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Abstract

Background: Alzheimer’s disease (AD) is characterized by a neurodegenerative progression that alters cognition. On a
phenotypical level, cognition is evaluated by means of the MiniMental State Examination (MMSE) and the post-morten
examination of Neurofibrillary Tangle count (NFT) helps to confirm an AD diagnostic. The MMSE evaluates different aspects
of cognition including orientation, short-term memory (retention and recall), attention and language. As there is a normal
cognitive decline with aging, and death is the final state on which NFT can be counted, the identification of brain gene
expression biomarkers from these phenotypical measures has been elusive.

Methodology/Principal Findings: We have reanalysed a microarray dataset contributed in 2004 by Blalock et al. of 31
samples corresponding to hippocampus gene expression from 22 AD subjects of varying degree of severity and 9 controls.
Instead of only relying on correlations of gene expression with the associated MMSE and NFT measures, and by using
modern bioinformatics methods based on information theory and combinatorial optimization, we uncovered a 1,372-probe
gene expression signature that presents a high-consensus with established markers of progression in AD. The signature
reveals alterations in calcium, insulin, phosphatidylinositol and wnt-signalling. Among the most correlated gene probes with
AD severity we found those linked to synaptic function, neurofilament bundle assembly and neuronal plasticity.

Conclusions/Significance: A transcription factors analysis of 1,372-probe signature reveals significant associations with the
EGR/KROX family of proteins, MAZ, and E2F1. The gene homologous of EGR1, zif268, Egr-1 or Zenk, together with other
members of the EGR family, are consolidating a key role in the neuronal plasticity in the brain. These results indicate a
degree of commonality between putative genes involved in AD and prion-induced neurodegenerative processes that
warrants further investigation.
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Introduction

Gomez Ravetti and Moscato have recently shown that the

abundance of five proteins, within a panel that also measured

other 115 cytokines and growth factors, can be used to predict the

development of clinical Alzheimer’s Disease (AD) [1]. The

biomarker molecular signature is composed of IL-1a, TNF-a,

IL-3, EGF and G-CSF and has the same level of specificity and

sensitivity as the original 18-protein signature proposed by Ray

et al. [2] in late 2007, who introduced this important dataset in the

literature. In the original work, Ray et al. had employed the

abundance of 120 signalling proteins in plasma to obtain their 18-

protein signature set. They used a training set of 83 samples to

identify patients that progressed to AD in two to six years. The

proposed 5-protein signature has an average of 96% accuracy in

predicting clinical AD but it is still linked to the joint measurement

of 120 protein abundances.

In this paper, we are revisiting the quest of finding biomarkers of

AD. However, this time we aim at finding biomarkers in

hippocampus tissue samples which would complement the results

of the previous studies on plasma biomarkers. This study will now

give a different perspective on the progression of the disease,

keeping a systems biology and functional genomics approach.

Towards this end, we have chosen to rely on an informative

experimental design and dataset contributed by Blalock et al. [3].

We believe that their dataset may help us to locate, either directly

or indirectly, other biomarkers of interest that could eventually be

detectable in plasma.

Blalock et al. analysed samples from 35 patients with four

different levels of AD severity: control, incipient, moderate and
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severe; for this paper we used only 31 samples for which

information is available online. The label assigned to each sample

(its ‘‘level of severity’’) was decided after considering two important

scores, those provided by the MiniMental State Examination (MMSE)

and the Neurofibrillary Tangle count (NFT). The MMSE score is

based on a questionnaire that aims at measuring the level of

cognitive impairment of a patient. The questions are aimed at

evaluating different aspects of cognition, such as orientation, short-

term memory (retention and recall), attention and language. A

normal score can range from 24 to 30, mild cognitive impairment

on the interval 20 to 23, moderate AD between 10 to 19, and the

rest (from 0 to 9) are all considered severe AD cases.

As previously mentioned, Blalock et al. [3] also used the NFT

score to assign a severity label to each sample. The NFT score is a

well established method for the neuropathological diagnosis of AD

[4]. The score is usually based on the average counts of

neurofibrilary tangles considering different regions of the brain.

A NFT score is a recognised indicator of AD, nevertheless, it is not

completely effective as there is evidence that NFTs were also

identified in healthy aging brains [5,6,7,8].

The analysis by Blalock et al. [3] focused on the identification of AD-

related genes (ADG) and incipient ADG (IADG) using a methodology

based on the correlation of the genes with NFT and MMSE scores. In

turn, they identified putative biological processes and signalling

pathways that are significantly present in those gene lists. Our analysis

takes a different direction. While still based on the same dataset, we are

attempting to map the progression of the disease, finding biomarkers

linked to disease severity, by identifying the genes associated with the divergence

of the gene expression profile of a sample with the gene expression average profile of the

Figure 1. This plot illustrates that the third step of our
methodology, the use of the Jensen-Shannon divergence, does
not appear to give an interesting separation of the samples in
the absence of a previous feature selection step. For this graph,
all 22,215 genes were considered in the calculation of the average
profile of the samples in the ‘‘Control’’ and ‘‘Severe AD’’ classes. The
square root of the Jensen-Shannon divergences to the ‘‘Control’’ and
‘‘Severe AD’’ average profile are computed, respectively giving, for each
sample, its x and y coordinates in this plot. Observe that most of the
‘‘Control’’ samples have values lower than 0.12, with two exceptions.
This result is expected, as the probability distribution function of the
‘‘Control’’ class was used. However, most of the samples from AD
patients (having either ‘‘Incipient AD’’, ‘‘Moderate’’ or ‘‘Severe’’ labels),
show a divergence with the Control average gene expression profile.
Figure 2 shows the important contribution provided by the feature
selection step.
doi:10.1371/journal.pone.0010153.g001

Figure 2. This plot illustrates that after application of the feature
selection steps, followed by the computation of the gene
expression profile’s average profile of the samples in the
‘‘Control’’ and ‘‘Severe AD’’ classes (now on a set of 1,372
probes), the samples are now more clearly separated. Here, all
‘‘Control’’ samples have the square root of the Jensen-Shannon divergences
to the average gene expression of the ‘‘Control’’ samples (x-coordinate)
smaller than 0.12 (almost all severe AD have x-coordinates greater than
0.15). In addition to that, most samples labelled ‘‘Severe AD’’ are located on
the same region. Both results are expected. However, it is interesting that
in this (x,y)-plot most samples that are labelled ‘‘Incipient AD’’ or
‘‘Moderate AD’’ seem to ‘‘bridge’’ between the regions that have most
of the ‘‘Control’’ samples and the region that have most of the ‘‘Severe AD’’
group. This result is interesting as no samples from ‘‘Incipient AD’’ nor
‘‘Moderate AD’’ have been used in the first three steps of our
methodology. In essence, the work is a ‘‘test set’’ indicating that it is
reasonable to expect that some genes in the genetic signature of 1,372
probes have information about a putative ‘‘progression’’ trend of the
disease, from the ‘‘Control’’ to the ‘‘Severe AD’’ profile. In what follows,
correlations across all the samples with these divergences are used as a
method to try to identify those gene profiles that are most correlated with
the progression from ‘‘Control’’ to ‘‘Severe AD’’.
doi:10.1371/journal.pone.0010153.g002

Figure 3. This plot shows the MMSE scores as a function of the
square root of the Jensen-Shannon divergences to the average
gene expression of the ‘‘Control’’ samples. ‘Incipient AD’ samples,
although having a lower value for their MMSE score, still do not show a
dramatic change in their x-coordinates compared to the ‘Control’ samples.
‘Moderate AD’ samples appear to be more scattered, with some of them
already having a significant divergence from the ‘Control’ average profile.
doi:10.1371/journal.pone.0010153.g003
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‘‘Control’’ group. Analogously, we are interested in identifying the genes

that seem to best correlate with the ‘‘convergence’’ to the average

profile of the ‘‘AD Severe’’ group of samples. The difference between

Blalock et al.’s [3] methodological approach to data analysis and ours is

very important. We aim to uncover genes that correlate with the

divergence of the gene expression profiles, instead of relying only on

correlations with the NFT and MMSE values.

Our objective is to uncover genes which are highly correlated to

the progression of the disease. With this objective in mind, we will

concentrate the first part of our analysis on the two most extremely

separated classes, the sets of samples that have been labelled as

‘‘Control’’ and those labelled ‘‘AD Severe’’. This important initial

decision was made based on the fact that the four classes are, in

some sense, arbitrarily defined as specific thresholds for the

MMSE and NFT scores that were decided ad hoc. Therefore, we

decided to first focus on the transitional patterns that can be

identified from a ‘‘normally aging’’ to an ‘‘AD-severe’’ gene

expression profile in hippocampus. With this approach, we also

avoid selecting genes that diverge from the normal-aged profile by

causes other than AD, as we expect that the severity scale in AD

has a higher probability of being correct in the ‘‘Severe AD’’ cases

(since they have high values of NFT and low MMSE scores, clearly

a joint combination highly appreciated as a disease hallmark). This

approach has an additional advantage. Using this particular

dataset and with focus on the effects of incorrect diagnoses, two

publications indentify four possible misdiagnoses between control

and incipient AD [9,10]. In our case, the samples that have been

labelled either ‘‘Incipient AD’’ or ‘‘Moderate AD’’ play the role of

a ‘‘Test set’’, as they are not used to select probes for establishing a

molecular signature, thus avoiding misdiagnoses problems.

Results

The results have been obtained using four steps in tandem: 1)

abundance quantization of gene expression values and filtering of

probes (this step is supervised by using the samples labelled either

‘‘Control’’ or ‘‘Severe AD’’); 2) a feature selection algorithm to

refine the probe selection based on numerical solution of a

combinatorial optimization problem (the (alpha,beta)-k-Feature Set

methodology); 3) a correlation analysis (that requires the

computation of Jensen-Shannon divergences). Finally, a fourth

step involves the pathway and Gene Ontology analysis of the

results.

The first two steps only used the samples labelled either

‘‘Control’’ or ‘‘Severe AD’’. The third step requires several

procedures and uses all of the samples. We first compute an

Figure 4. Correlation of the expression profiles of 1,372 probes (across samples) with the sqrtJSD of the samples of two reference
groups (‘‘Control’’ and ‘‘Severe AD’’, represented by the average expression profile in the group). The 50 probes in red are those most
distant from the origin of this system of coordinates. Those probes have expression-value variations that are correlated with the divergences of the
average ‘‘Control’’ profile and at the same time with the ‘‘Severe AD’’.
doi:10.1371/journal.pone.0010153.g004
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Table 1. For each sample, we have calculated the sample’s
Jensen-Shannon divergence with the average Control gene
expression profile.

Gene symbol Probe Spearman rank correlation

1 CSF1 211839_s_at 0.79388

2 MCL1 214057_at 0.75484

3 PSMC3IP 205956_x_at 0.74816

4 ZHX3 217367_s_at 0.74416

5 C10orf76 55662_at 0.74093

6 FCAR 211307_s_at 0.72002

7 TUBD1 210389_x_at 0.71835

8 AW974666 222365_at 0.71835

9 LRP10 201412_at 0.71079

10 SERTAD2 202656_s_at 0.70679

11 ITGB5 201125_s_at 0.7059

12 CDC2L6 212899_at 0.70412

13 RNF19A 220483_s_at 0.70367

14 TTN 208195_at 0.70278

15 DHFR 202534_x_at 0.69844

16 FYCO1 218204_s_at 0.69655

17 HBEGF 38037_at 0.69388

18 ZBTB20 205383_s_at 0.69121

19 KCNK5 219615_s_at 0.69121

20 KLHL20 204177_s_at 0.68988

21 DLG5 201681_s_at 0.68899

22 CHD2 203461_at 0.68821

23 TUG1 222244_s_at 0.68721

24 ZNF500 213641_at 0.68454

25 N58524 222332_at 0.68276

26 KIR2DL5A 211410_x_at 0.68165

27 CYBRD1 217889_s_at 0.67964

28 DLG1 217208_s_at 0.67831

29 IL15 205992_s_at 0.67731

30 RND2 214393_at 0.67508

31 TNS1 221748_s_at 0.67253

32 CTBP2 210835_s_at 0.6703

33 AL050204 213929_at 0.66852

34 YES1 202933_s_at 0.66763

35 MYBL1 213906_at 0.66719

36 No gene associated 213256_at 0.66363

37 C5orf4 48031_r_at 0.66363

38 FOXO1 202724_s_at 0.66318

39 UPF1 211168_s_at 0.66096

40 STAG3L1 221191_at 0.66007

41 SLC12A7 218066_at 0.65784

42 CYP3A4 205999_x_at 0.65695

43 KRCC1 218303_x_at 0.65562

44 P53AIP1 220402_at 0.65462

45 TLE3 212769_at 0.6535

46 ZNF669 220215_at 0.65206

47 CFLAR 214486_x_at 0.65206

48 PAK4 203154_s_at 0.65028

Gene symbol Probe Spearman rank correlation

49 M78162 217536_x_at 0.6485

50 MMP11 203876_s_at 0.6485

51 RGS7 206290_s_at 20.67475

52 ASTN1 213197_at 20.67653

53 TMSB10 217733_s_at 20.67653

54 SUPT4H1 201484_at 20.67731

55 COX6B1 201441_at 20.67742

56 WASF1 204165_at 20.67742

57 RALYL 213967_at 20.67786

58 BBS7 219688_at 20.67875

59 SEC31A 200945_s_at 20.68009

60 DDX1 201241_at 20.68009

61 RP11-336K24.9 218291_at 20.68098

62 GABBR2 209990_s_at 20.68231

63 SLC25A12 203340_s_at 20.68454

64 ATP5C1 205711_x_at 20.68587

65 NEFL 221805_at 20.68632

66 NDUFB8 201226_at 20.68854

67 OPA1 212214_at 20.69255

68 KPNA2 201088_at 20.69522

69 PPIA 211765_x_at 20.69566

70 CYP26B1 219825_at 20.69566

71 COX7AP2 217249_x_at 20.69878

72 VSNL1 203798_s_at 20.69878

73 ATP6V1D 208898_at 20.70145

74 ATP5C1 213366_x_at 20.70234

75 NRXN1 209915_s_at 20.7059

76 PCSK2 204870_s_at 20.70901

77 AI708767 211978_x_at 20.71034

78 UGCGL2 218801_at 20.71257

79 KIAA0528 212943_at 20.7139

80 SERPINI1 205352_at 20.71657

81 LZTS1 219042_at 20.71835

82 NEFM 205113_at 20.71835

83 FRY 204072_s_at 20.71924

84 CSPG5 205344_at 20.72291

85 COX6A1 200925_at 20.7277

86 COX4I1 202698_x_at 20.73037

87 KIAA0368 212428_at 20.73126

88 MYT1L 210016_at 20.73304

89 PPP3CA 202457_s_at 20.74194

90 LOC100131599 213222_at 20.74549

91 CACNG3 206384_at 20.75484

92 PPP3R1 204506_at 20.75573

93 MAN1A1 221760_at 20.75929

94 NETO2 218888_s_at 20.76819

95 LPHN1 219145_at 20.76852

96 CAPRIN2 218456_at 20.76997

97 CAMK1G 215161_at 20.77041

98 LDB2 206481_s_at 20.7802

Table 1. Cont.
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average gene expression profile for the classes ‘‘Control’’ and

‘‘Severe AD’’. This step is followed by the computation of the

square root of the Jensen-Shannon divergence [11] of the gene expression

profile of each sample with the average profiles of the classes

‘‘Control’’ and ‘‘Severe AD’’. Finally, we perform a correlation

analysis of each gene expression profile (now across all samples)

with the results of the square root of the Jensen-Shannon

divergence (we do it twice, one for the ‘‘Control’’ and the other

for the ‘‘Severe AD’’ case). With this information, and using state-

of-the-art pathway analysis and text mining tools, as a result of our

final analysis step, we provide a comprehensive list of results of the

differentially regulated genes, patterns of up (down)-regulation and

the pathways that seem to be implicated in the progression of AD.

We refer to the Methods section for a completely reproducible and

in-depth explanation of our methodology.

Probe selection and Jensen-Shannon divergence
computations based on class information

We start our analysis with a baseline comparison, which we

have chosen to include for illustrative purposes. Figure 1 provides

an example of the importance of performing an initial probe/gene

selection step. The example serves as an argument for the necessity

of the first two steps of our method. We have normalized each

individual gene expression profile, and we have computed the

average gene expression profile for classes ‘‘Control’’ and ‘‘Severe

AD’’ (following the same procedure we will use in the third step of

our method, but in this case using all probes in the array).

We have used the square root of the Jensen-Shannon

divergence of a pair of samples (a pair of gene expression profiles)

as our measure of ‘‘dissimilarity’’ between them. The square root

of the Jensen-Shannon divergence quantifies the difference

between two probability distribution functions (PDFs) and it is a

metric (we refer the reader to the Methods section for a

mathematical definition and a discussion of its properties).

Figure 1 plots the divergence of each sample with the average

expression profile of the classes ‘Control’ and ‘Severe AD’;

sqrtJSD(P, �PPC ) denotes the square root of the Jensen-Shannon

divergence between sample P and the average profile on the

‘Control’ class (�PPC). Analogously, sqrtJSD(P ,�PPS) denotes the

square root of the Jensen-Shannon divergence between sample P

and the average profile on the ‘Severe AD’ class (�PPS). The

advantage of using the probe/gene selection steps, which reduces

the number of genes to the most informative ones, will be evident

when we later compare Figure 1 with Figure 2. However, Figure 1

already shows some interesting patterns. For instance, we can

observe that a high percentage of the samples from AD patients

(having either ‘Incipient AD’, ‘Moderate’ or ‘Severe’ labels) show

sqrtJSD(P, �PPC ) values greater than 0.115, which indicates

measurable divergence with the Control average gene expression

profile.

Figure 2 presents the same procedure, but only after the feature

selection step has significantly reduced the number of probes fom

22,215 to 1,372. We refer to the Methods section for details. In

Figure 2, an arguably more coherent arrangement can be

observed. As expected, the group of control samples (in green)

have lower values of sqrtJSD(P, �PPC ) and higher values of sqrtJSD

(P, �PPS). Obviously, the opposite behaviour is observed for the

samples belonging to the severe cases. What cannot be expected,

however, is a layout of the samples that could provide evidence of

a continuous ‘‘progression’’ of the disease. The Figure shows that

the samples of ‘Incipient AD’ are close to the control group and

the ‘Moderate AD’ samples are closer to them and also link to

severe AD. A priori, since those samples had not been used for

probe selection, they could have been in any position in the

(sqrtJSD(P ,�PPC ), sqrtJSD(P, �PPS) plane.

Finally, Figure 3 presents the results of the MMSE score as a

function of the sqrtJSD(P , �PPC ), showing an inverse correlation

between them. A similar situation happens between MMSE and

sqrtJSD(P,�PPS), but in this case low MMSE scores correspond to

low values of sqrtJSD(P,Ps), giving a positive correlation. It is this

interplay between positive and negative correlations that has

enabled us to find interesting biomarkers. In the next subsection,

we explain how these correlations were used to identify probes that

‘‘diverge from’’ their values in the ‘‘Control’’ group and ‘‘converge

to’’ the values in the ‘‘Severe AD’’ group.

Gene correlation analysis
The third step employs a correlation analysis to select the group

of probes that are the most strongly correlated. Intuitively, the idea

is fairly straightforward as illustrated in the following ‘‘Gedank-

enexperiment’’ (a thought experiment). Assume, for argument’s

sake, that the MMSE of each patient P is not actually phenotypical

information assigned to each sample. Instead, assume that the

MMSE values are the microarray probe expression of some gene.

In this ‘‘thought experiment’’, let MMSE(P) be the expression of

this hypothetical gene probe on sample P, and fDataset be the set of

values it has for each sample. The correlation of the sample-

ordered set of values {MMSE(P)} with the set of sample-ordered

values {sqrtJSD(P, �PPC )} is negative, indicating that, in general, this

hypothetical MMSE probe reduces its values as the whole gene

expression profile of sample P diverges from the average

‘‘Control’’ profile (Figure 3). Analogously, there exists a positive

correlation of the set of values {MMSE(P)} with the values of the

set {sqrtJSD(P,�PPS)}. This indicates that the values of MMSE tend

to be reduced as the profile of sample P ‘‘converges to’’ the average

profile of samples in the ‘‘Severe AD’’ group. We have computed

these correlations for all probes in the signature, which are given in

the supplementary material (File S2 sheet ‘correlation Analysis’)

and are the basis for our analysis.

We also refer the reader to Figure 4, which presents the

computed correlations. Tables 1 and 2 present the one hundred

most correlated probes (in absolute values). In the supplementary

material (File S2 sheet ‘correlation Analysis’), the correlation of

each of the 1,372 probes that were selected by our method is given

(and annotated, including Affymetrix and Stanford’s Source

outputs) to facilitate further analyses.

As the objective is to detect the probes correlated with the

progression of AD, we will select those probes with high absolute

correlations values with both groups, an indication of a

Gene symbol Probe Spearman rank correlation

99 TRIM36 219736_at 20.79622

100 LDHA 200650_s_at 20.80245

These values are then correlated with the individual expression profiles of each
probe across the set of samples samples. We list here the 100 probes that have
the highest Spearman correlation (absolute value, computed over all samples)
between the expression of the probe and the square root of the Jensen-
Shannon divergence of the sample with the average Control gene expression
profile. Rows in boldface indicate the cases for which a putative relationship
exist in the published literature between the gene and AD. A probe that has a
positive correlation with the square root of the Jensen-Shannon divergence
with the average Control gene expression profile roughly indicates, in this case,
a probe that, over all samples in the set, tends to increase its expression from
their values in the ‘‘Control’’ group to the ‘‘Severe AD’’.
doi:10.1371/journal.pone.0010153.t001

Table 1. Cont.
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Table 2. List of the 100 probes with the highest Spearman
correlation (absolute value, computed over all samples)
between the expression of the probe and the square root of
the Jensen-Shannon divergence of all samples with the
average Severe AD gene expression profile.

Gene symbol Probe Spearman rank correlation

1 NEFM 205113_at 0.84472

2 NRG1 206343_s_at 0.83003

3 VSNL1 203798_s_at 0.80156

4 NEFL 221805_at 0.79889

5 SLC25A12 203340_s_at 0.79666

6 BCL11A 219497_s_at 0.79266

7 RALYL 213967_at 0.78776

8 SERPINI1 205352_at 0.78242

9 ATP2B2 204685_s_at 0.78154

10 LDB2 206481_s_at 0.7802

11 ENSA 202596_at 0.77931

12 NDUFV2 202941_at 0.77753

13 KIAA0319 206017_at 0.76418

14 ATP5C1 213366_x_at 0.7584

15 TAGLN3 204743_at 0.75617

16 SV2B 205551_at 0.75484

17 DOPEY1 213271_s_at 0.75439

18 FAR2 220615_s_at 0.75395

19 SNRK 209481_at 0.7535

20 TRIM36 219736_at 0.74994

21 NRXN1 209915_s_at 0.74772

22 PKP4 214874_at 0.74461

23 CALM3 200622_x_at 0.74149

24 PIP4K2C 218942_at 0.73971

25 CRYM 205489_at 0.73437

26 SCFD1 215548_s_at 0.73037

27 COX6A1 200925_at 0.72992

28 OPA1 212214_at 0.7277

29 ATP5C1 205711_x_at 0.72414

30 LETMD1 207170_s_at 0.71969

31 PPP2R2B 213849_s_at 0.71657

32 UQCRQ 201568_at 0.71301

33 FKBP3 218003_s_at 0.71268

34 PBX1 212148_at 0.71123

35 CACNG3 206384_at 0.71079

36 TMSB10 217733_s_at 0.70812

37 KIAA1467 213234_at 0.70812

38 INA 204465_s_at 0.7059

39 ARF5 201526_at 0.70545

40 CD200 209582_s_at 0.70456

41 CAMK1G 215161_at 0.70367

42 TUBG2 203894_at 0.70234

43 LDHA 200650_s_at 0.70189

44 LOC100131599 213222_at 0.70056

45 DIMT1L 210802_s_at 0.697

46 RGS4 204339_s_at 0.69655

Gene symbol Probe Spearman rank correlation

47 CAMKK2 212252_at 0.69611

48 BE731738 212661_x_at 0.69477

49 PPP2CA 208652_at 0.69388

50 SRD5A1 211056_s_at 0.69388

51 DMN 212730_at 20.68409

52 AW974666 222365_at 20.68721

53 SLC33A1 203164_at 20.68899

54 SYNC1 221276_s_at 20.68954

55 ITGB5 201125_s_at 20.69299

56 CNOT6 217970_s_at 20.69655

57 DYNLT1 201999_s_at 20.697

58 ZMYND8 214795_at 20.697

59 TBL1X 213400_s_at 20.69967

60 RND2 214393_a 20.70378

61 LRP10 201412_at 20.70545

62 GMPR 204187_at 20.70768

63 LTF 202018_s_at 20.70812

64 CSNK1A1 208865_at 20.70812

65 NBPF12 213612_x_at 20.70901

66 ZFP36L2 201368_at 20.70945

67 AV712577 201305_x_at 20.71212

68 FDFT1 208647_at 20.71257

69 ADARB2 220648_at 20.71301

70 CPT2 204264_at 20.7139

71 ADD3 201753_s_at 20.71524

72 37681 213256_at 20.71613

73 ITGB8 205816_at 20.71924

74 RBM19 205115_s_at 20.71969

75 HIST1H1C 209398_at 20.72058

76 NM_018612 220882_at 20.73037

77 CD68 203507_at 20.73259

78 GTF2A1L 213413_at 20.73348

79 FAM114A1 213455_at 20.73571

80 FOXO1 202724_s_at 20.73749

81 C6orf145 212923_s_at 20.73882

82 KRCC1 218303_x_at 20.74149

83 TGFBR3 204731_at 20.74372

84 ZHX3 217367_s_at 20.74594

85 TSPO 202096_s_at 20.74816

86 STAT5A 203010_at 20.74994

87 AFF1 201924_at 20.75039

88 RASL12 219167_at 20.75217

89 AL359052 214927_at 20.75528

90 ALDH3A2 202054_s_at 20.75706

91 C1S 208747_s_at 20.76062

92 AV700298 217523_at 20.76062

93 HBEGF 38037_at 20.76819

94 BG251521 213156_at 20.77086

95 ZBTB20 205383_s_at 20.77353

96 AL049443 215306_at 20.78109
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divergence of the average control profile together with a

convergence to the severe AD profile; these correlations

computed over all sample types. We need to check both groups

according to their correlations to the average profile. The first

group of probes we are interested in are those that have a positive

correlation with the sqrtJSD(P,�PPC ) and a negative correlation with

sqrtJSD(P,�PPS). The probes in this group are those probes with

under-expression in the non-disease sample but are over-

expressed in the severe AD cases. The second group has the

opposite behaviour, the probes’ expression values have a negative

correlation with sqrtJSD(P,�PPC ) and a positive correlation with

sqrtJSD(P,�PPS). This pattern can be visualised in Figure 4, where

the elliptical shape of the dispersion of the probes in this scatter

plot indicates that our methodology has preserved all the

significant probes for both classes and that there are no probes

(after the filter) presenting a high correlation simultaneously with

the control and severe AD profiles.

On these values a new selection criterion is applied, as we

wanted to identify the group of probes that have strong

correlations to both groups in absolute value. This symmetry

of our argument stems from the interest in understanding the

biology of the progression of the disease. For identifying disease

biomarkers we may just concentrate in finding the probes that

present an upregulation trend when progressing from ‘‘Control’’

to ‘‘Disease’’. However, here we would also like to identify those

probes that become increasingly downregulated, which, in turn,

would help us to identify significantly dysregulated biological

pathways (as members of the pathway will be either up or

downregulated). Towards this end, we rank the probes in the

order given by their Euclidean distance from the origin of

coordinates in Figure 4. We selected an arbitrary cut-off value of

fifty probes (the selected probes are marked in red). These fifty

probes are also identified by their Gene Symbols in Figures 5

and 6.

Calculating the distance of each probe to the origin, on the

sqrtJSD system of coordinates, we further selected the 50 most

distant probes and analysed their behaviour. Table 3 presents the

50 probes (corresponding to 48 genes), their correlation to each

group and their distance to the origin of coordinates. File S2 sheet

‘correlation Analysis’ column ‘E - Distance’ of the supplementary

Gene symbol Probe Spearman rank correlation

97 PTTG1IP 200677_at 20.78154

98 FYCO1 218204_s_at 20.78598

99 ATP6V0E1 214150_x_at 20.802

100 SERTAD2 202656_s_at 20.84338

We listed the top fifty probes with positive and negative correlation. Rows in
boldface indicate the cases for which a putative relationship exist in the
published literature between the gene and AD. A probe that has a positive
correlation with the square root of the Jensen-Shannon divergence with the
average Control gene expression profile roughly indicates a probe that, over all
samples in the set, tends to increase its expression from their values in the
‘‘Control’’ group to the ‘‘Severe AD’’.
doi:10.1371/journal.pone.0010153.t002

Table 2. Cont.

Figure 5. Zoom of Figure 4, identifying the most distant probes from the origin with negative correlation with the control profile,
d sqrtJSD P,PCð Þð Þ and positive correlation with the severe profile, d sqrtJSD P,PSð Þð Þ.
doi:10.1371/journal.pone.0010153.g005
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material presents the distance to the origin of the 1,372 probes

analysed. In Table 3, it can be seen which genes have some

putative annotation that links them to AD (17 genes out of 48).

Figure 7 shows the heat map of the 50-probe signature, where

the probes and patient samples are ordered by considering the

similarity of their gene-expression values only. It can be observed

that the Memetic Algorithm (MA), a high performance combina-

torial optimization ordering method [12] for microarray datasets

introduced in 2007, ordered most of the patients with or without

an incipient level of AD on the left and the more severe cases on

the right. When ordering the probes’ gene expression, the MA

perfectly sorted the groups previously described. We refer to

[12,13] for details of the MA. The supplementary material (File S2

‘1372 norm. +heat map+GO’) presents the heat map of the 1,372

gene-probes, with samples and probes sorted by the MA.

Transcription factors analysis of most correlated probes
The signature of 50 probes we present in Figure 7 has 48

different genes (some probes are related to the same gene). The

two repeated genes in this 50-probe list are ATP5C1 (ATP

synthase, H+ transporting, mitochondrial F1 complex, gamma

polypeptide 1) and PPIA (peptidylprolyl isomerase A (cyclophilin

A)) [14,15,16,17], a calcineurin regulatory protein. A recent study

that used RT-PCR to examine tissue from 90 AD and 81 control

human brains reports that cyclophilin is reduced in AD (both for

females and males as compared with their gender-matched groups)

[18]. We note here that the cutoff of 50 probes circumscribes the

initial description a little, but most of the later discussion uses

information from the whole signature to identify dysregulated

pathways. Figure 8 presents the heat map of the 1,372-probe

signature. The probes were sorted with the MA but the samples

remain in the same position as obtained previously with the 50-

probe signature.

We analysed this list of genes using GATHER [19], an online

tool for annotating signatures. Forty-one genes out of fifty have a

motif for EVI1 (ecotropic viral integration site 1) and thirty-nine of

them have a binding motif with V$TCF1P_Q6 (TCF1: transcrip-

tion factor 1, hepatic; LF-B1, hepatic nuclear factor (HNF1),

albumin proximal factor). The same analysis can be done if we

divide the set of genes in two groups. The first group has positive

correlation with the control profile and are overexpressed in AD;

the second group has a positive correlation with the severe profile,

and tend towards being underexpressed in AD (see Table 3).

Table 4 presents the overrepresented motifs. We note, however,

that we believe that the best results to identify putative

overrepresented regulatory motifs can be obtained using the

whole signature of 1,372 probes, and we will present the results of

this investigation after presenting the case of the most correlated

probes.

Another interesting pattern emerged when analysing the

KEGG Pathways of the 50-probe signature using GATHER

and PATHWAY Studio [20]. Using GATHER, three KEGG

Pathways appear significantly represented, Amyotrophic lateral

sclerosis (ALS), Oxidative phosphorylation and ATP synthesis.

Using PATHWAY Studio, we automatically built the ‘‘common-

regulators’’ diagram by selecting a filter that only considers protein

interactions and binding. The resulting diagram is presented in

Figure 9. As can be seen from the figure, we have chosen a circular

Figure 6. Zoom of Figure 4, identifying the most distant probes from the origin with positive correlation with the control profile,
d sqrtJSD P,PCð Þð Þ and negative correlation with the severe profile, d sqrtJSD P,PSð Þð Þ.
doi:10.1371/journal.pone.0010153.g006
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Table 3. The 50 genes most distant to the origin of the coordinates space d sqrtJSD P,PCð Þð Þ6d sqrtJSD P,PSð Þð Þ.

Probe Set ID Gene Symbol Gene Title d(sqrtJSD (P,Pc)) d(sqrtJSD (P,Ps)) Dist O Ref (ADG)

206481_s_at LDB2 LIM domain binding 2 20.7988 0.7427 1.0907

219736_at TRIM36 tripartite motif-containing 36 20.8077 0.7242 1.0848

200650_s_at LDHA lactate dehydrogenase A 20.8210 0.6984 1.0778

205113_at NEFM neurofilament, medium polypeptide
150kDa

20.7448 0.7742 1.0743 [379,649,672,673,674,
675,676,677,678,679,
680,681,682,683,684,
685,686,687,688,689,
690,691,692,693,694,
695,696,697,698,699,
700,701,702]

202656_s_at SERTAD2 SERTA domain containing 2 0.7343 20.7827 1.0732

203798_s_at VSNL1 visinin-like 1 20.7093 0.7923 1.0634 [565,566,638,641,
642,703,704,705]

205352_at SERPINI1 serpin peptidase inhibitor, clade I
(neuroserpin), member 1

20.7432 0.7496 1.0555 [706,707,708,709,
710,711,712,713,714]

217367_s_at ZHX3 zinc fingers and homeoboxes 3 0.7677 20.7129 1.0477

209915_s_at NRXN1 neurexin 1 20.7282 0.7496 1.0451

221805_at NEFL neurofilament, light polypeptide 68kDa 20.7153 0.7552 1.0402 [715,716,717]

213366_x_at ATP5C1 ATP synthase, H+ transporting, mitochondrial
F1 complex, gamma polypeptide 1

20.7302 0.7327 1.0344

203340_s_at SLC25A12 solute carrier family 25 (mitochondrial carrier,
Aralar), member 12

20.7141 0.7444 1.0315 [718]

213967_at RALYL RALY RNA binding protein-like 20.6786 0.7758 1.0307

215161_at CAMK1G calcium/calmodulin-dependent protein
kinase IG

20.7819 0.6682 1.0285

218204_s_at FYCO1 FYVE and coiled-coil domain containing 1 0.7250 20.7222 1.0233

213222_at PLCB1 phospholipase C, beta 1
(phosphoinositide-specific)

20.7694 0.6738 1.0227 [719,720,721,722,
723,724]

200925_at COX6A1 cytochrome c oxidase subunit VIa
polypeptide 1

20.7532 0.6883 1.0204

38037_at HBEGF heparin-binding EGF-like growth factor 0.7222 20.7194 1.0193 [725]

209481_at SNRK SNF related kinase 20.7048 0.7331 1.0169

201412_at LRP10 low density lipoprotein receptor-related
protein 10

0.6964 20.7399 1.0161

202941_at NDUFV2 NADH dehydrogenase (ubiquinone)
flavoprotein 2, 24kDa

20.6984 0.7379 1.0160

205383_s_at ZBTB20 zinc finger and BTB domain containing 20 0.6774 20.7569 1.0157 [726,727]

206384_at CACNG3 calcium channel, voltage-dependent,
gamma subunit 3

20.7778 0.6516 1.0147

218888_s_at NETO2 neuropilin (NRP) and tolloid (TLL)-like 2 20.7899 0.6246 1.0070

212214_at OPA1 optic atrophy 1 (autosomal dominant) 20.7194 0.7024 1.0054 [728,729,730,731,732,
733,734,735,736,737,
738,739,740,741,742]

218456_at CAPRIN2 caprin family member 2 20.7915 0.6186 1.0046

211307_s_at FCAR Fc fragment of IgA, receptor for 0.7297 20.6886 1.0033

202724_s_at FOXO1 forkhead box O1 0.6875 20.7270 1.0006 [743,744,745]

219145_at LPHN1 latrophilin 1 20.7293 0.6826 0.9989 [746]

205711_x_at ATP5C1 ATP synthase, H+ transporting, mitochondrial
F1 complex, gamma polypeptide 1

20.7153 0.6968 0.9986

55662_at C10orf76 chromosome 10 open reading frame 76 0.7632 20.6420 0.9973

211978_x_at PPIA peptidylprolyl isomerase A (cyclophilin A) 20.7363 0.6726 0.9972 [747,748,749,750]

210016_at MYT1L myelin transcription factor 1-like ///
hypothetical protein LOC100134306

20.7577 0.6395 0.9915

204072_s_at FRY furry homolog (Drosophila) 20.7456 0.6512 0.9899

219497_s_at BCL11A B-cell CLL/lymphoma 11A (zinc finger protein) 20.6843 0.7117 0.9873

201125_s_at ITGB5 integrin, beta 5 0.7323 20.6613 0.9867
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membrane layout and our previously uncovered 5-protein

signature [1] (IL1-a, TNF-a, IL-3, EGF and G-CSF) in plasma

(plus IL-6) appears to have a strong relationship with CSF1 (colony

stimulating factor 1 (macrophage)), the most positive correlated

gene with the control profile (see Table 1). It is also worth

mentioning, that CSF1 was found differentially expressed in blood

of AD and Control subjects and belongs to the 18-protein

signature uncovered by Ray et al. [2] in 2007.

Five of the 50 most correlated probes correspond to
genes already mapped to KEGGs Alzheimer’s disease
Pathway KEGG:05010 and together with LDHA they link
to impaired metabolism and the ‘‘novel glucocorticoid
hypothesis’’

We have observed that five genes, which are the most correlated

probes with our putative signature for disease severity, can be

mapped to the AD pathway of the Kyoto Encyclopaedia of Genes

KEGG:05010. They are ATP5C1, COX6A1 [21,22], NDUFV2

[23,24,25,26,27,28,29,30], PLCB1[31,32,33,34], and PPP3CA

(protein phosphatase 3 (formerly 2B), catalytic subunit, alpha

isoform), the last one also known as Calmodulin-dependent

calcineurin A subunit alpha isoform. In all cases, the probes

showed a reduction of expression with AD severity, which may

indicate a sign of impaired mitochondrial functions and energy

uptake [35,36].

In addition to these five, we observed the reduced expression of

the glycolytic enzyme LDHA, which may also indicate another

challenge for energy metabolism in these neurons. Although

glucose is generally considered to be the only substrate for brain

energy metabolism, moncarboxylates have also been hypotheised

as alternative substrates [37]. Laughton et al. report segregation in

the hippocampus, with LDHA present in astrocytes and not in

neurons. Instead, it is pyruvate dehydrogenase that is present in

neurons but not in astrocytes and as a consequence of this study

they support the argument that a metabolic compartmentalization

exists in the human cortex and hippocampus where lactate

produced by astrocytes could be oxidized by neurons [37]. We

have also observed a reduction in expression of a probe that

corresponds to PDHA1 (Pyruvate dehydrogenase (lipoamide)

alpha 1, 200980_s_at) with increasing AD severity. The reduction

of PDH expression, and the concurrent increase in pyruvate

carboxylase gene expression, was discussed by Landfield et al. [38],

who argue that: ‘‘These changes suggest that reduced pyruvate flux through

PDH and decreased oxidative metabolism of glucose may develop early in AD.

Interestingly, the inactivation of PDH is also a major pathway through which

glucocorticoid activity acts to conserve glucose, and apparently, to induce insulin

resistance [65,66]. Thus, our data are consistent with the possibility that GC

effects on this and other important target pathways in brain are enhanced in

both aging and AD. If so, such alterations in glucocorticoid efficacy may have

implications for AD pathogenesis as well as for the increased risk of AD

associated with normal aging.’’ Our results seem to indicate that

LDHA might also be discussed within the extended metabolic

pathways that serve as the basic framework of this novel, more

complex hypothesis [38,39,40,41,42,43,44,45,46,47,48,49,50,51,

52,53,54,55].

Four of the 50 most correlated gene probes are linked to
synaptic function and neurofilament bundle assembly
and also have reduced expressions with AD severity

NEFM, NRXN1, SV2B, and NEFL all have a similar pattern

of reduced gene expression with AD severity. Experiments with

mice depleted of the NEFL have been previously reported in the

Probe Set ID Gene Symbol Gene Title d(sqrtJSD (P,Pc)) d(sqrtJSD (P,Ps)) Dist O Ref (ADG)

211765_x_at PPIA peptidylprolyl isomerase A (cyclophilin A) 20.7230 0.6714 0.9866 [747,748,749,750]

214057_at MCL1 Myeloid cell leukemia sequence 1 (BCL2-related) 0.7722 20.6137 0.9864 [751]

211839_s_at CSF1 colony stimulating factor 1 (macrophage) 0.8120 20.5590 0.9858 [752,753,754,755,756,
757,758,759,760,761,
762,763,764,765,766,
767,768,769,770,771,
772,773,774,775,776,
777,778,779,780,781,
782]

205551_at SV2B synaptic vesicle glycoprotein 2B 20.6915 0.7008 0.9846 [66]

219167_at RASL12 RAS-like, family 12 0.6226 20.7605 0.9828

214393_at RND2 Rho family GTPase 2 0.7051 20.6799 0.9796

212899_at CDC2L6 cell division cycle 2-like 6 (CDK8-like) 0.7319 20.6504 0.9791

220615_s_at MLSTD1 male sterility domain containing 1 20.6665 0.7149 0.9774

201681_s_at DLG5 discs, large homolog 5 (Drosophila) 0.7093 20.6706 0.9761

208195_at TTN titin 0.7173 20.6617 0.9759 [783]

202457_s_at PPP3CA protein phosphatase 3 (formerly 2B), catalytic
subunit, alpha isoform

20.7661 0.6016 0.9741

214150_x_at ATP6V0E1 ATPase, H+ transporting, lysosomal 9kDa, V0
subunit e1

0.6230 20.7488 0.9741

204743_at TAGLN3 transgelin 3 20.6952 0.6802 0.9726

213197_at ASTN1 astrotactin 1 20.7069 0.6673 0.9721

The column ‘‘Dist O’’ shows the Euclidean distance from the origin for each gene. If the gene has a known relation with AD (ADG), the reference’s codes are display in
column ‘‘Ref ADG’’.
doi:10.1371/journal.pone.0010153.t003
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literature. Dubois et al state that this procedure: ‘‘mimics the reduced

NFL mRNA levels seen in amyotrophic lateral sclerosis and causes perikaryal

accumulation of neurofilament proteins and axonal hypotrophy in motoneurons.

NFL2/2 mice was evaluated for regional brain metabolism by means of

quantitative histochemical estimation of cytochrome oxidase activity.’’ [56].

Mutations in the NEFL gene [56,57,58,59,60,61,62] and in the

NEFM [63] have been linked to Charcot-Marie-Tooth disease.

We will discuss the loss of expression of NRXN1 (Neurexin 1)

later, when we comment on its presence in a panel of putative

genes linked to prion-induced neurodegeneration [64]. However,

we note here that both NRXN1 and NEFL appeared to be

downregulated on a transcriptional profiling study of prion

infection in mice [65].

The loss of expression of SV2B is also interesting. In 2001,

Heese et al. [66] reported ‘‘a new transcript of SV2B (SV2Bb) mRNA

that is up-regulated at mRNA level in neurons by amyloid beta peptide (Abeta)

fragment (1–42). In comparison to SV2B this new mRNA encodes for the

same protein but it has an elongated 39-untranslated region (39UTR) that

contains several AU-rich (AUR) cis-acting elements which are probably

involved in posttranscriptional regulating of SV2Bb translation. In conclusion,

alteration of SV2B(b) expression appears to be involved in processes of neuronal

degeneration’’ (see also [67]). We note that SV2B is only expressed in

vesicles that undergo calcium-regulated exocytosis [68] and is a

regulator of synaptotagmin 1 [69], which is a synaptic calcium

sensor with a role in neurotransmitter release previously studied in

AD [70,71,72,73,74,75]. We present a number of genes related to

synaptic function and neuronal plasticity which are increasingly

down/up regulated later on the manuscript and on the

supplementary material (File S3 Sheet ‘Synapse’).

Analysis of the 1,372-probe signature reveals alterations
in calcium and insulin signalling

Using GATHER, we have identified 32 genes in the Calcium

signalling pathway http://www.genome.jp/dbget-bin/show_pathway?

hsa04020 (p-value,0.009). They are ADCY2, ADORA2B, AGTR1,

ATP2A3, ATP2B1, ATP2B2, ATP2B4, AVPR1A, CALM1,

CALM3, CREBBP, GNA14, GNAS, GRM5, HTR2A, ITPR1,

ITPR2, LHCGR, NFATC1, PHKA2, PLCB1, PLCE1, PPP3CA,

PPP3R1, PRKCB1, PTAFR, SLC25A6, SLC8A2, SYK, TBXA2R,

TNNC2, and TTN. We cannot do enough justice in this manuscript to

the several different hypotheses that point at imbalances/deregulation

in calcium signalling and AD pathology. Instead, we contribute to these

interesting discussions with our findings of genes related to this pathway

within this group of 32 genes. The gene symbols in boldface can be

mapped to the KEGG Pathway hsa04080, Neuroactive ligand-receptor

interaction; those in italics can be mapped to KEGG Pathway hsa04310,

Wnt Signalling. Being aware of the existing interest on Wnt Signalling

and AD, we went back to the list of genes present in our (alpha,beta)-k-

feature set signature and we identified others that can also be linked to

Wnt signalling, like CSNK1G3, CSNK2A2, FRAT1[76,77,78,79,

Figure 7. Heat map of the 50-probe signature and the transcription factors with best p-values, for the whole set of 50 probes and
for the two groups considered. The samples and probes were sorted using the memetic algorithm given in [12], using the Euclidean distance.
The transcription factors were obtained using Chang and Nevins’ GATHER system to interpret genomic signatures [634]. The coloured cell and the
number 1 indicate that the transcription factor has a binding motif with the gene for that row. The levels of severity as defined by Blalock et al. [635]
are indicated in the first line: (0) Control, (1) Incipient AD, (2) Moderate AD and (3) Severe AD.
doi:10.1371/journal.pone.0010153.g007
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80,81,82,83,84,85,86,87,88,89], FZD5[89,90,91], MDFIC, PIAS4,

SOX2 [92,93,94,95,96], TCF7L1/TCF3[89,97,98], TCF7L2/TCF4

[99,100,101,102,103,104,105,106], and TLE3[106,107,108,109].

In addition, most of the remaining 32 genes in the Calcium

signalling pathway can be mapped to KEGG Pathway hsa04070,

Phosphatidylinositol signalling system (CALM1, CALM3, ITPR1,

ITPR2, PLCB1, PLCE1, PRKCB1), and Gap Junction (ADCY2,

GNA14, GNAS, GRM5, HTR2A, ITPR1, ITPR2, PLCB1,

PRKCB1).

This fact suggested that we should check how many genes were

mapped to these pathways. We found that Phosphatidylinositol

signalling system was indeed the third pathway with most ‘‘hits’’ in

our signature, and also with other 12 genes (CDIPT, CSNK1G3

PIK3C3, PIK3R1, PIK3R4, PI4KB, PIP5K1A, PIP5K1C,

PIP4K2C, PTEN, SKIP and TTK) which brings the total number

to 19. We have also found (CCND3, CSNK1A1, CSNK2A2,

CTBP1, CTBP2, FRAT1, FZD5, PPARD, PPP2CA, PPP2R2B,

RBX1, SMAD3, TBL1X, TCF7L1, TCF7L2, VANGL1) bringing

the total to 22 genes. We refer the reader to the supplementary

material (File S3 Sheet ‘Phosphatidylinositol signalling’) for

inspection of the individual pattern of expression of all these genes.

Together with the 20 genes mapped to the Insulin signalling

pathway KEGG hsa04910 (ACACA, CALM1, CALM3, EIF4E2,

FOXO1A, INSR [110,111,112,113,114,115,116,117], MAPK1,

PDE3A, PHKA2, PIK3R1, PIK3R4, PPP1CC, PRKAR2A,

PRKAR2B, PRKCI, RHEB, RHOQ, RPS6KB2, SKIP, and

TSC2), our results seem to give some support to the hypothesis

of altered calcium dynamics [35,118,119,120,121,122,123,124,

125,126,127], deregulation of insulin signalling [36,41,113,114,

115,116,128,129,130,131,132,133,134,135,136,137,138,139,140,

141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,

156,157,158,159,160,161,162,163,164,165] and the implication

of the Wnt pathway [166,167,168,169,170,171,172,173,174,

175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,

190,191,192,193,194,195,196,197,198,199] in AD pathogenesis.

Figures 10, 11, 12, 13, and 14 illustrate down(up)-regulation of

genes in these signalling pathways (Calcium signalling, Neuroac-

tive ligand receptor pathway, WNT, Phosphatidylinositol and

Insulin signalling, respectively). Figure 15 shows the expression of

probes corresponding to genes for which there are known

associations to synaptic function and neuronal plasticity. We refer

the reader to the supplementary material (File S3) for more

searchable information.

Transcription factors analysis of 1,372-probe signature
reveals significant associations with the EGR/KROX family
of proteins, MAZ, and E2F1

The analysis of the 1,372-probe signature indicates that they

can be linked to putative transcription factors that have been

previously implicated in AD and other neurodegenerative dis-

eases. Using GATHER, we have observed that there is a strong

association with motif V$KROX_Q6 (p-value,0.0004) with 719

out of 1294 genes in our signature; V$MAZ_Q6 (p-value,0.001,

with 1003 genes); and V$E2F1_Q6_01 and V$E2F1_Q3_01 (with

p-values which are smaller than 0.002 and 0.009 respectively). Of

the 1294 genes associated with the 1,372 probes (by GATHER),

more than half of them (656) have a motif for V$E2F1_Q6_01 and

603 have a motif for V$E2F1_Q3_01.

MAZ (MYC-associated zinc finger protein (purine-binding

transcription factor)) , also known as ZF87 and Cys2His2-type

zinc finger transcription factor serum amyloid A activating factor 1

[200], has been previously implicated in Alzheimer’s disease [201]

and as a blood biomarker in schizophrenia [202]. MAZ interacts

with DCC, the receptor for netrin-1, a neuronal survival factor

[203]. Deregulation of cyclin-dependent kinases and abnormal

patterns of E2F1 regulation have also been linked with Alzheimer’s

Figure 8. Heat map of 1,372-probe signature. The probes were
sorted using the memetic algorithm but the samples remain in the
same order than the 50-probe signature.
doi:10.1371/journal.pone.0010153.g008

Table 4. Binding factors related to two groups of genes.

Transcription
Factors Description P value

First group

V$EVI1_04 Ectopic viral integration site 1 encoded factor 0.00069

V$SMAD4_Q6 SMAD family member 4 0.0033

Second Group

V$HNF1_C Hepatic nuclear factor 1 0.0022

V$ACAAT_B Avian C-type CCAAT box 0.0015

The second group has the opposite behaviour, that is, positive correlation with
the severe profile.
The first group has positive correlation with the control profile.
doi:10.1371/journal.pone.0010153.t004
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disease [204,205,206,207,208], neurodegeneration [205,207,209,210,

211,212,213,214,215], and neuronal apoptosis [216,217,218,219,220].

The involvement of the EGR/KROX (immediate early genes)

family of proteins in the pathogenesis of Alzheimer’s disease was

first suggested in [221]. Studies of the behavioural consequences

of stress have shown a link between the activation of the

glucocorticoid receptor mediated response and EGR1, one of

the members of this family [222]. It has been recently proposed

that different members of the EGR/KROX family have dif-

ferent roles in learning and memory and cognitive functions

[223,224,225,226,227,228]. Mutant mice experiments showed

that EGR1/KROX24 is required for the consolidation of long-

term memory, while it is EGR3 the one linked to short-term

memory [229], with EGR2 having perhaps other type of

phenotypic characteristics not yet mapped [230]. In rat hippo-

campus, EGR1 decreases with aging [231]. In a recent study, it

has been shown that initial playbacks of novel songs transiently

increase EGR1 but that the observed response selectively

Figure 9. ‘Common-regulators’ 50-probes’ signature. The figure was obtained using Pathway Studio [569]. The program received as input the
50-probes displayed in Fig. 7 and automatically searched all the known putative common regulators relationships. The highlighted proteins are the 5-
protein signature (IL1- a, TNF-a, IL-3, EGF and GCSF) of [1]. We have also highlighted IL-6 (discussed in [1] in the context of results of classifiers that
also use it) and CSF1, Colony-stimulating factor 1, (macrophage).
doi:10.1371/journal.pone.0010153.g009
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Figure 10. Calcium signaling pathway. The upper graph presents the stacked normalized expression values of all the probes involved in the Calcium
signaling with an upregulation trend. The lower graph analyses the genes involved in the pathway with a downregulation tendency. In the supplementary
material (File S3 sheet ‘Calcium signalling pathway’), the reader will find all the individual gene expression values, normalised and not normalised.
doi:10.1371/journal.pone.0010153.g010
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Figure 11. Neuroactive ligand-receptor interaction pathway. The upper graph presents the stacked normalized expression values of all the
probes involved in the pathway with an upregulation trend. The lower graph analyses the genes involved in the pathway with a downregulation
tendency. In the supplementary material (File S3 sheet ‘Neuroactive ligand-receptor’), the reader will find all the individual gene expression values,
normalised and not normalised.
doi:10.1371/journal.pone.0010153.g011
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Figure 12. WNT signaling pathway. The upper graph presents the stacked normalized expression values of all the probes involved in the
pathway with an upregulation trend. The lower graph analyses the genes involved in the pathway with a downregulation tendency. In the
supplementary material (File S3 sheet ‘Wnt Signalling’), the reader will find all the individual gene expression values, normalised and not normalised.
doi:10.1371/journal.pone.0010153.g012
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Figure 13. Phosphatidylinositol signaling pathway. The upper graph presents the stacked normalized expression values of all the probes
involved in the pathway with an upregulation trend. The lower graph analyses the genes involved in the pathway with a downregulation tendency.
In the supplementary material (File S3 sheet ‘Phosphatidylinositol signalling’), the reader will find all the individual gene expression values,
normalised and not normalised.
doi:10.1371/journal.pone.0010153.g013
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habituates after repetition of the stimulus, with a different

expression profile after one day [232] (see [233] and also [234]

in which the homolog of NEFM, one of our biomarkers of reduced

expression with increasing ‘AD severity’ called NF-M, is showed to

be involved in the development and/or maturation of the oscine

song control system).

We found the following connection between EGR/KROX,

E2F1 and MAZ transcription factors that makes their concurrent

finding notable. A recent study of microRNA signature of prion-

induced neurodegeneration [64] has shown that EGR1, E2F1 and

MAZ might be also implicated in the putative deregulation of

immune response related genes by miRNAs via modulation of

transcriptional regulators in scrapie-infected mice. We leave these

findings for the next section of the manuscript where we will

discuss them and present a list of common differentially expressed

genes in these two neurodegenerative processes.

The 1,372-probe signature contains a significant number
of genes differentially expressed that are linked to
synaptic function and neuronal plasticity

The existence of several genes among the most correlated ones

(NRXN1, SV2B, NEFM, etc.,) motivated us to try to identify

which genes were present in the 1,372-probe signature that are

also related to synaptic function and neuronal plasticity. We have

identified 42 probes that can be divided into two groups, those that

seem to be increasingly downregulated with AD severity (CABP1

[235,236,237,238,239,240,241,242,243], CADPS2 [244,245,246,

247,248,249], COLQ [250], DMD [251,252,253,254,255,256],

ELOVL2 [257], FAIM2/LFG [258,259,260,261], GABBR2 [262,

263,264,265], GRIA2/GLUR2 [266,267,268,269,270,271,272,273,

274,275,276,277], ITPR1 [278,279,280,281,282,283], KIAA0528,

LZTS1/FEZ1 [284,285], NEFM, NRG1, NRXN1, NUFIP1 [286,

287,288], PPT1 [289,290,291,292,293,294,295,296,297,298,299,

300,301], PSD3, RAB3B [302,303,304,305,306,307,308,309,310,

311,312,313,314,315,316,317], RIMS2 [318,319,320,321], SHANK2

[322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,

337,338,339,340], SV2B [68,69,341,342,343,344,345,346,347,348,

349,350,351,352,353,354,355,356,357,358,359]) and those that

present an upregulation pattern (CASK [360,361,362], CDK5R1

[363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,

378,379], CHRNA1, CHRNA9, CHRNB3, CTBP2, DLG1/SAP97

[380,381,382,383,384,385,386,387,388], DLGAP2, GABRA5 [389,

390,391,392,393,394], GABRQ [395], GLRA3 [396,397,398],

GRIK3/GLUR7 [399], HOMER3 [400], ICA1 [401], ITGB1

[402,403], MCTP1 [404,405], PPP1CC [406], SNPH [407,408,

409,410,411,412,413,414], SSPN [415], SYNC1, and USH1C

[416,417,418]). The reader can consult the supplementary material

(File S2) for the individual expression patterns of these genes. If, in

agreement with Klemmer et al. [362], consider synapses as the most

complex cellular organelle, with approximately 1500 proteins

interacting in an activity dependent manner, we can argue that we

must be inclusive with our list of references to help other researchers

map the literature of their functions. Our aim is that experts can use

this information to find ways of building novel testable hypotheses of

AD neuronal plasticity impairment in the hippocampus. Our

approach here has been to map what is currently known, and link

it with the current biomedical literature, to facilitate experts that

understand processes in detail.

We have already discussed some of the increasingly downreg-

ulated genes, another important candidate for further study is

NRG1 (Neuregulin 1), a gene that has already been linked to

several neuronal diseases. It is a candidate for susceptibility to

schizophrenia and bipolar disorder (see [419,420,421,422,423,

424,425,426,427,428,429,430,431,432,433,434] and references

therein). There have been reported links of NRG1 with AD.

BACE1 (beta-Site APP-cleaving enzyme) is necessary for the

cleavage of the amyloid-beta precursor protein, and BACE1

participates in the proteolytic processing of NRG1 [435,436], and

there exists some concerns about BACE1 inhibition as a potential

therapeutic intervention due to its interaction with NRG1 and

potential effects on remyelination [437]. In particular, NRG1 has

been reported as a possible biomarker in cerebral spinal fluid,

since its levels have been reported to be significantly increased in

AD. Pankonin et al. suggest that: ‘‘While (NRG1) is not detected in

human serum, a novel neuregulin antagonist activity was identified in human

serum that could have prevented its detection. These results suggest that human

neuregulin is selectively targeted from cortical neurons to white matter

extracellular matrix where it exists in steady-state equilibrium with cerebral

spinal fluid where it has the potential to serve as a biological marker in human

neuronal disorders’’ [438]. NRG1 seems to collaborate with the

ERBB4 receptor, and Li et al. propose that together they control

glutamatergic synapse maturation and plasticity [439]. A single

nucleotide polymorphism in NRG1 has also been associated as a

risk factor to positive symptoms of psychosis in a proportion of

late-onset AD [440]. With this evidence it is clear that NGR1

[439,441,442,443,444,445,446,447] as well as the whole panel pre-

sented here are excellent candidates for further studies due to their

well supported role in synaptic function in health and disease states.

Other biomarkers of interest
We should also mention some other biomarkers that could

be interesting for further studies, including imaging purposes,

like TSPO/PBR (translocator protein (18kDa)) also known as

Mitochondrial Benzodiazepine Receptor (peripheral), thus sup-

porting its current role as a putative imaging biomarker for AD

[448,449,450,451,452,453,454,455], C1S (complement compo-

nent 1, s subcomponent) [456,457,458,459,460,461], FDFT1 (the

squalene synthase gene), which is critical for cholesterol synthesis

[462,463], BMP4 [92,96,464,465], CD68 (as marker of enhanced

lysosomal activity) [450,466,467,468,469,470,471,472], SERTAD2/

TRIP-Br2 [473,474,475], LTF (Lactotransferrin) [476,477,478],

FTL (ferritin, light polypeptide; Ferritin light chain) [479,480,

481,482], MTF1 (Metal-regulatory transcription factor 1) [483,484,

485], GSTA3 (Glutathione S-transferase A3), GSTM4 (Glutathione

S-transferase M4), MT1L (Metallothionein 1L (gene/pseudogene)

[486] (a human-specific truncated protein which may have changed

its function or suppressed it [487]), MT1H (Metallothionein 1H)

[488], MT1F (Metallothionein 1F) [488,489] (Figure 16). These last

three upregulated genes need to be put in concert with other reports

on methallothioneins in AD brains [490,491,492]. Figure 16 shows

the upregulation of Lactotransferrin, FTL (ferritin, light polypeptide;

Ferritin light chain), and the Metallothionein family with increasing

AD severity.

Other probes which present an upregulation trend that we

would like to highlight are BCL2 [493,494], FYCO1 [495,496],

PAX6 [111,497,498,499] (Figure 17), and QKI [500] (Figure 18).

Figure 14. Insulin signaling pathway. The upper graph presents the stacked normalized expression values of all the probes involved in the
pathway with an upregulation trend. The lower graph analyses the genes involved in the pathway with a downregulation tendency. In the
supplementary material (File S3 sheet ‘Insulin signalling’), the reader will find all the individual gene expression values, normalised and not
normalised.
doi:10.1371/journal.pone.0010153.g014
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The increase of expression of these probes, together with SOX2, is

intriguing as they are related to differentiation from stem cells and

are considered critical in neurogenesis [501,502,503,504,505,506,

507,508,509,510]. Our results support the combined use of them

in tracking AD progression in this tissue. In addition, we have

previously mentioned the relevance of EGR1 in coordinating a

large number of genes that seem to be differentially expressed in

this study. EGR1 also appears with a marked upregulation in

severe AD patients (we refer to the supplementary material File S2

Sheet ‘1372 norm. +heat map+GO’ for its gene expression profile).

We found that this link is very important, as the homologues of

EGR1, zif268, Egr-1 or ZENK, together with other members of

the EGR family, are consolidating a key role in the neuronal

plasticity in the brain [226,230,511,512,513,514,515,516,517,

518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,

533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,

548,549] and links with AD and cognitive decline progression are

starting to be reported [514,515,550,551,552,553,554].

At the same time, prospective studies should encompass some

other genes which appear downregulated with increasing AD

severity. Top of the list is perhaps LDB2/CLIM1 (LIM domain

binding 2), recently pointed as a marker (with LMO4 [555,556])

of the control program of the development of neuronal subtype

diversity of the cerebral cortex [557]. TRIM36 is another

interesting candidate for further studies [558]. A gene that

shares the same trend of dowregulation is CAMK1G (calcium/

calmodulin-dependent protein kinase IG) [559,560,561,562,

563,564]. When analysing prefrontal cortical tissue from mice

with inducible deletions of BDNF (Brain-derived neurotrofic

factor), Glorioso et al. employed microarray gene expression

profiling to show that there were alterations to early-immediate

genes (including EGR1) and CAMK1G [563]. They conclude

their manuscript stating that: ‘‘while altered BDNF expression may

not represent the primary disturbance in AD, changed expression of, or

altered responsiveness to BDNF (and subsequently decreased SST levels)

may represent a critical feature of Alzheimer’s disease progression.’’

VSNL1 (Visinin-like protein 1) [565], a CA++ sensor protein is

also down-regulated (see Figure 19), a finding which is paralleled

in the work of Youn et al. [566], who found similar changes in

hippocampus.

Figure 15. Genes related to synapse and neuronal plasticity. The upper graph presents the stacked normalized expression values of all the
related probes with an upregulation trend. The lower graph analyses the genes involved with a downregulation inclination. In the supplementary
material (File S3, Sheet ‘Synapse’), the reader will find all the individual gene expression values, normalised and not normalised.
doi:10.1371/journal.pone.0010153.g015

Figure 16. Metallothionein family. Stacked line graph of the probes related to the Metallothionein family in the 1372-probe signature.
doi:10.1371/journal.pone.0010153.g016
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Discussion

Putative common genes involved in Alzheimer’s disease
and prion-induced neurodegenerative processes

In late 2008, a paper was published in PLoS ONE, shortly after

the publication of our signature for prediction of clinical symptoms

of AD [1] appeared online [64]. In this other contribution, Saba

et al. present a microRNA signature of prion induced neurodegen-

eration [64]. By examination of the promoter regions of putative

microRNA targets, they found that some transcription factor

motifs were significantly enriched, E2F-1 (p-value = 6.01610214),

KROX (p-value = 9.34610214), MAZ (p-value = 2.23610211)

and PAX6 (p-value = 1.7661029). Our identification of EGR1/

KROX-24 and PAX-6 as upregulated with AD progression,

and the identification of motif V$KROX_Q6, V$MAZ_Q6,

V$E2F1_Q6_01, V$E2F1_Q3_01 as enriched in our signature

were two contributing factors that motivated us to explore any

further similarities that we could find.

In [64], an analysis of the predicted target genes of their

microRNA signature, linked with differentially expressed genes

in scrapie-infected mice [65] as well as two other publications

[567,568], led Saba et al. [64] to identify a network of de-regulated

immune response-related genes. Additionally, they identified

the putative transcription regulator genes that are targets of

miRNAs similarly de-regulated. In essence, a possible hierarchy

of deregulations of microRNAs, which, deregulated transcription

factors that then, modify 1282 target genes. A Gene Ontology

analysis also indicated that the ‘‘data sets were found to be in

the significant enrichment for genes involved in cell death, regulation of

the cell cycle, nervous system development and function and cell signalling

pathways.’’

As a consequence, we have investigated if some of the 1,282

putative target genes of the miRNA signature of prion induced

neurodegeneration also appear in our lists. Of those 1,282 genes

we immediately noticed that there were 9 genes listed in our list of

the 50 most correlated genes (Table 3). These genes are BCL11A,

CSF1, DLG5, FOXO1, HBEGF, NRXN1, SERTAD2, SNRK

and ZBTB20. Two of these genes, CSF1 (colony stimulating factor

1 (macrophage)) and HBEGF (heparin-binding EGF-like growth

factor) appear to be conspicuous mediators of cytokine and growth

factor signalling as Figure 9 illustrates (we obtained this network

using Pathway Studio [569] as described in the previous section), and

CSF1 and HBEGF seems to be increasing with AD severity. In

opposition, the probe corresponding to NRXN1 (Neurexin 1,

209915_s_at) has decreasing expression (Figure 20). Although no

connection has been found between NRXN1 and AD yet, this

gene has been implicated in autism [570,571,572,573,574,

575,576], schizophrenia [577,578,579,580,581], nicotine and

Figure 17. Stacked line graph of the probe expression of Ferritin Light Chain, Lactotransferrin, and the Methallothionein family, in
the 1,372-probe signature, that shows an increasing upregualtion with AD severity. The expression of a PAX6 probe shows increasing
upregualtion with AD severity.
doi:10.1371/journal.pone.0010153.g017
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alcoholism dependence [582,583,584], and mental retardation

[585]. SERTAD2 (SERTA domain containing 2), mentioned in

the previous section, is also known as Transcriptional regulator

interacting with the PHD-bromodomain 2, TRIP-Br2, a member

of the TRIP-Br family of transcriptional regulators, required for

the transduction of mitogenic signals and the execution of serum-

inducible E2F-mediated cell cycle progression [473]. In our data,

the probe for SERTAD2 is increasing with AD severity. It has also

been reported that overexpression of SERTAD2 is sufficient to

transform murine fibroblasts and promotes tumorigenesis in

athymic nude mice due to the deregulation of the E2F/DP-

transcriptional pathway thanks to the upregulation of the key E2F-

responsive genes [474]. FOXO1 (Forkhead box O1) also appears

upregulated with increasing AD severity, and has been reported as

a negative regulator of EGR1 expression via the activation of the

PI3K/Akt/Forkhead pathway [586]. The expression of FOXO1 is

also induced by E2F1 [587]. The product of this gene has also

been reported as a survival factor in deprivation-induced neuronal

cell death [588,589] (see also the review in [590]). Although

FOXO1 has not been previously implicated in AD, an exception

may exist. van Der Heide et al. describe in [591] how the

Forkhead transcription factors are involved in insulin signalling.

The ‘‘PI3K route’’ is a name given to common signal transduction

cascade that links neuronal survival, synaptic plasticity (and,

as a consequence, learning and memory) [592]. This ‘‘PI3K-Akt-

FOXO1 mechanism’’ and its role in neurons warrant the current

intensive investigation [593,594,595,596,597,598,599,600]. From

this group of 9 genes, seven of them (NRX1, SERTAD2, SNRK,

HBGEF, FOXO1, CSF1, BCL11A) and QKI have been pre-

dicted to be targeted by mmu-mir128 by two or more microRNA

prediction tools. We found this to be a connection that is worth

exploring. Lukiw and Pogue have reported that following

metal-induced reactive oxygen species production (by iron and

aluminium-sulfate at nanomolar concentrations) upregulates miR-

128 in human neural cells in primary culture [601]. They also

report that, together with miR-9, mir-125a, mir-128 is upregulated

in AD brain. In the previously cited reference Lukiw reported that:

‘‘miR-9, miR-124a, miR-125b, miR-128, miR-132 and miR-219 are

abundantly represented in fetal hippocampus, are differentially regulated in aged

brain, and an alteration in specific micro-RNA complexity occurs in Alzheimer

hippocampus.’’

The expression of probes corresponding to PP2A and PP2B

catalytic subunits (i.e. PPP2CA, Protein phosphatase 2 (formerly

2A), catalytic subunit, alpha isoform, and PPP3CA, Protein

phosphatase 3 (formerly 2B), catalytic subunit, alpha isoform,

Calcineurin A1) shows increasing downregualtion with the

progression of AD., see Figure 21. This finding supports a

role for downregulation of PPP2CA, PPP3CA in AD pathology

[619–647].

Finally, in addition to the presence of hyperphosphorylated tau,

the accumulation of Amyloid-beta (Abeta) peptide in brain tissue is a

hallmark of AD [602]. The identification of the genes involved in

Figure 18. The expression of a QKI probe, like PAX6, also shows increasing upregualtion with AD severity.
doi:10.1371/journal.pone.0010153.g018
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the proteolytic processing of APP (beta-amyloid precursor protein),

which in turn produces Abeta, is a subject of intense research.

Researchers are currently looking at the alterations of APP cellular

localization and endocytic trafficking as one mechanism that can

modify the processing of APP to Abeta. LRPs are known to regulate

APP’s endocytic trafficking [603,604,605,606], and seem to be a

hub of a number of mounting evidences on processes that link to

cholesterol metabolism and atherosclerosis [607]. In our selected

panel of 50 proteins we have one member of this family, LRP10 (low

density lipoprotein receptor-related protein 10), as one of the most

correlated gene expression profiles. In our list of 1372 gene probe

signature we also have another member of this family, LRP1B (low

density lipoprotein-related protein 1B (deleted in tumors))[608],

While LRP10 appears to be positively upregulated with cognitive

decline an inverse relationship is observed for LRP1B.

LRPs are also known to linked to APP via a mechanism that

involves the alternative splicing of APBB3/Fe65L2 [609,610,611].

Tanahashi and Tabira have proposed that the splicing of APBB3/

Fe65L2 alters the ability to bind with APP and low-density-

lipoprotein-receptor-related protein. They propose that the

secretion of beta-amyloid peptide Abeta40 and Abeta42 is

increased following the overexpression of APBB3, but there are

no visible changes of half-life and maturation of APP, or the

secretion of secreted APP [612]. In our dataset, we observe APBB3

expression being upregulated with the increasing cognitive decline,

following the same pattern of LRP10.

Polymorphisms on these genes have previously been linked to

AD. Tanahashi, Asada and Tabira have reported an association

between a polymorphism in APBB3/Fe65L2 and early-onset AD

[612] (the link between APBB3 and AD is being increasingly

explored, we refer to [613,614,615,616] for further references).

Using 500K SNP microarray technology, Poduslo, Huang and

Spiro have identified haplotypes in LRP1B as significant for

successful aging without cognitive decline in a study involving

individuals that were 85 years old or older, had MMSE scores

greater than 26, no history of dementia in their families, and no

major illnesses (i.e. no cardiovascular problems, diabetes, obesity, or

major cancer diseases) and most of them had normal cholesterol

levels. Their genome-wide association screening compared these

individuals with those that have late-onset AD [617]. Poduslo et al.

have suggested that if the decreased production of Abeta42 in

successful aging is due to the haplotypes they describe, then LRP1B

may be a new target for treatment of AD [608,617], Taken to-

gether these results indicate that integrative bioinformatics analytic

Figure 19. The expression of a probe for VSNL1 (Visinin-like protein-1) shows increasing downregualtion with AD severity. VSNL1, a
neuronal calcium sensor that has received recent attention in AD [636,637,638,639] has also been linked to model systems of schizophrenia, where it
has been found upregulated in hippocampus [640]. A previous result by Schnurra et al. raised the possibility that the redution of VSNL1 expressing
neurons indicate a selective vulnerabilty of these cells, since they observed that VSNL1 expression enhanced hyperphosphorylation of tau protein (in
contrast with nontransfected or calbindin-D28K-transfected cells) [641]. In 2001, Braunewell et al. had already reported the reduction of VSNL1-
immunoactive neurons in the temporal cortex of AD patients as compared with controls [642].
doi:10.1371/journal.pone.0010153.g019
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approaches will be needed to elicit the interactome of LRPs and

their role in AD.

Conclusions
This re-analysis of the microarray dataset hippocampal gene

expression contributed by Blalock et al. has shown that there exist a

relatively large number of probes (1,372) that present a clear

pattern of either up or down regulation with increasing AD

severity. The signature reveals alterations in calcium, insulin,

phosphatidylinositol and Wnt-signalling. Among the group of most

correlated gene probes with AD severity we found some linked

to synaptic function, neurofilament bundle assembly, neuronal

plasticity and inflammation.

A transcription factors analysis of 1,372-probe gene expression

signature reveals significant associations with the EGR/KROX

family of proteins, MAZ, and E2F1. The gene homologous of

EGR1, zif268, Egr-1 or ZENK, together with other members of

the EGR family, are consolidating as key players in short and long-

term memory and neuronal plasticity in the brain. We have also

uncovered a large consensus of this gene expression signature with

current genes putatively involved in AD progression. Our results

also indicate a degree of commonality between putative genes

involved in AD and prion-induced neurodegenerative processes

that warrants further investigation.

Materials and Methods

Dataset
In this contribution, we have used a MIAME compliant,

Affymetrix gene expression dataset that is public available and was

contributed by Blalock et al [3] in 2004. We thank the authors of

that publication for making this useful dataset available to the

research community at large allowing further exploration and

reanalysis.

The dataset is available from GEO Dataset Browser, accession

number GDS1297 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE1297). The Affymetrix human GeneChip, HG-

U133A, containing 22,283 targets was used. The dataset is de-

identified and the methods for disease classification, based on

MMSE and NFT scores, are described in full detail by Blalock et al.

in Ref. [3].

The hippocampal samples used by Blalock et al. were obtained

from the autopsy of 31 subjects through the Brain Bank of the

University of Kentucky Alzheimer’s Disease Research Center

(ADRC), Sanders-Brown Center on Aging, University of Ken-

tucky. The ADRC was established in 1985 and in operation since

1989 a pool of research volunteers that have agreed in principle to

be research participants. Participants were asked questions based

on NINCDS/ADRDA criteria [618] to establish their physical

Figure 20. It is possible to observe that one of the probes for NRXN1 (Neurexin 1, 209915_s_at) has decreasing expression with
increasing AD severity. We have found no previous evidence of a connection of NRXN1 and AD, but this gene has been previously implicated in
autism [570,571,572,573,574,575,576], schizophrenia [577,578,579,580,581], nicotine and alcoholism dependence [582,583,584], and mental
retardation [585].
doi:10.1371/journal.pone.0010153.g020
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and mental condition to determine if their were eligible for the

study. When a mutual agreement existed, the individuals were

visted in their homes to review and sign the informed-consent

document (which was approved by the University of Kentucky

Institutional Review Board). Participants also signed a donor card,

and the visit also aimed to establish their baseline mental-status

testing. Elegibility for the purpose of the study included having a

Mini-Mental State Exam score above 24 [619], passing a series of

cognitive tests, and a previous history of absence of neurological

disease [620], as well as neither substance abuse nor major

psychiatric illnesses. All eligible volunteers were 60 years of age or

older and satisfactorily performed normal activities of daily living.

The Wechsler Adult Intelligence Scale (Vocabulary) was also

applied to exclude significant other medical diseases that could

affect cognition and elegible participants must had no previous

history of head injury with loss of consciousness.

The research participants that were deemed eligible also signed

a form (in addition to the consent document) indicating their

agreement to donate their brain to the Sanders-Brown Center on

Aging. A full description of the methods used can be found in

Brain Donation in Normal Aging Procedures, Motivations, and

Donor Characteristics from the Biologically Resilient Adults in

Neurological Studies (BRAiNS) Project [621].

Blalock et al. [3] categorized the samples in four groups, with a

labelling that indicates different ‘‘levels of severity’’. These labels

were decided based on the MiniMental State Examination (MMSE)

and the Neurofibrillary Tangle count (NFT) of each sample [622].

Samples are then separated in the types ‘Control’, ‘Incipient AD’,

‘Moderate AD’ and ‘Severe AD’. Table 1 of Blalock et al. shows

the mean values of MMSE and NFT for each one of these groups.

In addition, they give the mean Braak stage [623,624,625] for

each one of the groups (2.1 for ‘Control’, 5 for ‘Incipient’, 5.6 for

‘Moderate’ and 5.9 for ‘Severe’). We are grateful to Dr. Blalock

who has kindly given us these values of the Braak stage for each

sample in the dataset. Together with the individual values of

MMSE, NFT, the Braak stage of each sample is included in the

Supplementary Material (File S2 sheet ‘Braak’) section of this

publication.

Methodology
Our analysis method consisted of four steps: abundance

quantization and filtering of probes; a feature selection algorithm

to refine the probe selection; a Jensen-Shannon divergence

computation; and finally, a correlation analysis. Each of these

steps is described below.

As mentioned in the Results section, we only used the samples

labelled as ‘‘Control’’ or ‘‘Severe AD’’ for feature selection, thus

we have a two-class probe/gene selection task. We did not use the

samples labelled as ‘‘Incipient AD’’ or ‘‘Moderate AD’’ for the

probe selection steps. Those samples were only used in the final

step, at the time of computing the correlation of the gene profile,

across all samples, with the Jensen-Shannon divergences computed

for the ‘‘Control’’ and ‘‘Severe’’ classes as explained later in this

section.

For the first step, the quantization of the expression values, as

well as for the initial data pruning, we used Fayyad and Irani’s

algorithm [626]. The heuristic algorithm minimises the feature-

class entropy and discards genes according to the Minimum

Description Length principle. The application of Fayyad and

Irani’s algorithm not only filters several thousand genes, it also

provides thresholds for each probe remaining in the dataset. These

quantized values of gene expression leave us with an instance of a

combinatorial optimization problem, the (a, b)-k-Feature Set problem

[13,627,628].

The (a, b)-k-Feature Set problem is a combinatorial optimisation

problem introduced by Cotta, Sloper and Moscato[628] in 2004

to address the problem of feature selection in high-dimensional

datasets. We solve an instance of this problem numerically using

an integer programming formulation. This approach has been

previously employed to obtain molecular biomarker signatures in

Alzheimer’s Disease [1,629], models of Parkinson disease [630],

prostate cancer [631], electrode selection in EEGs [632], and

elsewhere. To obtain mathematically proven optimal solutions of

the integer programming formulation, the CPLEX commercial

optimization solver was used. As in previous contributions of our

group, we found gene expression signatures corresponding to

values of a maximum and b maximal [1,13,627,628,633]. We

refer the reader to these previous contributions for a detailed

explanation of the methodology.

At this point, we have a selection of 1,372 probes, a set

which we denote as V. For each sample m and probe i [ V, let

fim be its expression value. We now define a probability distribu-

tion function (PDF) for each sample. For sample, m its PDF

P(m)~ pi
(m),Vi [ V

� �
, is given by

pi
(m)~

fimP
i [ V fim

We can now compute an average PDF profile for samples in the

‘‘Control’’ and ‘‘Severe AD’’ groups, denoted by PC and PS

respectively. Let C and S be the set of samples with the labels

‘‘Control’’ and ‘‘Severe AD’’ respectively. The average profile

Pc~f�ppi
(c),Vi [ Vg, is then:

�ppi
(C)~

�ff i

(C)

P
j [ V

�ff j

(C)
,Vi [ V,

where

�ffi
(C)

~
1

NC

X
m [ C

fim,Vi [ V,

where NC represents the number of samples in class C. �PPS is

analogously defined.

The Jensen-Shannon divergence between two sample PDFs, i.e.

samples l and k (P(l) and P(k)) is defined as

JSD P(l),P(k)
� �

~S
P(l)zP(k)

2

� �
{

S P(l)
� �

2
{

S P(k)
� �

2

where

Figure 21. The expression of two probes for PPP2CA (Protein phosphatase 2 (formerly 2A), catalytic subunit, alpha isoform,) and
PPP3CA (Protein phosphatase 3 (formerly 2B), catalytic subunit, alpha isoform, Calcineurin A1) show increasing downregualtion
with AD severity. A similar plot exists for PPP3R1 (protein phosphatase 3 (formerly 2B), regulatory subunit B, alpha isoform, Calcineurin subunit B
type 1). This result supports a role for downregulation of PPP2CA, PPP3CA in AD pathology [643,644,645,646,647,648,649,650,651,652,653,654,655,
656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671].
doi:10.1371/journal.pone.0010153.g021
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S P½ �~{
XN

i~1

Pi
: ln Pið Þ

S[P] is the Shannon Entropy for a specific PDF sample with N states.

It is well known that the square root of the JSD (sqrtJSD) is a

metric, which means that for a given set of PDFs the following four

properties are satisfied:

i. sqrtJSD P(l),P(k)
� 	

§0,

ii. sqrtJSD P(l),P(k)
� 	

~sqrtJSD P(k),P(l)
� 	

,

iii. sqrtJSD P(l),P(k)
� 	

~0uP(l)~P(k),

iv. sqrtJSD P(l),P(k)
� 	

zsqrtJSD P(k),P(m)
� 	

§sqrtJSD P(l),P(m)
� 	

:

Once the sqrtJSD between each patient and the two average

profiles (�PPC and �PPS ) has been computed, the genes most correlated

with these metrics can be uncovered. We used the Spearman rank

correlation, which is a well-known non-parametric method, and

can thus be used even when the data does not satisfy assumptions

about normality, homoscedasticity and linearity.

Supplementary Material
Supplementary ‘File S1’ provides a glossary of each gene

referenced in this paper including synoms and refrences to iHOP

(http://www.ihop-net.org/).

The results referenced in this manuscript are provided in

supplementary ‘File S2’ and ‘File S3’ in Microsoft Excel format.

Supporting Information

File S1 IHop Glossary of Genes.

Found at: doi:10.1371/journal.pone.0010153.s001 (0.15 MB

DOC)

File S2 Supplementary Data 1.

Found at: doi:10.1371/journal.pone.0010153.s002 (4.10 MB

XLS)

File S3 Supplementary Data 2.

Found at: doi:10.1371/journal.pone.0010153.s003 (1.26 MB

XLS)
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