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Abstract: Bacterial infectious diseases cause serious harm to human health. At present, antibiotics
are the main drugs used in the treatment of bacterial infectious diseases, but the abuse of antibiotics
has led to the rapid increase in drug-resistant bacteria and to the inability to effectively control
infections. Bacteriophages are a kind of virus that infects bacteria and archaea, adopting bacteria as
their hosts. The use of bacteriophages as antimicrobial agents in the treatment of bacterial diseases is
an alternative to antibiotics. At present, phage therapy (PT) has been used in various fields and has
provided a new technology for addressing diseases caused by bacterial infections in humans, animals,
and plants. PT uses bacteriophages to infect pathogenic bacteria so to stop bacterial infections
and treat and prevent related diseases. However, PT has several limitations, due to a narrow host
range, the lysogenic phenomenon, the lack of relevant policies, and the lack of pharmacokinetic data.
The development of reasonable strategies to overcome these limitations is essential for the further
development of this technology. This review article described the current applications and limitations
of PT and summarizes the existing solutions for these limitations. This information will be useful for
clinicians, people working in agriculture and industry, and basic researchers.
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1. Introduction
1.1. Status of Bacterial Resistance

Bacterial infectious diseases seriously endanger human health. According to the World
Health Organization, more than 25% of deaths worldwide are caused by infectious diseases,
and bacteria account for 38% of human pathogens [1,2]. By the beginning of this century, the
number of deaths from bacterial infections in the world had risen to 20 million. At present,
antibiotics are mainly used to treat bacterial infectious diseases, but the abuse of antibiotics
has led to the rapid increase of drug-resistant bacteria, especially multi-drug-resistant
bacteria (bacteria that are simultaneously resistant to three or more kinds of antibiotics used
in the clinic). Due to the inability to effectively control infections by multi-drug-resistant
bacteria, this has become a serious problem in clinical treatment. Currently, drug-resistant
diseases kill about 700,000 people worldwide each year, and if no action is taken, this
figure could increase to 10 million a year by 2050 [3]. There are more and more common
diseases that cannot be cured, including respiratory tract infections, sexually transmitted
infections, and urinary tract infections [4,5]. The resistance of bacteria to antibiotics exerts
a heavy economic burden and causes huge health problems in the society; therefore, it is
imperative to explore new ways to target multi-drug-resistant bacteria [6]. The emergence
of a variety of drug-resistant bacteria has raised interest in alternatives to conventional
antimicrobials. One of the possible alternatives to antibiotics are bacteriophages that can be
used as antimicrobial agents.
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1.2. Bacteriophages

Bacteriophage is a specific intracellular virus that infects and engulfs bacteria [7].
Bacteriophages were discovered almost simultaneously by Frederick William Twort in Eng-
land, and Félix d’Herelle in France [8]. Bacteriophages are the most abundant viral entities
on Earth, ubiquitous in all ecosystems. among which, seawater is their preferred natural
environment [9]. The genetic material of bacteriophages consists of double-stranded or
single-stranded DNA or RNA. Morphologically, bacteriophages can be caudate, polyhedral,
filamentous, or pleomorphic. A typical bacteriophage usually contains an icosahedral head,
a hollow needle-like structure, a tail consisting of an outer sheath, and a base composed
of tail filaments and tail needles [10]. Bacteriophages can have cleavage or lysogen life
cycles (Figure 1), the latter of which can be lytic or temperate. Lytic bacteriophages can
replicate during the lytic cycle, a process that involves producing new viral offspring and
releasing them from infected cells. Temperate phages are those whose DNA is integrated
only into the nuclear genome of the host after adsorption and invasion and can be repli-
cated synchronously with the host DNA for a long period. Temperate phages generally do
not proliferate and cause host cell lysis in general. Under pressure conditions, temperate
phages can exit the lysogenic state and produce more virions that are released from bacteria.
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1.3. Phage Therapy (PT)

PT uses bacteriophages to infect pathogenic bacteria so to stop bacterial infections
and treat and prevent related diseases. The therapeutic potential of bacteriophages against
bacterial infections has been long studied, and one of its proponents, Félix d’Herelle,
described his experiment with rabbits against Shigella in his first paper. Most of the
early phage studies that were conducted between the 1920s and the 1930s focused on the
development of PT against bacterial infections. Numerous companies then began to sell
phage preparations. In 1920, bacteriophages were used to treat human infections in Eastern
Europe and the former Soviet Union and achieved good results. In 1921, Bruynoghe and
Maisin used bacteriophages to treat skin infections caused by Staphylococci. In the late
1930s, however, the Pharmaceutical and Chemical Committee of the American Medical
Association concluded that the efficacy of PT was unclear [11]. They acknowledge that there
are both positive and negative results in the literature, but they expressed the concern that
little was known about the biological properties of bacteriophages and that bacteriophages
lacked standardization and standards of purity and potency, which made it impossible
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to compare most published studies. Further research was clearly needed. These factors
and the success of emerging antibiotics in the 1940s resulted in a decline in the interest in
PT [11,12]. However, in recent years, the relentless rise in antibiotic resistance has ignited
a renewed interest in PT and provided a new impetus for research on bacteriophage-
based bacterial infection solutions. The Southeast Asia region has embarked on a phage
revolution, paving the way for phage therapy and related policies and addressing the threat
posed by multidrug-resistant pathogens in the region and around the world [13].

1.4. PT Application

The results of PT research are currently used in various fields (Table 1) to control
the growth and proliferation of pathogenic bacteria [14]. PT is used to treat not only
human diseases caused by bacteria [15–18] but also animal and plant diseases of bacterial
origin [19–21], as well as to ensure food safety [22–24]. The applications in human, animal,
and plant bacterial diseases and to ensure food safety and quality have significant effects.
PT has a lysis effect on a variety of bacteria, including drug-resistant Staphylococcus aureus
and Pseudomonas aeruginosa and pathogenic Escherichia coli and Salmonella. The table
lists the therapeutic effects of different phages or phage mixtures on different bacteria in
various fields.

Table 1. Application field of phage therapy and corresponding host bacteria.

Application Field Phage Treatment Host Bacteria Treatment Effect Reference(s)

Human

Oral phage mixture (including
676/F, A3/R and A5/80)

Resistant
Staphylococcus

aureus

Successfully decolonized
drug-resistant S. aureus [25]

The film covers the wound surface
and contains PhagoBioDerm, a new

type of slow-release biopolymer
impregnated with lysophage,

antibiotics, and analgesics

Negative S. aureus test,
wound healing [26]

A filter paper disc soaked in a
purified phage suspension covers

the infected area

Pseudomonas
aeruginosa

Three days after applying the
phage, P. aeruginosa was not

isolated from the swab
[27]
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Table 1. Cont.

Application Field Phage Treatment Host Bacteria Treatment Effect Reference(s)

Animal

Cattle
Injection of phage Ø26, Ø29,

Ø21, Ø27, Ø6, Ø44, Ø16,
Ø39, Ø55, and Ø51

Shigatoxigenic
Escherichia coli

Improved calf diarrhea, lowered
rectal temperature, and increased

calf weight
[28]

Poultry

Cloaca drops or oral
bacteriophages CB4Ø and

WT45Ø

Salmonella
Enteritidis

Significantly reduced Salmonella
Enteritidis in cecal tonsils [29]

Aerosol spray or drinking
water to administer phage

BPs * (mixture of phage BP1,
BP2 and BP3)

Reduced Salmonella infection
incidence and number in the

intestine
[30]

Oral or spray
administration of BPs and

Broilact (a commercial
probiotic product)

Significantly reduced Salmonella
infections in cecal samples [31]

Oral bacteriophages
CNPSA1, CNPSA3 and

CNPSA4

Reduced concentration of
Salmonella Enteritidis type 4 in

cecal contents of broilers
[32]

Oral phage ØCJ107
Significantly reduced

colonization and horizontal
spread of Salmonella

[33]

Oral bacteriophages S2a, S9
and S11 and Protexin (a

probiotic product)

Significantly reduced the number
of Salmonella typhimurium in the

liver, spleen, ileum, and cecum of
chicks

[34]

Spray and intramuscular
injection of bacteriophage

SPR02 and DAF6
Significantly reduced mortality [35]

Bacteriophage SPR02 and
DAF6 injection

Significantly reduced mortality
rate and incidence and severity

of air sacculitis injury
[36]

Bacteriophage SPR02 airbag
inoculation Significantly reduced mortality [37]

Mixture of phages phi F78E,
phiF258E, and phi F61E

Significantly reduced morbidity
and mortality [38]

Aerosol spray of
bacteriophage SPRO2 and

DAF6

Significantly reduced weight loss
and mortality [39]

Pig

Mixture of phages F3, F4,
F5, F6, F7, and F8

Salmonella
Typhimurium

Significantly reduced Salmonella
typhimurium colonization [40]

Oral two-strain phage
mixture

Reduced intestinal colonization
of Salmonella typhimurium [41]

14 kinds of phage mixture
(PEW 1–14) gavage and oral

administration,
microencapsulated

Reduced Salmonella colonization [42]

Oral microcapsules
composed of 14 kinds of

phage mixtures (PEW 1–14)
and bacteriophage Felix O1

Reduced colonization of
Salmonella typhimurium in the

ileum, cecum, and tonsils of pigs
[43]

Oral phage CJ12

E. coli

Decreased diarrhea rate and
significantly reduced E. coli

abundance in feces
[44]

Oral mixture of several of
the 7 phages (GJ1–GJ7)

Prevention or treatment of
diarrhea, significantly reduced

damage by diarrhea
[45]
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Table 1. Cont.

Application Field Phage Treatment Host Bacteria Treatment Effect Reference(s)

Mouse

Intraperitoneal injection of
bacteriophages ENB6 and

C33

Enterococcus
faecalis

Significantly reduced
mortality [46]

Intraperitoneal injection of
phage ØEF24C

Significantly reduced
mortality [47]

Intraperitoneal injection of a
single dose of phage CSV-31

Significantly reduced
mortality [48]

Intraperitoneal injection of
phage ØA392

Significantly increased
survival rate [49]

Intraperitoneal injection of
bacteriophage SS

Klebsiella
pneumoniae

Significantly reduced K.
pneumoniae bacteria in the

lung tissue
[50]

Intraperitoneal injection of
phage ØNK5

Significantly inhibited liver
damage and death caused by

K. pneumoniae
[51]

Plant

Citrus fruit trees

Spray phages CP2,
ØXac2005-1, ccØ7, ccØ13,

ØXacm2004-4,
ØXacm2004-16, ØX44,

ØXaacAl

Xanthomonas
axonopodis

Significantly reduced the
severity of citrus canker and

citrus bacterial spot
[52]

Potato
Phage ϕMA1, ϕMA1A,

ϕMA2, ϕMA5, ϕMA6, and
ϕMA7

Pectobacterium
carotovorum, P.
atrosepticum,

Significantly reduced rate and
area of soft rot [53]

Food

Beef/vegetables
and ground beef

Use of a dropper to
administer a mixture of the

phages e11/2, pp01, and
e4/1c, dropwise

E. coli

Eliminated or significantly
reduced E. coli abundance [54]

Coated phage ECP-100 (a
mixture of ECML-4,

ECML-117, and ECML-134)

Significantly reduced the
number of E. coli on the

surface of vegetables and
ground beef

[55]

Dip into the washing
solution made of

bacteriophages C14, V9, L1,
and LL15

Significantly reduced E. coli
abundance on vegetables [56]

Chicken
skin/fresh cut
fruit/sausage

Spray phage type 4 strains
P125589, P22, and 29C

Salmonella

Significantly reduced the
number of Salmonella on the

surface of chicken skin
[57]

Drops of bacteriophage
Felix O1

Significantly suppressed the
number of Salmonella in

sausages
[58]

* BP: Bacteriophage.

Although bacteriophages have been studied for almost a century, data on the treatment
of bacterial infections are incomplete. This was one of the reasons why PT was abandoned
for some time. With the in-depth study of PT in recent years, the application of related
technologies, and the abundance of collected data, the large-scale application of PT is
today feasible [59]. Although PT has broad application prospects, it also has inevitable
limitations such as a narrow host spectrum, immune clearance by the body, and emergence
of anti-phage bacterial strains. Adopting reasonable strategies to overcome these limitations
through an in-depth understanding of the properties of phages and of their impact on the
host is a priority for the further development of this burgeoning industry. This paper starts
describing the problems existing in PT, introduces in detail the limitations in the application
of PT, and summarizes the current strategies to overcome these limitations. It will provide
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a reference for clinicians, people working in agriculture and industry, and basic researchers
and will lay a foundation for the development of PT.

2. Limitations of PT
2.1. Disadvantageous Characteristics of Bacteriophages

The cleavage spectrum of bacteriophages is too narrow because of its high specificity.
Bacteriophages usually act only on certain genera of bacteria, some on a limited number
of species, and thus, cannot target all pathogenic strains of a single bacterial species [60].
Bacteriophages are useful in managing diseases caused by a single bacterium, but the actual
clinical cases are often infections that are caused by a variety of pathogenic bacteria. Hence,
it is often difficult for specific bacteriophages to have a desired therapeutic effect [21]. The
lysogenic phenomenon consist in the fact that some lysogenic phages cannot lyse the host
bacteria and inhibit the lytic effect of other phages on their host bacteria after integration
with the host bacteria. In lysogenicity, the viral genome replicates with the host DNA,
either in a free plasmid-like state or after integration into the bacterial chromosome [13]. In
addition, a more important problem is that bacteriophages in the lysogenic state can also
transmit toxins and antibiotic resistance genes to bacteria.

In contrast to protein drugs whose activity and purity can be assessed based on specific
antibodies titers, the composition of PT preparations is more complex and includes both
proteins and nucleic acids. Thus, it is difficult to evaluate its quality and curative effects [61].

2.2. Lack of Relevant Policies

Policies and regulations on the clinical application of PT are lacking [62]. Appropriate
regulatory standards can create opportunities to raise awareness of this promising treatment.
Verbeken et al. provided a detailed analysis of the opinion of European stakeholders and
discussed the need to adjust the regulatory framework to accommodate PT [63]. One
important consideration is whether PT development occurs on an industrial scale or
on a hospital-based, patient-specific scale. They argued for a new, dedicated European
regulatory framework for PT. In addition, there is no clear standard for phage isolation and
purification, which makes the efficacy of isolated phage preparations variable. There is no
standardized procedure in clinical treatments with bacteriophages.

2.3. Resistance of Bacteria to Bacteriophages

With the emergence of bacteriophage-resistant strains, several studies found that if a
single phage is used repeatedly for a long time, bacteria also evolve phage-resistant strains
in the process of natural selection [64–67]. This is part of a series of anti-bacteriophage
strategies evolved in the long-term in bacteria, which include adsorption inhibition, restric-
tion modification systems, injection blocking, abortion infection, superinfection immunity,
and the Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated
(CRISPR–Cas) system [60]. Adsorption resistance results in reduced interactions between
bacteriophages and bacteria. In abortion infection, both bacteriophages and bacteria die.
CRISPR–Cas is part of the adaptive immune system and provides adaptive immunity to
bacteria and archaea against foreign invaders such as plasmids and bacteriophages [68].
CRISPR and Cas proteins gather together to form a widespread system in bacteria and
archaea, which interferes with foreign nucleic acids. The CRISPR–Cas system works in at
least two stages: the adaptation stage, in which cells acquire new spacer sequences from
exogenous DNA, and the interference phase, in which recently obtained spacers are used
to target and cleave invasive nucleic acids. The CRISPR–Cas system participates in the
continuous evolution of bacteriophages and bacteria by adding or deleting gaps in host
cells and mutations or deletions in phage genomes [13,69].
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2.4. Lack of Phage Pharmacokinetic Data

PT preparations are difficult to standardize. The definition of dosage remains unclear.
In addition, the mode of administration and dosage of PT directly affects its effects, which
results in difficulty in the clinical application of PT. Since bacteriophages are composed al-
most entirely of proteins and DNA or RNA, they can easily be degraded when they interact
with human metabolism, such as in the stomach and liver, and when they are confronted
by the animal immune system [70]. Related pharmacokinetic studies showed that a quarter
of bacteriophage infusions lasted for 36 h after treatment, but their effective concentration
was diluted by body fluids [71]. Oral administration was the most suitable mode for
humans and animals. Furthermore, it was relatively easy and comfortable and induced low
immunogenicity compared to other drug administration methods [72]. During oral admin-
istration, bacteriophage particles pass through the stomach, the intestine, and the intestinal
mucosa before reaching the systemic circulation. Therefore, the gastrointestinal system is
considered as the primary barrier in preventing tissue infiltration by bacteriophages [73].
In addition, the mammalian circulatory system effectively removes bacteriophages from
the blood [74], which makes it difficult to maintain sufficient bacteriophage concentrations
to destroy the target bacteria.

2.5. Interaction with the Body

Bacteriophages release bacterial toxins, such as endotoxins, when lysing bacteria,
which worsens bacterial infections. In several cases, this even resulted in septic infec-
tions [75]. Related experiments showed that an oral phage cocktail in mice increased
intestinal permeability and endotoxemia [76].

Foreign proteins carried by bacteriophages may induce immune reactions in humans
or animals. This reaction is an exception, as bacteriophages have been shown to be safe; the
reactions were allergic immune responses to phage virion-related proteins [77,78].

Numerous studies reported that PT was effective to treat a variety of diseases, but no
data from double-blind randomized controlled clinical trials are available [79].

3. Solutions to the Limitations of PT
3.1. Solutions to Disadvantageous Bacteriophage Characteristics

The problem of a narrow host range can be solved in various ways such as by using
phage mixtures [20], establishing a phage library [75], and performing extensive screen-
ings [60]. A phage mixture is equivalent to a variety of drug therapies wherein different
bacteriophages in a mixture can infect a variety of bacterial strains that may be present
after a specific diagnosis [74]. McVay used a bacteriophage mixture to treat burned mice
and were able to effectively reduce their mortality [80]. A phage library is a collection of
isolated phages. These bacteriophages have certain characteristics and can be used as phage
preparations or as unexpanded phage reserves to match recently isolated specific target
bacteria [20]. The extensive screening of bacteriophages involves using a wide range of
hosts to identify bacteriophages that employ common surface receptors to cleave a various
pathogens, such as bacteriophages that target multiple isolates of two different pathogenic
bacteria [81]. In addition to solving the problem of the host spectrum by taking advantage
of a large number of bacteriophages, it can also help expand the host range of a single
bacteriophage [74]. Expanding the host range of a single phage can be accomplished by
using genetic engineering techniques to modify part of the phage responsible for host
binding or by cloning a second alternative or additional version of these proteins involved
in host binding into a single phage [82]. As a genetically modifiable biological nanoparticle,
the T7 phage holds promise for biomedical imaging probes, therapeutics, drug and gene
carriers, and detection tools [83]. In general, for the sake of efficacy, a phage mixture with
more than one phage type to attack bacteria may be preferrable. On the other hand, for
phage–host specificity, based on a direct matching with a specific target pathogen, the use
of a phage library may be preferable [84].
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One of the principles in preventing lysogenicity is to exclude temperate bacteriophages.
PT must be achieved by lytic phages which must be highly purified to eliminate the immune
effects of the infected lysogenic bacteria on similar bacteriophages.

Bacteriophages can encode enzymes that hydrolyze peptidoglycans, causing cell walls
to degrade, thereby infecting host cells or releasing offspring viruses in host cells. The
enzyme that causes peptidoglycan to dissolve from within is called endolysin. Through
the application of endolysin in the treatment of bacterial diseases, the therapeutic effect is
easy to evaluate compared with the direct use of bacteriophage therapy. This reduces the
difficulty of quality evaluation. In recent years, studies developed the synthesis and trans-
formation of lysin-coding genes into antimicrobial peptides [85], which greatly enhanced
the antibacterial activity of the original bacteriophage.

3.2. Establishment of Relevant Policies and Standards

Meetings on the supervision and regulation of PT have been held several times in
order to promote the development of PT [63,86]. Since the discovery of bacteriophages,
bacteriophages have been widely used in Eastern Europe and the former Soviet Union;
therefore, the use of therapeutic bacteriophages have been integrated into healthcare sys-
tems [87]. The open policy of PT facilitates its rapid development. Thus, relevant regulatory
standards should be issued in time. In addition, bacteriophages are isolated and purified
in different forms, but all methods involve similar steps, that is, environmental samples
are collected and evaluated for the existence of bacteriophages. Standardized bacterio-
phage purification [88] has been repeatedly considered. Hence, a national standard scheme
should be established for personalized PT. In addition, the standard operating procedure
of the clinical application of PT should be clarified [89], including the recruitment of pa-
tients receiving PT, the establishment of phage libraries, the isolation and identification of
pathogens, the screening of effective phages for pathogens, the preparation of phage formu-
lations, management strategies, approaches to bacteriophage preparations, the monitoring
of the efficacy of PT, and the detection of the emergence of phage-resistant strains.

3.3. Combined Dosage Regimens

In view of the emergence of anti-bacteriophage strains, bacteriophages can be used
in combination with other antimicrobials, such as antibiotics. The combined use of bacte-
riophages with antibiotics is the best choice to address drug resistance and is also a step
towards the transition from antibiotic therapies to PT, accelerating the development of the
PT research industry. Numerous studies showed that a combination of bacteriophages and
antibiotics was effective [90]. Related experiments showed that, compared with the separate
use of linezolid, which is an effective inhibitor of protein synthesis, and a bacteriophage,
the combination of the two minimized the adhesion of bacteria [91]. Bacteriophages and
antibiotics have different bactericidal and bacteriostatic mechanisms. The synergistic effect
produced by the combined use of bacteriophages and antibiotics not only helps restore
the sensitivity of drug-resistant bacteria to antibiotics [92], but also reduces the probability
of development of drug-resistant bacteria. The Chan test showed that phage selection
restored the sensitivity of multidrug-resistant Pseudomonas aeruginosa to antibiotics [93].
Similarly, Oechslin et al. observed that the combination of a bacteriophage and ciprofloxacin
showed a high degree of synergy in the treatment of experimental endocarditis in rats
induced by Pseudomonas aeruginosa and effectively inhibited the emergence of anti-phage
mutants [94]. Similarly, clinical cases reported that a wound healing preparation consisting
of ciprofloxacin and bacteriophage polymers successfully treated patients infected with
multidrug-resistant Staphylococcus aureus following radiation [26]. In addition, we know
that biofilm pairs can improve the tolerance of bacteria to antibiotics, and several experi-
ments showed that the combination of bacteriophages and antibiotics reduced the bacterial
density in biofilms [95]. Certainly, several bacteriophages try to avoid bacterial resistance
by expressing anti-CRISPR proteins that inhibit the resistance mechanism, overcoming the
CRISPR–Cas immunity. To prevent the emergence of phage resistance, we should prioritize
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the use of phage mixtures [96] when using PT. Gayder found that competition and synergy
between bacteriophages can be used to enhance the antibacterial efficacy of bacteriophage
mixtures [97]. We should take advantage of the interactions between bacteriophages and
bacteria to improve our battle against bacteria.

Antimicrobial peptides are innate immune components that exist in almost all or-
ganisms and have broad-spectrum antibacterial activity. Several studies showed that the
combined use of bacteriolysin LysH5 and nisin against Staphylococcus aureus had a strong
synergistic effect. Nisin enhanced lysin cleavage eight-fold [98,99]. The combination of
drugs with different antibacterial mechanisms to deal with the problem of resistance to a
single agent is a trend in the treatment of bacterial diseases.

3.4. Optimization of the Administration

The optimization of the drug delivery pathways needs to consider whether the bac-
teriophage can survive in the body and be transported to all parts of the body. If local
infection is achieved through systemic circulation, the bacteriophage survives in a cycle
long enough to reach the infected site. If the phage is provided in the intestine, it must
survive until it enters the bloodstream. In view of the fact that many bacteriophages are
sensitive to the low pH of the stomach, phages [100–104] are wrapped with a pH protec-
tant. For instance, microencapsulation of phages in a natural biopolymer matrix [105] is
used as a protective barrier against the gastric environment to reduce the inactivation of
bacteriophages after ingestion; this ensures the efficacy of bacteriophages. Related exper-
iments showed that the liposome-encapsulated phages can be effectively retained in the
stomach and be protected until their release. When an encapsulated phage reaches the
intestinal tract, adhesion to the intestinal wall temporarily protects them from bile salts
and clearance through excretion [106]. In addition, it is also possible to increase the dose or
titer of bacteriophages for a short time to prevent bacteriophage inactivation or loss due to
antibodies before they reach the target bacteria [75,107].

3.5. Clinical Experience

The problem of endotoxemia caused by bacteriophage lytic bacteria occurs in specific
circumstances involving life-threatening bacterial infections, rather than in general with
antimicrobial therapy for bacterial infections. Therefore, as a special case, it can be expected
that excessive bacterial lysis can be dangerous, and this situation must be prevented [75].

This allergic reaction is also rare because of the relative safety of bacteriophages. Thus,
even if there is a reaction, it is mild when it occurs [77,78]. In the application of PT, it is
necessary to observe the treatment objects in real time, record the dosage of phage and
the symptoms due to adverse reactions, accumulate experience through a large number
of clinical treatments, and thoroughly investigate the immune response bacteriophages
may cause.

4. Summary

PT has some limitations, such as a narrow host range, lysogenicity, lack of relevant
policies, lack of pharmacokinetic data, and so on, which have a certain impact on its clinical
application. Table 2 lists and summarizes the limitations of PT, their clinical impact, and
solutions. The limitations of PT mainly include three aspects. The first is the influence of
the characteristics of the phage itself on the application of PT, the second is that there are
no relevant laws, regulations, and standards for PT, and the last consists of the problems in
clinical applications. It is essential for the further development of PT to review the relevant
literature and formulate reasonable strategies to overcome these limitations.
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Table 2. Limitations of PT, their impact on clinical applications, and solutions.

Types of Defects in
Bacteriophage Therapy

Limitations of
Bacteriophage Therapy

Implications for Clinical
Applications Solution

Disadvantages of
bacteriophages

Phage specificity Unable to treat mixed
bacterial infections Phage Mix

Lysogenic phage

Cannot lyse
bacteriophages and may
transmit toxin genes and
drug resistance genes to

bacteria

Strict use of lytic phage

The composition is
complex, and the quality

and efficacy test and
evaluation are difficult

Unable to assess its quality
and efficacy

Determine the dosage form and
concentration of phage preparations,

compare similar drugs, and select
reasonable evaluation methods

Bacteria resistance to
bacteriophages

Lead to ineffective
treatment

Combined dosage, regimens with
antibiotics or probiotics, phage mixtures

Policies, regulations and
standards

Lack of regulations and
policies

Lack of regulatory
supervision, easy to abuse

Formulate regulations and improve
policies

Lack of separation and
purification standards

The isolated phage is not
standardized enough and

not pure enough

Establish complete separation and
purification standards

Clinical application

Determination of
administration method

and dosage form

Different dosage forms
affect the efficacy

Explore the advantages and disadvantages
of different administration methods and

dosage forms

Lack of pharmacokinetic
data

Unable to determine the
half-life and action time of

the phage in the body

Statistic data on pharmacokinetics of
different formulations of phage and use of

phage protectors

Endotoxin release May cause endotoxemia Establish a treatment plan for the
foreseeable release of endotoxin

Phage protein immune
response May cause immune stress Record possible immune response through

a large number of clinical trials

Lack of data from
double-blind randomized

controlled clinical trials
Unsure of its efficacy

Double-blind randomized controlled trials
of phage therapeutics to evaluate their

therapeutic effects

5. PT Prospects

The goal of PT is to develop effective, rapid, and stable bacteriological drugs. The
unique properties of bacteriophages make them highly competitive, and they are expected
to be used in the treatment of infection of drug-resistant bacteria as a supplement to
chemical antibiotics. After more than 100 years of boom and bust, PT has ushered in a new
turning point in the context of drug resistance. A large number of experimental results
show that phages are safe and effective. However, there are still some controversial issues
to be resolved before phages can move to the clinical frontline, including ideal phage
screening, effective dosage forms, and clinical practice. In relevant animal models, we need
more ecophysiological data on the interaction between phages and bacteria in vivo in order
to select suitable phages for clinical application. An ideal bacteriophage for therapeutic
use should have strong cleavage ability, good environmental adaptability and stability,
no endotoxin gene in the genome, a relatively wide cleavage range, be easy to isolate
and purify, and no negative effects on the human immune system. In this era of rapid
emergence and spread of drug-resistant bacteria, it may be necessary to further understand
phage biology and establish scientifically effective pharmaceutical standards for phages,
so that they can have a second chance and receive the same attention as antibiotics. It is
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believed that with the increase in phage research and the progress in clinical trials, these
limitations can be resolved.
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