter
mention the bot in a tweet containing an image. The bot
uses our Random Forest classifier to provide disease state
prediction for that image, and search for similar results. Its
prediction and search results, along with quantitative
assessments of prediction uncertainty, are provided to
pathologists in real time. In this way, the bot facilitates
prospective tests, and encourages collaboration: as pathol-
ogists use the bot, they provide us with complementary
qualitative feedback and help us recruit additional colla-
borators. In this way, the bot facilitates prospective tests,
and encourages collaboration: as pathologists publicly use
the bot, they provide us with complementary qualitative
feedback and these interactions help us recruit additional
collaborators.

Computational hardware

For machine learning, we use Weka version 3.8.1 [35] on a
laptop. For deep learning, we use Tensorflow version 1.0.0
with Keras version 2.1.4 [36] on a supercomputing cluster
having GPUs supporting nVidia CUDA version 8.0 and
cuDNN version 5.1. “Supplementary computational hard-
ware and software” discusses further (Section S5.15). In R,
we perform feature importance analyses with the random-
Forest package [37] and cluster analyses with the umap
package [38].

Results

Identifying and filtering for H&E images

We ran increasingly difficult tests using increasingly
sophisticated machine learning methods. Our first question
is the most basic, but arguably the most important: can
machine learning distinguish acceptable H&E-stained
human pathology images from all others (Figs. 2A, S4, and
S5)? We show acceptable H&E-stained human pathology
images can be distinguished from other images—e.g.,

natural scenes or different histochemistry stains (Fig. 6 at
left) with high performance (AUROC 0.95). Because of the
high performance of this classifier, it can be used to partially
automate one of our manual data curation tasks, i.e., iden-
tifying acceptable images on social media. More impor-
tantly, when confronted with over one million PubMed
articles, we apply this classifier to filter out all the articles
that do not have at least one H&E image. To our knowl-
edge, this is the first H&E image detector to filter PubMed
articles. PubMed figures increase our searchable dataset by
over an order of magnitude, without any additional manual
curation effort. Only with a large dataset may we expect to
successfully search for rare diseases, and we currently have
126,787 searchable images. This task also serves as a
positive control.

Distinguishing common stain types

H&E and IHC stain types are the most common in our
dataset and are common in practice. We therefore ask if
machine learning can distinguish between these stain types,
which vary in coloration (Fig. 2A). Indeed, the classifier
performs very well at this discrimination (AUROC 0.99,
Fig. 7 at right). Thus, although IHC coloration can vary
between red and brown, machine learning can still suc-
cessfully differentiate it from H&E. “Intra-stain diversity”
explains further (Section S5.3.1). A well-performing clas-
sifier such as this can be useful with large digital slide
archives that contain a mixture of H&E and IHC slides that
lack explicit labels for staining information. Our classifier
can automatically and accurately distinguish these stains, so

Fig. 7 H&E performance. Predicting if an image is acceptable H&E
human tissue or not (at left), or if image is H&E rather than IHC (at
right). Ten replicates of ten-fold cross-validation (tenfold) and leave-
one-pathologist-out cross-validation (LOO) had similarly strong per-
formance. This suggests the classifier may generalize well to other
datasets. We use the “H&E vs. others” classifier to find H&E images in
PubMed. Shown replicate AUROC for H&E vs. others is 0.9735 for
tenfold (ten replicates of tenfold has mean ± stdev of 0.9746 ± 0.0043)
and 0.9549 for LOO (ten replicates 0.9547 ± 0.0002), while H&E vs.
IHC is 0.9967 for tenfold (ten replicates 0.9977 ± 0.0017) and 0.9907
for LOO (ten replicates 0.9954 ± 0.0004). For this and other figures,
we show the first replicate.
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that downstream pipelines may process each stain type in a
distinct manner.

Distinguishing ten histopathology tissue types

We next ask if machine learning can distinguish the ten tissue
types present in our Twitter dataset (Fig. 2A). “Tissue hash-
tags and keywords” discusses this further (Section S5.6.2).
The tissue types were distinguishable (AUROC 0.81, Fig. 8A)
and, as expected, this task was more difficult than stain-
related tasks. Being able to identify tissue types may help the
detection of contaminating tissue in a slide.

Deep learning predicts disease state across many
tissue types

Pathologists routinely make decisions about whether a tis-
sue shows evidence of nontumoral disease, low-grade dis-
ease, or malignant disease, while ignoring spurious artifacts
(Fig. S1). We therefore ask whether machine learning can
perform well on this clinically important task. For this, we
use our most common stain type, H&E, including only
those images that are single-panel and deemed acceptable
(Fig. S4). We systematically test increasingly sophisticated
machine learning methods (Fig. 9) with the goal of
achieving the highest possible performance. The simplest
baseline model we consider, a Random Forest on the 2412
hand-engineered features (Fig. S9), achieves an AUROC of
0.6843 ± 0.0012 (mean ± stdev, Fig. 9). Conversely, an
ensemble of our deep-learning-Random-Forest hybrid
classifiers achieves much higher performance, with
AUROC 0.80 (Fig. 9). To our knowledge, this is the first
classifier that predicts the full spectrum of disease states,

i.e., nontumor, low grade, and malignant (Figs. 2, 8B, and
9).

Texture and tissue are important clinico-visual
features of disease

We next determine which features are important to our
machine learning classifier for disease state prediction. To
do this, we interpret the Random Forest feature importance
to gain insight into the clinico-visual features that are pre-
dictive of disease state. Our analyses suggest that texture
(e.g., local binary patterns) and color (e.g., color histo-
grams) features are most important for pathology predic-
tions and search, followed by the tissue type clinical
covariate (Fig. 4). “Marker mention and SIFT features
excluded from Random Forest feature importance analysis”
discusses further (Section S5.10.2). Our method is therefore
multimodal, in that it learns from both visual information in
the images and their associated clinical covariates (e.g.,
tissue type and marker mention). Both modalities improve
search performance, as discussed in the following section.

Disease state search, first pan-tissue pan-disease
method

In light of pathology-agnostic approaches to pathology
search [18, 19], we ask if pathology-specific approaches to
pathology search may perform better. Indeed, search is the
main purpose of our social media bot. Moreover, others
have noted task-agnostic features may suffer from poorly
understood biases, e.g., features to distinguish major cate-
gories (e.g., cats and dogs) in natural images may system-
atically fail to distinguish major categories in medical

Fig. 8 Ten tissue type and three disease state prediction perfor-
mance and counts. A Classifier performance for predicting histo-
pathology tissue type (ten types, 8331 images). B Classifier
performance for predicting disease state (three disease states; 6549
images). Overall AUROC is the weighted average of AUROC for each
class, weighted by the instance count in the class. These panels (A, B)
show AUROC (with ten-fold cross-validation) for the chosen classifier.
Random Forest AUROC for tissue type prediction is 0.8133 (AUROC
for the ten replicates: mean ± stdev of 0.8134 ± 0.0007). AUROC is
0.8085 for an ensemble of our deep-learning-Random-Forest hybrid

classifiers for disease state prediction (AUROC for the ten replicates:
mean ± stdev of 0.8035 ± 0.0043). C1 Disease state counts per tissue
type. The proportion of nontumor vs. low-grade vs. malignant disease
states varies as a function of tissue type. For example, dermatological
tissue images on social media are most often low grade, but malignancy
is most common for genitourinary images. C2 Disease state counts as a
function of whether a marker test (e.g., IHC, FISH) was mentioned
(˜25% of cases) or not. IHC is the most common marker discussed and
is typically, but not necessarily, used to subtype malignancies.
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images (e.g., ophthalmology or pathology) [39]. To evalu-
ate performance of search, we show precision@k for k=
1,…, 10 (Fig. 10). As a positive control, we first test search
for similar tissues (Fig. 9A), e.g., if the search query image
is breast pathology then the top search results should be
breast pathology. Here, precision@k= 1= 0.6 means 60%
of the time the search query image and top search result
image have matching tissue types, e.g., both are breast, or
both are gastrointestinal, etc. We subsequently test search
for similar disease states (Fig. 9B and Table S1), e.g., if the
search query image is malignant then the top search results
should be malignant. Here, precision@k= 1= 0.76 means
76% of the time the search query image and top search
result image have matching disease states (e.g., both
malignant, both nontumor, etc), while precision@k= 8=
0.57 means the search query image matches 57% of the top
eight search results, i.e., 4–5 of the top eight search results
are malignant when the search query image is malignant. To
estimate performance in general for each method, we

perform ten replicates of leave-one-pathologist-out cross-
validation with different random seeds (i.e., 0, 1, …, 9).
This allows variance to be estimated for Random Forest
learning, but methods based exclusively on the L1 norm are
fully deterministic, so these have zero estimated variance
(Table S1). We follow two-sample hypothesis testing,
where one set of ten replicates is compared with a different
set of ten replicates. To calculate a U statistic and a p value,
we use the two-tailed Wilcoxon rank-sum test on pre-
cision@k= 1, which tests for significant differences in
precision for the first search result on average. For search’s
statistical null model, we train a Random Forest on images
with randomly shuffled class labels and evaluate pre-
cision@k, as a permutation test (i.e., “RandomForest(2412
+ tissue), permutation test” precision@k= 1= 0.3967 ±
0.0044 in Table S1, shown in Fig. 9B). We conclude search
performs significantly better than chance (0.7618 ± 0.0018
vs 0.3967 ± 0.0044, U = 100, p = 0.0001817) and offer
specifics below.

Fig. 9 Disease state prediction performance for machine learning
methods.. For deep learning we use a ResNet-50. For shallow learning
we use a Random Forest. We train a Random Forest on deep features
(and other features), to combine deep and shallow learning (Fig. 3C
top). Error bars indicate standard error of the mean. Points indicate
replicates. Gray lines indicate means. Performance increases markedly
when including tissue type covariate for learning (even though tissue
type is missing for some patients), when using deep learning to inte-
grate information throughout entire image rather than only the center
crop, and when using an ensemble of classifiers. Performance exceeds
AUROC of 0.8 (at right). We conclude method xii (“HandEng+
Hist+ Tissue Ens”) is the best we tested for disease state prediction,
because no other method performs significantly better and no other
simpler method performs similarly. Methods are, from left to right, (i)
Random Forest with 2412 hand-engineered features alone for 512 ×
512 px scaled and cropped center patch, (ii) Random Forest with tissue
covariates, (iii) Random Forest with tissue and marker covariates, (iv)
method iii additionally with SIFTk5 features for Random Forest, (v)
only natural-image-trained ResNet-50 at same scale as method i with
center 224 × 224 px center patch and prediction from a Random Forest
trained on 2048 features from the ResNet-50 (Fig. 3), (vi)
histopathology-trained ResNet-50 at same scale as method i with
center 224 × 224 px center patch and prediction from top three neurons

(Fig. 3B top), (vii) histopathology-trained ResNet-50 with Random
Forest trained on 100 features from 224 × 224 px center patch per
method vi, (viii) histopathology-trained ResNet-50 features at 21
locations throughout image summed and Random Forest learning on
this 100-dimensional set representation with 2412 hand-engineered
features, (ix) method viii with tissue covariates for histopathology-
trained ResNet-50 and 2412 hand-engineered features for Random
Forest learning (i.e., Fig. 3C sans marker information), (x) method ix
with an only natural-image-trained ResNet-50 instead of a
histopathology-trained ResNet-50 for Random Forest learning, (xi)
method ix with both an only natural-image-trained ResNet-50 and a
histopathology-trained ResNet-50 for Random Forest learning, (xii)
method ix with an ensemble of three Random Forest classifiers such
that each classifier considers an independent histopathology-trained
ResNet-50 feature vector in addition to 2412 hand-engineered features
and tissue covariate, (xiii) method xii where each Random Forest
classifier in ensemble additionally considers only natural-image-
trained ResNet-50 features, (xiv) method xii where each Random
Forest classifier in ensemble additionally considers the marker mention
covariate (i.e., this is an ensemble of three classifiers where Fig. 3C is
one of the three classifiers), (xv) method xii where each Random
Forest in ensemble additionally considers SIFTk5 features for learning.
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Results for disease state search are detailed in “supple-
mentary disease state search results” (Section S5.13). Here,
we briefly describe three main findings. First, “clinical
covariates improve search performance” (Section S5.13.1).
Both tissue type (0.5640 ± 0.0024 vs. 0.6533 ± 0.0025, U=
100, p= 0.0001796) and marker mention (0.6533 ± 0.0025
vs. 0.6908 ± 0.0021, U= 100, p= 0.0001796) covariates
significantly improve search performance. This suggests
that for search these clinical features provide disease state
information above and beyond the visual characteristics we
have of each image. Second, “in the context of other fea-
tures, nuclear features of disease are better represented by
the most prevalent SIFT clusters rather than all SIFT”
(Section S5.13.2), and the effect of scale-invariant feature
transform (SIFT) clusters on search is small but significant
(0.6908 ± 0.0021 vs. 0.6935 ± 0.0029, U= 19.5, p=
0.02308). This indicates nuclear features, as represented by
SIFT, provide limited but complementary disease-related
information for search. Third, “deep features synergize with
other features, informing search more than nuclear SIFT
features, but less than clinical covariates” (Section S5.13.3).
Specifically, deep features improve search performance less
than tissue type (0.5720 ± 0.0036 vs. 0.6533 ± 0.0025, U=
0, p= 0.0001806) and less than marker mentions (0.6602 ±
0.0022 vs. 0.6908 ± 0.0021, U= 0, p= 0.0001817), but
more than SIFT clusters (0.6983 ± 0.0016 vs. 0.6948 ±
0.0032, U= 83.5, p= 0.01251). Fourth, “deep features
trained only on natural images outperform hand-engineered
features for search, and offer best performance when com-
bined with other features” (Section S5.13.4). Particularly, in
the context of clinical covariates, ImageNet2048 features
demonstrate high importance by offering better search
performance than the 2412 hand-engineered features,

SIFTk5 features, and histopathology-trained Deep3 features
combined (0.7517 ± 0.0025 vs. 0.7006 ± 0.0026, U= 100,
p= 0.0001817)—although this may change as more data
become available or more advanced methods are used.
Moreover, we found that adding only natural-image-trained
ImageNet2048 deep features to our best-performing model
(incorporating hand-engineered features, tissue type, marker
mention, SIFTk5 features, and Deep3 features)
improved search performance further (0.7006 ± 0.0026 vs.
0.7618 ± 0.0018, U= 0, p= 0.0001817), and was the best-
performing search method we measured. Taken together,
we conclude (i) texture and tissue features are important, (ii)
histopathology-trained deep features are less important, (iii)
nuclear/SIFT features are least important for disease
state search, and (iv) in the context of clinical covariates
the only-natural-image-trained ImageNet2048 deep
features are the most important visual features we tested for
search.

Discussion

Summary

Pathologists worldwide reach to social media for opi-
nions, often sharing rare or unusual cases, but replies may
not be immediate, and browsing potentially years of case
history to find a similar case can be a time-consuming
endeavor. Therefore, we implemented a social media bot
that in real-time searches for similar cases, links to these
cases, and notifies pathologists who shared the cases, to
encourage discussion. To facilitate disease prediction and
search, we maintain a large pathology-focused dataset of

Fig. 10 Case similarity search performance. We report search per-
formance as precision@k for leave-one-pathologist-out cross-
validation for (A) tissue and (B) disease state. We note search based
on SIFT features performs better than chance, but worse than all
alternatives we tried. Marker mention information improves search
slightly, and we suspect cases that mention markers may be more
relevant search results if a query case also mentions markers. SIFTk5

and histopathology-trained Deep3 features improve performance even
less, but only natural-image-trained ImageNet2048 deep features
increase performance substantially (Table S1). (C) We show per-

pathologist variability in search, with outliers for both strong and weak
performance. Random chance is dashed gray line. In our testing,
performance for every pathologist is always above chance, which may
suggest performance will be above chance for patient cases from other
pathologists. We suspect variability in staining protocol, variability in
photography, and variability in per-pathologist shared case diagnosis
difficulty may underlie this search performance variability. The
pathologist where precision@k= 1 is lowest shared five images total
for the disease prediction task, and these images are of a rare tissue
type. Table S2 shows per-pathologist performance statistics.
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126,787 images with associated text, from pathologists
and patients the world over. This is the first pan-tissue,
pan-disease dataset in pathology, which we will share
with the community through pathobotology.org to pro-
mote novel insights in computational pathology. After
performing stain- and tissue-related baselines with a
Random Forest, we performed a number of analyses on
this dataset for disease state prediction and search. To
accomplish this, we developed a novel synthesis of a deep
convolutional neural network for image set representa-
tions and a Random Forest learning from these repre-
sentations (Fig. 3 and S14). We found this model can
classify disease state with high accuracy, and be repur-
posed for real-time search of similar disease states on
social media. This interpretable model, combined with its
social media interface, facilitates diagnoses and decisions
about next steps in patient care by connecting pathologists
all over the world, searching for similar cases, and gen-
erating predictions about disease states in shared images.
Our approach also allowed us to make a number of
important methodological advances and discoveries. For
example, we found that both image texture and tissue are
important clinico-visual features of disease state—moti-
vating the inclusion of both of feature types in multimodal
methods such as ours. In contrast, deep features and cell
nuclei features were less important for search. Finally, we
provide important technical advances, because our novel
deep feature regularization and activation functions yield
approximately binary features and set representations that
may be applicable to other domains. In sum, these
advances readily translate to patient care by taking
advantage of cutting-edge machine learning approaches,
large and diverse datasets, and interactions with patholo-
gists worldwide.

Comparison with prior studies

Our approach builds on, but greatly extends, prior work in
the field of computational pathology. We will comment on
this briefly here, and describe more fully in “supplementary
comparison with prior studies” (Section S5.16). First, much
of prior work involves a subset of tissue types or disease
states [40–42]. However, our study encompasses diverse
examples of each. Second, prior studies investigating
pathology search take a variety of pathology-agnostic
approaches, e.g., (i) using neural networks that were not
trained with pathology data [18, 19] or (ii) using SIFT
features [19, 43, 44] that do not represent texture or color
[45]. Our inclusive approach is different, training a model
on pathology data represented by thousands of features—
including SIFT clusters, neural networks, other visual fea-
tures, and clinical covariates. Our model outperforms
pathology-agnostic baselines.

Prior work has found texture and/or color to be important
for tissue-related tasks in computational pathology [46–48].
We find texture and color to be important for disease-
related tasks. In addition, we go a step further by compre-
hensively considering the relative contributions of
many clinico-visual features to the prediction and search
of disease. Such important features include texture, color,
tissue type, marker mentions, deep features, and SIFT
clusters.

Caveats and future directions

Below we discuss the primary caveats (also see “supple-
mentary caveats” in Section S5.17) and future directions
(also see “supplementary future directions” in Section
S5.18).

Diagnosis disagreement or inaccuracy

First, there is a risk of error in our data because many
different pathologists share cases, and they may disagree on
the most appropriate hashtags or diagnosis. Moreover, there
may be diagnostic inaccuracies from the pathologist who
posted the case, or other pathologists. We find these situa-
tions to be rare, but if they occur, the case tends to have an
increased amount of discussion, so we can identify these
situations. Second, our nontumor/low-grade/malignant
keyword rules may be incorrect or vague. For these first and
second caveats, we take a majority vote approach, manually
curate as needed, and discuss. Indeed, as we discussed
amongst ourselves the hyperplasia in Fig. 5, it became clear
we needed to explicitly mention preneoplastic disease is
included in the low-grade disease state category.

Dataset case sampling and region of interest biases

Our dataset may have both (i) a case sampling bias and (ii) a
region of interest sampling bias. First, there may be case
sampling bias if we typically have unusual cases that
pathologists consider worth sharing, and our cases by
necessity only come from pathologists on social media. We
plan to advocate sharing of normal tissue and less unusual
cases to circumvent this bias. Second, the pathologist who
shares the case chooses which images to share, typically
sharing images of regions of interest that best illustrate the
diagnosis, while ignoring other slides where the diagnosis is
less straightforward. In future work, we will include
whole slide images for additional context.

Dataset size and granularity

To increase the granularity and accuracy of tissue-type
predictions, we first plan to expand the size of this dataset
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by recruiting more pathologists via social media, aiming to
have representative images for each organ. There are many
organs within the gastrointestinal tissue type, for instance.
In additiony, we expect our dataset to broaden, including
more social media networks and public pathology resources
such as TCGA, with our bot integrating these data for
search and predictions.

Conclusion

We believe this is the first use of social media data for
pathology case search and the first pathology study pro-
spectively tested in full public view on social media.
Combining machine learning for search with responsive
pathologists worldwide on social media, we expect our
project to cultivate a more connected world of physicians
and improve patient care worldwide. We invite pathologists
and data scientists alike to collaborate with us to help this
nascent project grow.
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