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Abstract

Hepatitis C virus infection is one of the most common and chronic in the world, and

hepatitis associated with HCV infection is a major risk factor for the development of

cirrhosis and hepatocellular carcinoma (HCC). The rapidly growing number of viral-

host and host protein-protein interactions is enabling more and more reliable

network-based analyses of viral infection supported by omics data. The study of

molecular interaction networks helps to elucidate the mechanistic pathways linking

HCV molecular activities and the host response that modulates the stepwise

hepatocarcinogenic process from preneoplastic lesions (cirrhosis and dysplasia) to

HCC. Simulating the impact of HCV-host molecular interactions throughout the host

protein-protein interaction (PPI) network, we ranked the host proteins in relation to

their network proximity to viral targets. We observed that the set of proteins in the

neighborhood of HCV targets in the host interactome is enriched in key players of

the host response to HCV infection. In opposition to HCV targets, subnetworks of

proteins in network proximity to HCV targets are significantly enriched in proteins

reported as differentially expressed in preneoplastic and neoplastic liver samples

by two independent studies. Using multi-objective optimization, we extracted

subnetworks that are simultaneously ‘‘guilt-by-association’’ with HCV proteins and

enriched in proteins differentially expressed. These subnetworks contain

established, recently proposed and novel candidate proteins for the regulation of

the mechanisms of liver cells response to chronic HCV infection.
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Introduction

Hepatitis C virus (HCV) infection is one of the most common chronic viral

infections in the world and hepatocellular carcinoma (HCC) is the third-leading

cause of cancer death worldwide. Chronic infection with HCV is the primary risk

factor for developing HCC [1] but the sustained viral response in the treatment of

HCV is associated with HCC reduction among treated population [2].

HCV is an enveloped, positive-stranded RNA virus belonging to the

Flaviviridae family. Six major HCV genotypes and more than 100 subtypes have

been identified. HCV is able to establish a chronic infection in 50–80% of exposed

individuals and its infection largely follows a clinical course that after decades may

result in liver fibrosis and cirrhosis in a subset of infected patients. HCV has a

RNA genome of 9.6 kb translated into a unique polyprotein, which is

subsequently processed by host and viral proteases into 10 proteins: three

structural proteins, core, envelope (E) 1 and E2, and seven non-structural (NS)

proteins p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B. HCV proteins have been

shown to interact with well-established cellular pathways, known to be involved in

HCC initiation or progression: cell proliferation and differentiation involving

epidermal growth factor (EGF) signaling pathway, Ras and Jak/STAT signaling

pathway, PI3K-Akt pathway, wnt/-catenin signaling pathway, inflammation with

NF-kB pathway, angiogenesis with the VEGF pathways, DNA damage response

pathways with mitochondrial oxidative stress and ATM pathway [3–4]. Although

the role of HCV in the onset of HCC is established, there is still the need for a

systematic characterization of viral and host factors that can modulate the

stepwise hepatocarcinogenic process from preneoplastic lesions (cirrhosis and

dysplasia) to the neoplastic stages of HCC.

The increase of publicly available molecular interaction data, e.g. protein-

protein interactions (PPIs), has enabled genome wide analyses of the activity of

single units (e.g. gene expression studies) in the framework of the molecular

interaction networks that regulate cell dynamics. Network-based approaches offer

the possibility to address the analysis of biological systems taking into account

that most of the biological functions arise from interactions among many

components. Several studies have shown that network-based approaches lead to

the identification of more robust markers and better stratifications of samples

[5–6]. These approaches have also been used for studying the pathogenesis of

HCV infection and its relation with HCC. For example, Drozdov et al. [7] defined

a consensus gene relevance network for HCC progression; Zheng et al. [8]

reconstructed stage-specific networks of PPIs enriched in differentially expressed

genes during the progression from normal to HCV-induced HCC; He et al. [9]

reconstructed stage-specific, deregulated networks of protein-protein and

transcriptional regulatory interactions; Mukhopadhyay et al. [10] proposed

infection gateway host proteins and possible pathways of HCV pathogenesis

leading to various diseases.

However, it is still not clear whether acute and chronic effects of HCV activity

can be explained according to a local impact hypothesis [11], i.e. in network
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proximity to host proteins targeted by viral proteins (HCV targets). Recently,

using Epstein-Barr virus (EBV) and human papillomavirus (HPV), Gulbahce et al.

(2012) have shown that host targets of viral proteins reside in network proximity

to products of disease susceptibility genes and that the large proportion of the

effect related to viral activity can be explained locally in intracellular networks

[11]. In our study, we developed a computational approach to examine the

relation between HCV targets, host protein-protein interaction (PPI) topology,

pathways that regulate HCV response and the expression variations observed in

samples collected from preneoplastic (cirrhotic, shortly ‘‘CIR’’) and neoplastic

(hepatocellular carcinoma, shortly ‘‘HCC’’) liver lesions of HCV-infected patients

of two independent studies.

In order to define the region of the host interactome where HCV proteins could

determine the most relevant impact, we use network propagation [12], a

technique that permits to establish a ranking among all the proteins of a PPI

network in relation to their location relative to a subset of proteins. Network

propagation can be seen as the diffusion of information from a subset of vertexes

to all the others according to graph topology. Recently, network propagation has

revealed its benefits in different problems, such as the association of genes and

protein complexes with diseases [12], the stratification of tumor mutations [13],

the identification of biomarkers in genome-wide studies [14, 15] and the relation

between viral (EBV and HPV) perturbations and disease etiology [11]. We

describe the use of network propagation for predicting the host proteins that are

in a relevant position of the PPI network on the basis of HCV-host interactions

and show that network propagation successfully prioritizes proteins that are

involved in the host response to HCV. Subsequently, we show that networks of

proteins ‘‘guilt-by-association’’ with HCV are significantly enriched in genes

differentially expressed in cirrhotic (CIR) liver samples compared to normal

(NORM) liver samples and in hepatocellular carcinoma (HCC) compared to CIR

liver samples. These subnetworks contain established, recently proposed and novel

candidate proteins for the regulation of the mechanisms of host response to acute

and chronic HCV infection.

Results and Discussion

Viral-host and host protein-protein interaction data

We collected HCV-host PPIs from several systematic high-throughput screenings

[16–18], the HCVPro database [19], the Host-Pathogen Interaction Database

(HPIDB) [20], Intact [21] and VirHostNet [22]. These interactions were assessed

through text mining and several experimental techniques, such as high-

throughput yeast two-hybrid screens, 2-DE/Mass Spectrometry, affinity

chromatography, coimmunoprecipitation, competition binding experiment,

confocal microscopy, western blot, immunoblotting, metabolic labeling, muta-

tional analysis, GST pull-down technique. We integrated the different datasets and
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obtained a list of 591 unique human proteins, shortly HCV targets, which interact

with viral proteins.

We defined the human PPI network using only ‘‘high confidence’’ protein-

protein pairs available in the STRING database [23]. A total of 517 HCV targets

establish at least one PPI in the host interactome (Tab. S1).

Identification of human proteins in network proximity to HCV

targets

We simulated the effects of HCV-host interactions throughout the molecular

interaction network of the host cell to define the region of the host interactome

that regulates the chain of events following the interaction between viral and host

proteins. We considered the 517 HCV targets as causal proteins for studying the

diffusion of the effects of HCV-host interactions, and used network propagation

[12] to rank all the other proteins in relation to their network proximity to HCV

targets in the PPI network. For each protein we obtained a score si of network

proximity to HCV targets: a short distance (number of links of the shortest path

connecting two proteins) between a protein and any HCV target in the network (

Fig. 1A) and a high number of interactions (degree) (Fig. 1B) are the two main

factors that determine a high si. Hence, network propagation gives a high rank to

HCV targets and hubs (proteins with a high degree) of the PPI network (Tab. S1).

To summarize the results of network propagation in a meaningful and

interpretable network representation, we used the so-called minimum spanning

tree (MST), i.e. the tree that connects all the vertexes using the edges that

determine the minimum sum of edge weights. Thus, by means of the definition of

edge weights, it is possible to obtain MSTs that highlight different biological

aspects. For example, defining edge weights as function of si, the MST summarizes

the relationships between proteins in network proximity to HCV targets. Note

that, this type of MST clearly shows that hubs of the PPI network known to be

relevant in HCV response (e.g. TP53, TNF, AKT1, SRC, FN1, NFKB1, MYC and

EGFR) receive a high si (Fig. 2, panels A and B).

In order to assess whether the scores of network proximity to HCV are

specifically related to HCV targets, we repeated 1,000 times the network

propagation procedure, each time using as source of information a different set of

517 proteins randomly sampled among all the host proteins. Therefore, we

obtained 1,000 random network proximity scores for each protein. At this point,

we calculated, for each protein, the probability pi of obtaining, by chance, a

network proximity score higher than the one obtained using the 517 HCV targets

as sources of information. If pi is low, then the si of the corresponding protein is

specifically related to HCV targets.

HCV targets that are hubs of the host interactome, like AKT1, TP53, TNF and

FN1, received the most significant p-values (Fig. 3, red circles). Besides HCV

targets, among the top ranked proteins, for example, we found BIRC5, KRAS,

IFNA1 and TERT, which have well defined associations with HCV infection and

propagation [24–27] (Fig. 3, black circles). Others, like CACTIN, TMED and
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Figure 1. The network proximity score of a protein depends on network distance from viral targets and
protein degree. A) Boxplots of network proximity scores (log10, vertical axis) grouped by viral-host protein
network distance (horizontal axis). B) Network proximity scores (log10, vertical axis) distributed by protein
degree (horizontal axis); colors indicate viral-host protein network distance.

doi:10.1371/journal.pone.0113660.g001

Figure 2. Most relevant relationships between proteins in network proximity to HCV proteins. MSTs among the (A) 100 proteins with the highest
network proximity score (si) and (B) 100 proteins with the highest si excluding HCV targets, using edge weights (wij) inversely proportional to the product of
proteins network proximity scores: wij51 - sisj. A–B) The darker the color, the higher the network proximity score; squares: HCV targets; circles: non-HCV
targets; vertex size is proportional to the number of interactions in the host interactome.

doi:10.1371/journal.pone.0113660.g002
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CRTAC have not yet been clearly associated with HCV, but considering the

significance of their network proximity to HCV targets these proteins may

represent other players in the complex network that is involved in the response to

HCV infection.

The two possible rankings, obtained by network proximity scores or p-values,

have a strong overlap, which is maximal when considering the top 1,500 proteins

of the two lists (Fig. S1). Note that proteins highly ranked according to network

proximity scores are of biological interest despite their possible lower ranks when

ordered by p-values, because high network proximity scores may indicate

important gateways in the PPI network.

The biological significance of the proteins in network proximity to HCV has

been further evaluated considering published lists of proteins that mediate host

Figure 3. Top ranked proteins in network proximity to HCV targets. The top ranked 1,500 proteins by
network proximity score si (on the right of the dotted vertical line) or p-values (above the dotted horizontal line);
red: HCV targets; black: non-HCV targets; point size is proportional to the number of interactions; labels
indicate the top 10 of each ranking.

doi:10.1371/journal.pone.0113660.g003
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response to early and chronic HCV infection and HCC. The lists of proteins

identified in this study show significant overlaps (p,,0.05) with HCC specific

co-expression network [7], stage-specific differentially expressed networks in the

progression of HCV induced HCC [8], proteins found in at least 20 papers related

to HCV induced cirrhosis and HCC, and Hepatitis C associated genes according

to the database DisGeNet [28] (Tab. 1, Tab. S2). Note that the significance of the

overlaps is not affected by the exclusion of HCV targets, which occur in all the lists

(Tab. 1). These overlaps suggest that key players of early and chronic processes

that are induced by HCV infection lie in network proximity to HCV targets and

can be predicted using currently available PPI data.

Transcriptional variation in preneoplastic and neoplastic liver

samples

The transcriptional response in different phases of the HCV-dependent hepatic

disease (cirrhosis and hepatocellular carcinoma) is an important aspect for joint

investigation with the viral-host PPI network. To clearly understand biological

mechanisms involved and altered during the different stages of hepatic disease, we

focused on two gene expression datasets collected from the Gene Expression

Omnibus (GEO) database [29] that are comparable in terms of histological

characteristics (normal, cirrhotic and neoplastic tissues), viral infections (HCV)

and microarray platform used. The dataset GSE6764 [30] includes 75 samples

from cirrhotic and neoplastic livers of 38 HCV-infected patients and healthy livers

of 10 patients. The dataset GSE14323 [31] includes 108 samples from cirrhotic,

neoplastic and normal tissues from 88 HCV-infected patients and 19 HCV

seronegative patients.

To increase the reliability of gene expression variation in cirrhosis and HCC, we

considered the differentially expressed (DE) genes in common between the two

datasets as representatives for each state. In summary, the genes differentially

expressed in the same direction (up- or down-regulation) in both the datasets

considering CIR-NORM and HCC-CIR comparisons are respectively 484 and 776

(Fig. 4).

We evaluated the functional enrichment of the genes DE in both datasets to

identify over-represented pathways (Tab. 2). The most abundant pathways found

for the CIR-NORM contrast are related to the virus entrance into the host cell and

the consequent signaling involved in both innate and adaptive inflammatory host

defenses, as expected when an infection occurs [26, 32]. Moreover, we found the

ECM-receptor interaction pathway, which is related to tissue and organ

morphogenesis and associated with the maintenance of cell/tissue structure and

function, as expected for the liver tissue going from normal to cirrhotic/fibrotic

tissue. Nevertheless, already in this early phase we found one pathway involved in

cancer (small lung cancer). The HCC-CIR contrast is mostly characterized by

cancer-related pathways, with a significant number of genes involved in p53

signaling pathways and cell cycle. The cytokine-cytokine receptor interaction is a

pathway highly represented in HCC-CIR showing that the innate/adaptive
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inflammatory host defenses is still on-going and that processes like cell growth,

differentiation, angiogenesis are required for the neoplastic transformation.

Expression variation in network proximity to HCV targets

In order to elucidate possible mechanistic relations linking HCV activity and the

host response in terms of the gene expression variations observed in the

subsequent liver lesions, we jointly analyzed human proteins for (i) the proximity

to HCV targets and (ii) expression variation.

Table 1. Proteins in network proximity to HCV targets are highly enriched with lists of proteins proposed as regulators of host response to HCVand involved
in HCC.

Source Description Ranking by

p s p s

with HCV targets without HCV targets

Drozdov et al. [7] Consensus network for HCC 26.96 210.1 25.13 213.46

Zheng et al. [8] Network of genes diff. expr. in CIR-NORM 26.40 27.86 25.66 27.10

Zheng et al. [8] Network of genes diff. expr. in DYS-CIR 27.93 211.8 211.4 210.3

Zheng et al. [8] Network of genes diff. expr. in eHCC-DYS 29.29 27.77 28.92 29.73

Zheng et al. [8] Network of genes diff. expr. in aHCC-eHCC 29.41 28.67 211.6 214.2

ProteinQuest [65] Genes associated with HCV and CIR 27.97 218.3 28.28 210.6

ProteinQuest [65] Genes associated with HCV and HCC 212.78 218.2 26.66 27.67

DisgeNet [28] Genes associated with Hepatitis C 248.4 275.2 236.2 252.3

DisgeNet [28] Genes associated with chronic Hepatitis C 248.4 275.2 236.2 252.3

The table lists the log10 of the p-values that estimate the probability of obtaining, by chance (hypergeometric test), the observed overlap between the list of
proteins from the literature (source and description, Tab. S2) and the top ranked 1,500 proteins in network proximity to HCV on the basis of si or pi, including
or excluding HCV targets; NORM 5 normal, CIR 5 cirrhosis, DYS 5 dysplasia, eHCC 5 early HCC, aHCC 5 advanced HCC.

doi:10.1371/journal.pone.0113660.t001

Figure 4. Venn diagram of the common DE genes for CIR-NORM and HCC-CIR contrasts. The number of DE genes is shown for each dataset (D1 and
D2) for the two contrasts. The CIR-NORM and HCC-CIR contrasts show respectively 484 and 776 common DE genes between D1 and D2. The number of
DE genes depends on the platform used for the microarray experiments.

doi:10.1371/journal.pone.0113660.g004

Network Proximity to HCV Targets and Host Expression Variations

PLOS ONE | DOI:10.1371/journal.pone.0113660 December 2, 2014 8 / 22



Initially, we assessed the significance of the overlap between the set of HCV

targets and the sets of genes differentially expressed between normal, cirrhotic and

HCC liver samples in the two studies of Wurmbach et al. [30] and Mas et al. [31].

We observed a small overlap, indicating that viral targets, as a whole, display a

marginally significant differential expression in the considered pathological states

(Tab. 3).

Hence, to study the gene expression variation in the local neighborhood of

HCV targets, we extracted subnetworks of PPIs in network proximity to HCV

targets and enriched in differentially expressed genes. Specifically, for each of the

two comparisons (CIR-NORM and HCC-CIR), we used a search heuristic based

on multi-objective optimization [33] in order to identify subnetworks of PPIs

composed of proteins (i) with a high network propagation score and (ii)

differentially expressed in both the studies of Wurmbach et al. (2007) [30] and

Mas et al. (2009) [31]. Since we formulated the problem of finding PPI

subnetworks as a multi-objective optimization problem with two criteria, we

found a set of optimal solutions (i.e. PPI subnetworks) that collectively form (an

approximation of) the so-called Pareto frontier of the problem [34], i.e. solutions

that can not be improved simultaneously for all the objectives.

In both the comparisons (CIR-NORM and HCC-CIR), we found optimal

subnetworks with high network propagation score and enriched in differential

Table 2. Functional enrichment of the genes differentially expressed in preneoplastic and neoplastic liver samples.

Contrast Category Term Count P-value Benjamini

CIR-NORM REACTOME Signaling in Immune system 22 2.12E-04 0.00412

REACTOME Signaling by PDGF 10 1.62E-04 0.00632

REACTOME Integrin cell surface interactions 10 9.76E-04 0.0126

KEGG Focal adhesion 19 2.83E-04 0.0148

KEGG Cell adhesion molecules (CAMs) 15 2.45E-04 0.0192

KEGG ECM-receptor interaction 11 7.78E-04 0.0203

KEGG Antigen processing and presentation 11 7.07E-04 0.0221

KEGG Chemokine signalling pathway 17 0.00102 0.0228

KEGG Type I diabetes mellitus 8 6.46E-04 0.0252

KEGG Small cell lung cancer 12 1.82E-04 0.0284

KEGG Allograft rejection 7 0.00158 0.0308

REACTOME Axon guidance 7 0.00432 0.0413

KEGG Graft-versus-host disease 7 0.00243 0.0417

HCC-CIR KEGG p53 signalling pathway 16 8.76E-06 0.00152

KEGG Cytokine-cytokine receptor interaction 34 3.39E-05 0.00295

KEGG Cell cycle 20 1.50E-04 0.00868

KEGG Prostate cancer 14 0.00239 0.0801

KEGG Pathways in cancer 34 0.00219 0.0911

The functional enrichment has been performed for 484 and 776 DE genes respectively from CIR-NORM and HCC-CIR comparisons considering Reactome
and KEGG pathways. The column ‘‘Count’’ reports the number of genes differentially expressed in the corresponding pathway; column ‘‘Benjamini’’
indicates the adjusted p-value.

doi:10.1371/journal.pone.0113660.t002
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expression (Fig. 5A). The Pareto front of CIR-NORM is composed of several

points that dominate some of those of the HCC-CIR Pareto front. In other words,

the multi-objective optimization procedure found subnetworks in network

proximity to HCV targets and stronger differential expression in the CIR-NORM

comparison.

To assess the significance of the relation between the neighborhood of HCV

targets in the PPI network and differential expression, we generated 1,000 random

subnetworks (shortly, RND subnetworks) and 1,000 random subnetworks in

network proximity to HCV targets (shortly, HRND networks) (Fig. S2). We found

that HRND subnetworks are significantly more enriched in expression variation

than RND networks and, coherently with the results of multi-objective

optimization, we found that HRND subnetworks have more significant

differential expression in CIR-NORM compared to HCC-CIR (Fig. 5B and

Tab. 4).

In order to visualize in a unique ‘‘summary’’ subnetwork all the optimal

subnetworks extracted from the whole PPI network, for each comparison (CIR-

NORM and HCC-CIR), we defined a summary subnetwork composed of all the

proteins occurring in the relative optimal subnetworks. Then, we calculated the

MSTs, in which each link (representing a PPI) was associated with a weight

inversely proportional to the product of the absolute expression variation of the

protein pair. Thus, these MSTs capture the PPIs between the most differentially

expressed pairs of proteins in the neighborhood of HCV targets.

The summary PPI network for the CIR-NORM comparison (Fig. 6A) has a

higher network proximity to HCV targets than the CIR-NORM summary PPI

network. The majority of the genes in the summary network of CIR-NORM

regulate the immune system (45 out of 72, FDR 52.32E-13), the hemostasis (23/

72, FDR 51.04E-8) and the cell-cell communication (10/72, FDR 51.57E-5), as

expected from the available experimental evidences which suggest that HCV has

direct and indirect roles in the pathogenesis of liver disease (Tab. S3). In fact,

HCV is able to induce immunopathological effects and to promote liver disease,

such as steatosis, fibrosis and cirrhosis [35]. Some hubs of the CIR-NORM

subnetwork do not show significant variation in their expression (e.g. TNF, SRC,

CDK2, AKT1) while others show significant up-regulation (STAT1, JUN, VIM).

In particular, considering the nodes with a significant up- or down-regulation, we

found that most of them are known to be involved in HCV-dependent pathways.

Table 3. Enrichment in HCV targets of differentially expressed genes in preneoplastic and neoplastic liver lesions.

Source Comparison p (GSEA) p (hyper)

Wurmbach et al. [30] CIR-NORM 0.129 0.0194

Wurmbach et al. [30] HCC-CIR 0.117 0.0446

Mas et al. [31] CIR-NORM 0.0310 0.000467

Mas et al. [31] HCC-CIR 0.173 0.00233

P-values (p) were computed with Gene Set Enrichment Analysis (GSEA) and hypergeometric (hyper) test.

doi:10.1371/journal.pone.0113660.t003

Network Proximity to HCV Targets and Host Expression Variations

PLOS ONE | DOI:10.1371/journal.pone.0113660 December 2, 2014 10 / 22



For example, among the highly up-regulated genes, we found: MX1, which has an

antiviral activity against a wide range of RNA viruses [36]; VWF, which is a new

marker of liver fibrosis [37], IFI27, whose overexpression inhibits HCV

replication and virus production [38]. Interestingly, we found one of the up-

regulated genes, CFTR, which has not yet been associated with HCV infection but

mainly associated to liver disease in cystic fibrosis [39]. The CIR-NORM network

also involves highly down-regulated genes, such as CYP2C19, which is associated

with a risk of HCC development [40] and KCNN2 involved in the trans-epithelial

secretion in biliary epithelial cells and mainly expressed in normal liver [41].

The HCC-CIR subnetwork (Fig. 6B) is composed of proteins that are mainly

involved in signalling by EGFR (17 out of 104, FDR 54.23E-6) and WNT (12/104,

FDR 52.45E-3) in cancer, signalling by interleukins (13/104, FDR 51.22E-5),

hemostasis (27/104, FDR 54.23E-6), apoptosis (12/104, FDR 54.97E-4) and cell

cycle (19/104, FDR 56.66E-3). The results of the pathway analysis are compliant

Figure 5. Differential expression in network proximity to HCV proteins. A) Gene expression variation
(log10(f1)) and network proximity (log10(f2)) of optimal networks (Pareto fronts) identified for CIR-NORM and
HCC-CIR comparisons. B) Estimated cumulative probability functions of gene expression variation (f1) of
1,000 random networks (RND) and 1,000 HCVassociated random networks (HRND) in CIR-NORM and HCC-
CIR comparisons. A–B) the lower the value of fi the higher the enrichment in the corresponding quantity.

doi:10.1371/journal.pone.0113660.g005

Table 4. Random subnetworks in network proximity to HCV targets are more enriched in differentially expressed genes than random subnetworks.

Comparison p (KS) HRND vs RND p (WMW) HRND vs RND

CIR-NORM 2.01E-05 4.11E-05

HCC-CIR 0.0388 0.0457

p-values were calculated using two-sample Kolmogorov-Smirnov (KS) and two sample Wilcoxon-Mann-Whitney (WMW) tests between the enrichment
values (f2) for differential expression of 1,000 HRND and 1,000 RND subnetworks.

doi:10.1371/journal.pone.0113660.t004
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with several experimental evidences that identify the oncogenic role of the HCV

proteins in the pathogenesis of HCC [42] (Tab. S4). In this network, we found

some hubs included in the CIR-NORM network, such as TNF, TP53 and AKT1

with no significant expression variation. Concerning the up-regulated genes, we

found: NEK2, also confirmed by Drozdov et al. (2012) [7]; ASPM, which is

known as a molecular marker of hepatocellular carcinoma [43]; SPINK1, recently

proposed as potential hepatocellular carcinoma marker [44]; HMMR, recently

proposed as promoter of tumor metastasis [45]. Among the down-regulated genes

we found FOS, an important regulator of tumor development [46], which is

involved in a regulatory network together with JUN and SIRT6 [47]. We have also

found CFTR, which is down-regulated in HCC-CIR.

Progression of gene expression variation in HCV-mediated HCC

We monitored the expression variation of the extremely up- or down-regulated

genes found in the CIR-NORM and HCC-CIR summary PPI networks (absolute

mean log2 fold change value greater than 2 in both datasets). In the early phase of

the hepatic disease, five genes showed a significant up-regulation and two showed

a significant down-regulation in both datasets (Fig. 7, panels A and C). IFI27 is the

most up-regulated gene following the same trend in both datasets: very high

increase between normal and cirrhosis followed by a small decrease between

cirrhosis and HCC. The trend indicates that the expression of this gene was

Figure 6. Most relevant relationships between proteins in network proximity to HCV and differentially expressed in preneoplastic and neoplastic
liver samples. A) CIR-NORM. B) HCC-CIR. A–B) Colors, from blue (lower values) to red (higher values): average fold change; squares: HCV targets;
circles: non-HCV targets.

doi:10.1371/journal.pone.0113660.g006
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primarily affected at the disease onset, confirming its protective action against the

early stages of HCV infection [48]. A similar trend is observed for VWF and MX1.

Conversely, CFTR showed a significant up-regulation followed by a strong down-

regulation in both studies. VIM, an hepatic stem cell marker [49], was found up-

regulated in both datasets since the early phase of the hepatic disease. Concerning

the down-regulated genes, we found that CYP2C19 expression is lower in cirrhosis

samples than normal ones in both datasets, and remains low in HCC. This trend

Figure 7. Expression variation in normal, cirrhotic and hepatocellular carcinoma samples of the most differentially expressed proteins that lie in
network proximity to HCV targets. Mean log2 fold change (vertical axis) in NORM, CIR and HCC samples (horizontal axis). A, C: genes derived from the
CIR-NORM summary PPI network (Fig. 5A). B, D: genes derived from the HCC-CIR summary PPI network (Fig. 5B).

doi:10.1371/journal.pone.0113660.g007
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confirms that this gene plays an important role in the early stages of the disease

and it is also associated with HCC development [50]. The other down-regulated

gene is KCNN2, which follows the same trend as CYP2C19 and it remains down-

regulated in cancer [51].

In the cirrhosis-hepatocellular carcinoma transition (HCC-CIR), we found

three genes (HMMR, ASPM, NEK2) that do not show significant expression

variations in the early phase of the disease progression (CIR-NORM), but are up-

regulated in association with tumor progression, suggesting their specific

relationship with tumor onset and development (Figure 7, panels B and D). The

case of SPINK1 is peculiar: this gene was markedly down-regulated in cirrhotic

compared to normal samples and then it is strongly up-regulated in HCC,

confirming its potential role as a new marker for HCC, as recently proposed by

Marshall et al. (2013) [44]. FOS displays a strong decrease in its expression level

compared to the CIR-NORM condition.

Conclusions

The list of PPI occurring inside human cells is a precious source of information to

drive the interpretation of ‘‘omics’’ screenings [5], despite its limits [52, 53].

Simulating the impact of HCV-host interactions throughout the host PPI

network, we have shown how proteins and pathways that are involved in HCV

response and in the subsequent pathological states can be predicted considering

HCV-host PPI interactions and the topology of the host PPI network. Our

analysis provides evidences that, similarly to EBV and HPV [11], the effects of

HCV-host interactions lie in network proximity to viral targets.

Beyond viral-host PPIs, our analysis has considered the transcriptional activity

of liver cells collected from HCV-infected patients, in order to characterize the

different phases of the hepatic disease. We observed that the differential

expression detected in preneoplastic and neoplastic liver samples by two

independent studies occur in network proximity to HCV targets, which conversely

display, as a whole, weaker gene expression variations.

By simultaneously analyzing viral-host PPIs and gene expression variations

observed in the early phase of the hepatic disease (CIR-NORM), and comparing

hepatocellular carcinoma and cirrhotic samples (HCC-CIR), we extracted the

subnetworks of interacting genes that summarize the expression variations

observed in network proximity to viral targets. These subnetworks reveal the

interactions between established, recently proposed and novel candidate proteins

for the regulation of the mechanisms of liver cells response to chronic HCV

infection. The expression variations observed in CIR-NORM occur in higher

network proximity to viral targets than those observed in HCC-CIR. This

difference is coherent with the view that cancer cells require the perturbation of

other pathways in addition to those that are activated by the host as a consequence

of HCV infection.
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The computational approach presented in this work can also be applied for

studying other biological processes that can be brought back to a finite set of

causal biological entities.

Considering the growing interest in developing modulators of PPIs [54, 55], it

will be important to design network-based approaches for the identification of

‘‘druggable’’ PPIs, selectively relevant for cells in pathological conditions. This will

require a better understanding of the PPIs that are in fact occurring in the specific

conditions of the living systems under analysis.

Methods

Protein-protein interaction data

We used the PPIs available in the STRING database v9.0 with score greater than

0.7, designated as ‘‘high confidence’’. Multiple pairs of protein identifiers referring

to the same pair of Entrez Gene identifiers were summarized according to the

highest score. We obtained a PPI network composed of a total of 14,116 unique

human proteins involved in 223,088 PPIs. We used the viral-host interactions

collected from De Chassey et al. (2008) [16], Kwofie et al. (2011) [18], Dolan et al.

(2013) [19], HPIDB [20], Intact [21], VirHostNet [22] and defined 591 unique

human proteins that interact directly with HCV proteins, 517 of which appear in

the PPI network.

Network Propagation

We used network propagation [12] to smooth the HCV interaction information

over the PPI network. This method is closely related to a random walk with

restarts on a graph. Specifically, we used the iterative algorithm of Zhou et al. [56]:

Ftz1~aW Ftz 1-að Þ F0

where Fj is a vector of length n equal to the number of proteins of the PPI

network, W is the n-by-n degree-normalized version of the adjacency matrix

representing the PPI network, and a is a tuning parameter that establishes the

relative importance of the two terms of the equation. This algorithm pumps the

information available in the vertexes specified in F0 to their neighbors and, in

turn, every vertex diffuses the information received during the previous iteration

to its neighbors. The algorithm is run interactively for t5[0, 1, 2, …] until

convergence: (Ft+1- Ft) ,1e-6. The elements of W are obtained dividing the

adjacency matrix A by the square root of the product of its row sums: wij5 aij

(di dj)
-K.

In our study, the 517 elements of F0 corresponding to HCV targets were

initialized with value equal to 1, while all the other elements were set to 0. The

parameter a was set to 0.8, a value that determined consistent results in previous

studies [12, 13].
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Gene expression data analysis

The raw data of the two datasets were separately processed and analyzed using the

statistical software R. The data normalization was carried out using the gcrma

method available in the simpleaffy package [57]. Differential expression was

assessed with the limma package [58]. We considered as differentially expressed

the genes with p-value ,0.05. We excluded two samples from the dataset

GSE6764 because of quality issues, as reported by the authors [30]. We assessed

the quality metrics of the microarray datasets using the arrayQualityMetrics

package [59]. This quality control analysis did not identify any outlier.

Significance of protein lists overlaps and gene set enrichment

analysis

The statistical significance of the overlap between each pair of protein lists was

calculated using the hypergeometric distribution implemented in R functions

‘‘phyper’’ and ‘‘dhyper’’. The GSEA [60] of HCV targets and differentially

expressed genes was carried out using the R package HTSanalyzeR [61] ranking

the genes by their p-values in descending order. The p-value is a recently proposed

statistic that takes into account both the fold change and p-value [62]: the higher

the p-value, the more significant the difference between the two samples.

Random subnetworks generation

Random subnetworks were created by random extension from randomly chosen

‘‘seed’’ proteins. For each subnetwork, while the number of protein was less than

10, a seed was selected and a maximum of 3 of its neighbors were added. After the

first iteration, the seed protein was randomly selected among current nodes. In

order to create 1,000 random (RND) subnetworks and 1,000 random subnetworks

in network proximity to HCV targets (HRND) we used two different pools of

seeds: 1,000 proteins tossed among all the human proteins (RND subnetworks)

and the 1,000 proteins with the highest network propagation score (HRND

subnetworks). This procedure ensured the definition of two sets of subnetworks

with significantly different network proximity to HCV targets (Fig. S2).

Functional Annotation

The functional enrichment analysis to identify over-represented KEGG [63] and

Reactome [64] pathways in DE gene lists was carried out using the Database for

Annotation, Visualization and Integrated Discovery (DAVID) [65]. We

considered the adjusted p-values provided by DAVID in the functional annotation

chart under the name ‘‘Benjamini’’. The pathway analysis of the two summary

subnetworks for CIR-NORM and HCC-CIR was carried out using the over-

representation analysis tool provided by Reactome [66]. This analysis determined

which events (pathways or reactions) were statistically enriched in the two

summary subnetworks (Tab. S5, S6).
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Text Mining

Literature-based text mining was performed using ProteinQuest (PQ) [67]. PQ is

a web based platform for biomedical literature retrieval and analysis. PQ searches

within PubMed abstracts and extracts the text of the image captions from free full

text articles. PQ text-mining tool parses target documents searching for terms

related to curated ontologies (e.g. diseases, bioprocesses, pathways, body parts).

Multiple searches for more than one alias were used to resolve ambiguities in the

terminology. We considered the following queries: ‘‘HCV AND CIR’’, ‘‘HCV

AND HCC’’. Then, we calculated the number of co-occurrences of two terms

(query and protein) in a minimum of 20 papers among those retrieved by each

query. We obtained 71 and 75 proteins respectively for HCV-CIR and HCV-HCC

queries.

Multi-Objective optimization

The search of PPIs subnetworks in (i) network proximity to HCV targets and (ii)

differentially expressed was formulated as the multi-objective optimization

problem of minimizing two objective functions. We solved this problem using an

evolutionary algorithm that creates a population of subnetworks extracted from

the whole PPI network and, then, iteration by iteration, modifies the subnetworks

(adding and removing vertexes) in order to minimize simultaneously the objective

functions [33]. Given x, a subset of the proteins included in the PPI network that

form a connected subnetwork, s, the list of network propagation scores ranked in

descending order, eD1 and eD2, the lists of expression variations (log2 fold changes)

in two datasets D1 and D2, ranked in descending order, xup and xdown, the subsets

of proteins of x that are, respectively, up-regulated and down-regulated in both

datasets D1 and D2, we defined:

f1 xð Þ~ 1 { ES x,sð Þ

f2 xð Þ~ TES xup,xdown,eD1
� �

z TES xup,xdown,eD2
� �� �

= 2

The quantity ES(x, y) is the enrichment score [60], it assumes values in the real

interval [21,1] and indicates to which extent the elements of the set x are located

at the top (ES -.1) or at the bottom (ES -.21) of the ranked list y. The quantity

TES(x, z, y) 51 - (ES(x, y) - ES(z, y))/2 is the inverse total enrichment score [68];

it assumes values in the real interval [0, 2] and it tends to 2 when the elements of x

occur at the top of the ranked list y, while the elements of z occur at the bottom of

y. Therefore f1 will be low if the subnetwork x is enriched in proteins in network

proximity to HCV targets, while f2 will be low if the subnetwork x is enriched in

proteins differentially expressed (up-regulated and down-regulated) in both

datasets D1 and D2.
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We used the gene expression datasets from Wurmbach et al. [30] and Mas et al.

[31]. We ranked gene expression differences on the basis of p-values [62]

multiplied by the sign of the corresponding log fold change, in order to obtain up-

regulated genes at the top and down-regulated genes at the bottom of the ranked

list.

For each comparison, CIR-NORM and HCC-CIR, we run 10 times the multi-

objective optimization using a population of 500 subnetworks (ranging from a

minimum of 10 to a maximum of 50 vertexes) for 1,000 iterations. Subsequently,

we defined the optimal subnetworks as those belonging to the non-dominated set

(Pareto front), considering all the subnetworks generated for each comparison.

Supporting Information

Figure S1. Similarity between the rankings of host proteins obtained using

network proximity scores or p-values. The similarity between the two ordered

lists x and y was calculated as the mean of the enrichment score (ES) of the top of

the list x in the list y and the ES of the top of the list y in the list x: sim 51/2 *

(ES(xtop, y) + ES(ytop, x)). We varied the definition of the tops ranging from 100

to 5,000 elements and observed the highest similarity when considering the top

1,500 elements of the lists. The similarity observed using several random lists of

the same lengths is definitely lower.

doi:10.1371/journal.pone.0113660.s001 (TIF)

Figure S2. HCV-associated random networks. Estimated cumulative probability

functions of HCV association (f2, the lower the value the higher the association) of

1,000 random networks (RND) and 1,000 HCV-associated random networks

(HRND).

doi:10.1371/journal.pone.0113660.s002 (TIF)

Table S1. Top ranked proteins according to the network proximity to HCV

targets. Columns - ‘‘is HCV target’’: 1 (yes), 0 (no); ‘‘score’’: network proximity

score scaled in the [0, 1] interval; ‘‘score p-value’’: estimated probability of

obtaining si by chance; ‘‘degree’’: number of PPI.

doi:10.1371/journal.pone.0113660.s003 (XLS)

Table S2. Published lists of proteins that mediate host response to early and

chronic HCV infection and HCC.

doi:10.1371/journal.pone.0113660.s004 (XLS)

Table S3. Reactome pathway analysis of the CIR-NORM summary subnetwork.

List of the statistically enriched pathways in the CIR-NORM subnetwork resulting

from Reactome over-representation analysis.

doi:10.1371/journal.pone.0113660.s005 (XLS)

Table S4. Reactome pathway analysis of the HCC-CIR summary subnetwork.

List of the statistically enriched pathways in the HCC-CIR subnetwork resulting

from Reactome over-representation analysis.

doi:10.1371/journal.pone.0113660.s006 (XLS)
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