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ABSTRACT

Expression of the Escherichia coli sdhCDAB operon
encoding the succinate dehydrogenase complex is
regulated in response to growth conditions, such
as anaerobiosis and carbon sources. An anaerobic
repression of sdhCDAB is known to be mediated by
the ArcB/A two-component system and the global Fnr
anaerobic regulator. While the cAMP receptor protein
(CRP) and Cra (formerly FruR) are known as key
mediators of catabolite repression, they have been
excluded from the glucose repression of the
sdhCDAB operon. Although the glucose repression
of sdhCDAB was reported to involve a mechanism
dependent on the ptsG expression, the molecular
mechanism underlying the glucose repression has
never been clarified. In this study, we re-examined
the mechanism of the sdhCDAB repression by gluc-
ose and found that CRP directly regulates expression
of the sdhCDAB operon and that the glucose repres-
sion of this operon occurs in a cAMP-dependent
manner. The levels of phosphorylated enzyme IIAGlc

and intracellular cAMP on various carbon sources
were proportional to the expression levels of sdhC-
lacZ. Disruption of crp or cya completely abolished
the glucose repression of sdhC-lacZ expression.
Together with data showing correlation between the
intracellular cAMP concentrations and the sdhC-lacZ
expression levels in several mutants and wild type,
in vitro transcription assays suggest that the
decrease in the CRP·cAMP level in the presence of
glucose is the major determinant of the glucose
repression of the sdhCDAB operon.

INTRODUCTION

The term carbon catabolite repression is currently in use to
describe the general phenomenon in microorganisms whereby
the presence of a carbon source in the medium can repress
expression of certain genes and operons, whose gene products
are often concerned with catabolism of alternative carbon
sources. The mechanisms of carbon catabolite repression in
response to rapidly metabolizable carbon sources have been
extensively examined in Escherichia coli (1,2). In the vast
majority of documented cases, the preferred carbon source
is glucose with the famous E.coli glucose–lactose diauxie
as the classical example. The glucose-mediated catabolite
repression, termed glucose repression, is mainly mediated
by the proteins of the phosphoenolpyruvate (PEP):sugar
phosphotransferase system (PTS). This system consists of
sugar-specific PTS permeases, also referred to as enzymes
II, and two general PTS proteins, enzyme I and histidine-
containing protein (HPr), that participate in the phosphoryla-
tion of all PTS-transported carbohydrates. The glucose-specific
PTS proteins consist of the soluble enzyme IIAGlc (EIIAGlc)
and the membrane-bound enzyme IICBGlc (EIICBGlc). During
translocation of glucose, a phosphoryl group derived from PEP
is transferred sequentially along a series of proteins (enzyme I,
HPr, EIIAGlc and EIICBGlc) to the transported glucose
molecule.

Central to carbon catabolite repression is the phosphoryla-
tion state of EIIAGlc. In the presence of glucose, unphos-
phorylated EIIAGlc binds and inhibits various proteins
involved in uptake and metabolism of non-PTS carbohydrates
by a mechanism termed inducer exclusion (1,3). However,
in the absence of glucose, adenylate cyclase is known to be
activated to increase the intracellular amount of cAMP, the
allosteric effector necessary for the cAMP receptor protein
(CRP) to bind efficiently to DNA and activate transcription
at more than 100 promoters (4). A popular model for the
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regulation of adenylate cyclase activity is that the
phosphorylated form of EIIAGlc generated in the absence of
glucose stimulates adenylate cyclase activity; thus, glucose
transport is presumed to lead to dephosphorylation of IIAGlc,
resulting in a de-activation of adenylate cyclase and the
glucose repression of many genes (1). Recently, the
dephospho-form of EIIAGlc was also shown to interact with
FrsA to regulate the flux between respiration and fermentation
pathways (5), supporting importance of EIIAGlc in catabolic
regulations.

Expression of the E.coli sdhCDAB operon encoding the
succinate dehydrogenase complex, the sole membrane-
bound enzyme of the tricarboxylic acid (TCA) cycle, has
also been known to be regulated in response to carbon supply
as well as anaerobiosis (6,7). Recent study also revealed that
a small RNA, RyhB, down-regulates the mRNA level for
sdhCDAB operon at the post-transcriptional initiation level
in response to iron availability (8). For the anaerobic repres-
sion of sdhCDAB, two global regulatory circuits were shown
to be involved: the ArcB/A two-component system and the
Fnr anaerobic regulator modulate sdhCDAB expression over a
70-fold range to provide different amounts of enzyme depend-
ing on the cells’ needs for energy and carbon intermediates
(7,9). While the molecular mechanisms underlying the anaer-
obic repression and the iron availability-dependent regulation
have been well documented, the mechanism underlying the
glucose repression is still not clear. Although CRP and Cra
are known to be the key regulators of catabolite repression,
they had been dismissed from the glucose repression of the
sdhCDAB operon, although a putative CRP-binding site was
proposed to be located on the sdhC promoter region (7).
Through a series of genetic analyses to identify the regulator
gene(s) involved in the glucose repression of the sdhCDAB
operon, it was reported that the EIICBGlc protein acts as a
crucial mediator in the glucose repression (10). Recently, it
has been shown that the dephospho-form of EIICBGlc can
sequester the global repressor Mlc through the direct
protein–protein interaction and induce the expression of
the Mlc regulon including the genes encoding PTS proteins
(11–13). Although Takeda et al. (10) identified mlc as the gene
responsible for the multicopy effect on the glucose repression
of the sdhCDAB operon, they concluded that the single copy
mlc gene on the chromosome is not directly involved in the
mechanism of glucose repression of the operon.

In this study, we re-investigated regulation of the sdhCDAB
expression by glucose and the PTS to elucidate the mechanism
underlying the glucose repression. We conclude that the
general carbon catabolite repression regulator CRP directly
mediates the glucose repression of the sdhCDAB operon in
a cAMP-dependent manner.

MATERIALS AND METHODS

Materials

Cyclic AMP and orthonitrophenyl-b-D-galactopyranoside
(ONPG) were obtained from Sigma. RNA polymerase satur-
ated with s70, [g-32P]ATP and [a-32P]CTP were purchased
from Amersham Biosciences. Nucleotide triphosphates were
from MBI Fermentas. The cycle sequencing kit was from
Epicentre Technologies (Madison, WI).

Bacterial strains, plasmids and growth conditions

The bacterial strains and plasmids used in this study are listed
in Table 1. To generate the isogenic arcA, crr, ptsG, mlc, crp
and cya deletion mutants, the indicated alleles were introduced
into parental strain TSDH00 by P1 transduction (14). Luria–
Bertani broth (LB) medium was used for the routine growth of
bacteria unless otherwise indicated. If necessary, media were
supplemented with sugars (40 mM). Antibiotics were used
at the following concentrations: ampicillin, 100 mg/ml;
kanamycin, 20 mg/ml; chloramphenicol, 30 mg/ml and tetra-
cycline, 25 mg/ml.

To construct pHisEIIB, in which expression of the EIIB
domain (the cytosolic domain of EIICBGlc) tagged with 6
histidines at its N-terminus (His-EIIB) is under the control
of the pRE1-vector system (15), the pJHK plasmid (12)
was digested with NdeI and BamHI, and the fragment encod-
ing the EIIB domain was cloned into pRE-His-Tag (16).

To construct pBRcrp, in which crp expression is under the
control of its own promoter, the sequence covering the crp
promoter and coding regions was amplified by PCR using a
mutagenic primer to create a PstI site (underlined) 316 nt
upstream of the crp start codon (50-CCC TTC GAC CCA
CTG CAG TCG CGC TTG CAT-30) and a reverse primer
located 256 nt downstream of the TAA stop codon (50-
GCG ACG CAC CAA TGA TTA AGC GTT TGA TGA
AAA-30). An SspI site is located 194 nt downstream of
the stop codon in this PCR product and the 1137 bp PCR
product digested with PstI and SspI was cloned into vector
pBR322.

To construct pTSDHpro used as the supercoiled template
for assay of in vitro transcription from the sdhC promoter, the
DNA fragment covering from the position �183 to +209 rel-
ative to the transcription start site of sdhC (9) was amplified by
PCR using SdhF1 containing an engineered EcoRI site and
SdhP containing an engineered PstI site as the upstream and
downstream primers, respectively (Figure 1). The PCR prod-
uct digested with EcoRI and PstI was ligated into the corres-
ponding cloning sites in front of the rpoC terminator in the
plasmid pSA600 (17). Supercoiled template was prepared by
Plasmid mini kit (Qiagen) in RNase-free condition for the
in vitro transcription assay.

Primer extension assay

Primer extension reactions were carried out as described
previously (18). Cells were grown to A600 of 0.5, and total
E.coli RNA was purified using RNeasy mini kit (Qiagen) and
resuspended in sterile distilled water. Purified [g-32P]end-
labeled primer SdhPex (Figure 1) was mixed with 30 mg
of total cell RNA. The mixture was heated to 60�C and
then allowed to cool to room temperature over a period of
1 h. After annealing, 50 ml of reaction solution was added,
which contained 700 mM dNTPs, 10 mM MgCl2, 5 mM DTT,
20 mM Tris–HCl, pH 8.3 and 100 U of SuperscriptII reverse
transcriptase (Invitrogen). After the mixture was incubated
at 40�C for 70 min, 2 ml of 0.5 M EDTA was added into the
reaction mixture and incubated at 37�C for 30 min. The
DNA was precipitated and resolved on an 8 M urea, 5%
polyacrylamide gel and visualized by autoradiography. The
same primer was also used for sequencing the sdhC promoter
region.
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Table 1. Bacterial strains and plasmids used in this study

Strain or plasmid Genotype or description Source or reference

Strains
MG1655 Wild-type E.coli (44)
MC4100 F-relA1 araD139(argF-lac) U169 rpsL150 flb5301 deoC1 ptsF25 rbsR thiA (45)
ECL618 F9 arcA2 zjj::Tn10, Tetr (46)
MG1655Dmlc MG1655 mlc::Tetr (21)
TP2865 F-xyl argH1 DlacX74 aroB ilvA Dcrr, Km

r (47)
SR702DptsG araD139 argF-lacU169rpsL150 thiA1 relA1 flbB5301 deoC1 ptsF25 rbsR suhX1 ptsG::cat, Cmr (5)
YJ2004 W3110 lacU169 gal490 CI857 (cro-bioA) mlc::TetR (21)
SA2777 F-his rpsL relA Dcrp, Cmr (17)
CA8000Dcya CA8000 Hfr relA1 spoT1 thi-1 cya-1400::Km

r (30)
TSDH00 MC4100 l [F(sdhC0(�312/+450)-0lacZ)] This work
TSDH01 TSDH00 DarcA, Tetr This work
TSDH02 TSDH00 Dcrr, Km

r This work
TSDH03 TSDH00 ptsG::cat, Cmr This work
TSDH04 TSDH00 mlc::Tetr This work
TSDH05 TSDH00 crp::cat, Cmr This work
TSDH06 TSDH00 Dcya, Km

r This work
TSDH10 MC4100 l [F(sdhC0(�183/+450)-0lacZ)] This work
TSDH20 MC4100 l [F(sdhC0(�126/+450)-0lacZ)] This work
TSDH30 MC4100 l [F(sdhC0(�60/+450)-0lacZ)] This work
TSDH40 MC4100 l [F(sdhC0(+26/+450)-0lacZ)] This work
TSDH50 MC4100 l [F(sdhC0(�312/+450)-0lacZ)], with mutated CRP binding site This work

Plasmids
pRE-His-Tag N-terminal 6 histidine in pRE1, Ampr (16)
pBR322 Cloning vector (48)
PJHK pRE1-based expression vector for EIIB (12)
pHisEIIB pRE1-based expression vector for His-EIIB This work
pBRcrp crp in pBR322, Tetr This work
pSA600 Supercoiled plasmid containing rpoC terminator, Ampr (17)
pTSDHpro sdhC promoter region in pSA600 This work
pRS415 lacZ lacY+ lacA+, Ampr (19)
pRS-sdh0 pRS415 [F(sdhC0(�312/+450)-0lacZ)], Ampr This work
pRS-sdh1 pRS415 [F(sdhC0(�183/+450)-0lacZ)], Ampr This work
pRS-sdh2 pRS415 [F(sdhC0(�126/+450)-0lacZ)], Ampr This work
pRS-sdh3 pRS415 [F(sdhC0(�60/+450)-0lacZ)], Ampr This work
pRS-sdh4 pRS415 [F(sdhC0(+26/+450)-0lacZ)], Ampr This work
pRS-sdh5 pRS415 [F(sdhC0(�312/+450)-0lacZ)] with mutated CRP binding site, Ampr This work

Figure 1. Organization of the regulatory sites in the sdhC promoter region. The nucleotide sequence between �330 and +470 with respect to the transcription start
site of the promoter is shown. Lines above the sequence indicate the three ArcA binding sites and one presumable CRP binding site on the sdhC promoter, and
the transcription start point and the translation start codon are marked in boxes. The dashed arrows below the sequence indicate the oligonucleotides SdhF0,
SdhF1, SdhF2, SdhF3, SdhF4, SdhPex, SdhP and SdhR, and engineered restriction sites are shown below the arrows. The transcriptional start site and ArcA binding
regions were from the previous report (9).
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Construction of transcriptional lacZ fusions

To prepare the sdhC-lacZ fusion plasmid pRS-sdh0, the DNA
fragment covering from positions �312 to +450 relative to the
transcription start site of sdhC was amplified by PCR using
SdhF0 and SdhR containing an engineered BamHI site as the
upstream and downstream primers, respectively (Figure 1).
The PCR product digested with EcoRI and BamHI was ligated
into the corresponding cloning sites of pRS415 (19) to gen-
erate the sdhC-lacZ operon fusion plasmid pRS-sdh0. Simil-
arly, the sdhC-lacZ fusions pRS-sdh1, pRS-sdh2, pRS-sdh3
and pRS-sdh4 were constructed first by the PCR amplification
method and subsequently cloned into EcoRI/BamHI-digested
pRS415 after digestion with the same enzymes. The DNA
fragments covering from positions �183 (pRS-sdh1), �126
(pRS-sdh2), �60 (pRS-sdh3) and +26 (pRS-sdh4) to +450 bp
relative to the sdhC transcription start were amplified using
oligonucleotides SdhF1, SdhF2, SdhF3 and SdhF4 containing
the engineered EcoRI sites as the upstream primers, respect-
ively, and SdhR as the downstream primer (Figure 1). To
generate mutation in the CRP binding site (CGTGACCT-
GGATCACT to CTCTGCCTGGACTGCA, changed bases
underlined), two sequential PCR steps were carried out.
In the first round of PCR, the mutagenic primer SdhCRP1
(50-GGT TTT ATC CTG AAC TGC AGT CCA GGC AGA
GAT AAC AAC-30) was used in combination with SdhF0 for
the amplification of the 50 region from the CRP binding site,
while the mutagenic primer SdhCRP2 (50-GTT GTT ATC
TCT GCC TGG ACT GCA GTT CAG GAT AAA ACC -30)
was used in combination with SdhR for the amplification of
the 30 region. The two PCR products were combined and
used as template in the second round of PCR with sdhF0
and SdhR as the upstream and downstream primers, respect-
ively. The second round PCR product digested with EcoRI
and BamHI was ligated into the corresponding cloning sites
of pRS415 to generate pRS-sdh5. All the constructs were
verified by DNA sequencing by the dideoxy method using
an Applied Biosystems automated sequencer. The sdhC-lacZ
fusions located on pRS-sdh0, pRS-sdh1, pRS-sdh2, pRS-
sdh3, pRS-sdh4 and pRS-sdh5 were transferred onto lRZ5
(20) and then inserted into the MC4100 chromosome to
generate TSDH00, TSDH10, TSDH20, TSDH30, TSDH40 and
TSDH50, respectively, as described previously (19). Several
independent lysogens were analyzed to obtain monolysogens.

b-Galactosidase assays

Cells were grown to A600 of 1.0, and b-galactosidase activities
were measured using permeabilized cells as described previ-
ously (14). Enzymatic activities are given in units of mmol
ONPG hydrolyzed per min. Average values of at least four
independent samples were determined.

Detection of EIICBGlc-interacting proteins

E.coli GI698 harboring pHisEIIB was used for overexpression
of His-EIIB. Cell culture and induction of protein overexpres-
sion was performed as described previously (12). Purification
of His-EIIB was carried out using the BD TALON� metal
affinity resin (BD Biosciences) following the manufacturer’s
instructions. EIIB was purified as described previously (12).
E.coli MG1655 and MG1655 Dmlc (21) cells grown in 500 ml
of LB media were resuspended in the binding buffer (20 mM

HEPES, pH 8.1 containing 200 mM NaCl and 5 mM
imidazole) in the presence of 100 mg/ml phenylmethylsulfonyl
fluoride. The cell suspensions disrupted by passing through a
French press at 10 000 p.s.i. were centrifuged at 12 000 g for 15
min at 4�C, and the supernatant solutions were used as crude
extracts. Each crude extract was used for the ligand fishing
experiment to search for a protein(s) interacting with His-EIIB
by employing the BD TALON� metal affinity resin. Proteins
specifically interacting with His-EIIB were analyzed by
matrix-assisted laser desorption ionization time-of-flight
mass spectrometry as described previously (21). Protein con-
centration was determined by the bicinchoninic acid protein
assay (Pierce).

Gel mobility shift assay

Gel mobility shift assays were performed essentially as
described previously (12). DNA fragments covering the pro-
moter regions of sdhC and ptsG (from �183 to +156 and �264
to +180, respectively, relative to their transcription start sites)
were amplified by PCR and labeled with [g-32P]ATP by using
T4 polynucleotide kinase. The DNA binding reaction mixtures
in the binding buffer contained 100 mM of cAMP, 1 nM of
32P-labeled DNA fragments and indicated amounts of CRP.
The binding mixtures were incubated at room temperature for
10 min and analyzed by electrophoresis on 6% polyacrylamide
gels in 0.5· TBE at room temperature for 90 min.

In vitro transcription

Reactions were carried out as described previously (11) in
a 20 ml total volume containing 20 mM Tris-acetate, pH
8.0, 150 mM potassium glutamate, 1 mM DTT, 3 mM MgSO4,
1 nM supercoiled DNA template pTSDHpro, 100 mM cAMP,
40 mg/ml BSA, 1 mM ATP, 100 mM each GTP and UTP,
10 mM CTP, 5 mCi of [a-32P]CTP (3000 Ci/mmol) and
0.2 U of E.coli RNA polymerase. CRP and phosphorylated
ArcA were prepared as described previously (21) and added to
the reaction as described in the legend to Figure 6. All com-
ponents except nucleotides were incubated at 37�C for 10 min.
Transcription was started by the addition of nucleotides
containing 100 mg/ml of heparin and terminated after 30 min
by adding 20 ml of formamide loading buffer. mRNA was
electrophoresed on an 8 M urea, 5% polyacrylamide gel
and visualized by autoradiography.

Western blot analysis

The phosphorylation state of EIIAGlc was determined accord-
ing to the procedure developed by Takahashi et al. (22). Cell
culture (0.2 ml at A600 ¼ 1.0) was quenched by adding 20 ml of
10 M NaOH followed by vortexing for 10 s, and then 180 ml of
3 M sodium acetate (pH 5.2) and 1 ml of ethanol were added.
Samples were chilled at �70�C for at least 15 min, thawed and
centrifuged at 4�C. The pellet was rinsed with 70% ethanol and
resuspended in 100 ml of the SDS sample buffer, and 20 ml of
this solution was analyzed by 15% SDS–PAGE. Proteins were
then electrotransferred onto immobilin-P (Millipore, MA)
following the manufacturer’s protocol and were detected
with immunoblotting using antiserum against EIIAGlc raised
in mice as described previously (5). The protein bands were
visualized by using the SuperSignal West Pico kit (Pierce)
following the manufacturer’s instructions. The amounts of
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phosphorylated EIIAGlc were quantified by densitometric
tracing of the film using Eagle Eye� II and Eagle sight
software version 3.2 (Stratagene). To detect the intracellular
levels of CRP, growing cells were taken at A600 of 1.0 and
total cellular proteins were analyzed by SDS–PAGE using a
15% polyacrylamide gel. Proteins were then electrotransferred
onto immobilin-P and western blot analysis was carried
out using polyclonal antibody raised in mice against
CRP. The protein bands were visualized by using the
SuperSignal West Pico kit (Pierce) following the manufac-
turer’s instructions.

Measurement of intracellular cAMP concentrations

Intracellular cAMP concentrations were measured as
described previously (23) with some modifications after
cells were grown to an A600 of 1.0. Cells from 1 ml culture
were collected by centrifugation and resuspended in 500 ml
of the cell lysis buffer provided with the cAMP enzyme
immunoassay system (Amersham Biosciences). After boiling
cell suspensions in lysis buffer for 15 min and centrifugation,
the cAMP concentrations in supernatants were determined by
using the kit. The average intracellular cAMP concentration
was expressed in femtomoles per 109 cells assuming an A600

of1.0 corresponds to 8 · 108 cells/ml (24). Average values
of four independent cultures were determined.

RESULTS

Deletion of the glucose-specific PTS genes affects the
glucose repression of sdhCDAB expression

Although CRP and Cra are well-characterized global tran-
scription factors regulating carbon catabolite repression of
more than 100 genes, they have been dismissed from the
glucose repression of sdhCDAB expression (7). To elucidate
the mechanism of sdhCDAB repression by glucose, we first
tested whether the glucose repression occurs at the transcrip-
tional level or post-transcriptionally. Expression from the
sdhC promoter was monitored by primer extension assay
of the total RNA extracted from E.coli MG1655 cells grown
in the presence or absence of glucose. The level of the sdhC
transcript from the cells grown in the absence of glucose was
much higher than that of cells grown in the presence of glucose
(Figure 2). Since this result indicated that the glucose effect on
sdhCDAB occurs at the transcriptional level, we constructed a
series of transcriptional sdhC-lacZ fusion strains. The strain
TSDH00 contains a single copy of the sdhC-lacZ transcrip-
tional fusion gene in which sdhC promoter region extends
from �312 to +450 relative to the transcription start site
(Figure 1). Growth in the presence of glucose caused �3.4-
fold decrease in sdhC-lacZ expression when compared with
growth without glucose (Figure 3) in agreement with the
mRNA level determined by the primer extension assays in
Figure 2 and previous reports (7,10). As the ArcA anaerobic
repressor is known to serve as the major transcriptional regu-
lator of the sdhCDAB operon, we monitored the effect of arcA
deletion on the glucose repression of sdhC-lacZ expression.
While deletion of the arcA gene resulted in increase of sdhC-
lacZ expression as expected from the previous reports
(6,7,9,10), it did not show any remarkable effect on the glucose

repression of sdhC-lacZ expression. As a previous study had
shown that the glucose repression of sdhC-lacZ expression is
ptsG-dependent (10), we tested the effect of the two glucose-
specific PTS genes, crr and ptsG encoding EIIAGlc and
EIICBGlc, respectively, on sdhC-lacZ expression. Deletion
mutations of crr and ptsG were transduced into the
TSDH00 strain to generate strains TSDH02 and TSDH03,
respectively, and b-galactosidase activities of these strains
were measured. As shown in Figure 3, the glucose repression
was negligible in the crr deletion mutant when compared with
wild type: growth of the TSDH02 strain in LB with glucose
resulted in only a marginal decrease (�1.5 fold) of sdhC-
lacZ expression when compared with that without glucose.
Deletion of ptsG resulted in the complete loss of glucose

Figure 3. Effect of glucose in the medium on sdhC-lacZ expression in the
strain TSDH00 and its isogenic mutants. (A) Relative levels of sdhC-lacZ
expression. TSDH00 (WT) and its indicated mutant derivatives, each carrying
the sdhC-lacZ transcriptional fusion gene on their chromosome, were grown in
LB medium or LB medium supplemented with 40 mM glucose under aerobic
conditions, and b-galactosidase activities were measured as described under
‘Materials and Methods.’ The shaded and open bars indicate b-galactosidase
activities in Miller units in cells grown in LB medium with and without glucose,
respectively. Activities represent the average of at least four independent
experiments. (B) Glucose repression of sdhC-lacZ expression presented as
the ratio of b-galactosidase activities in cells grown in LB to those in cells
grown in LB + glucose.

Figure 2. Primer extension analysis of the sdhC transcript indicates that the
glucose repression occurs at the transcriptional level. Total RNA was isolated
from E.coli MG1655 cells grown in LB medium or LB medium supplemented
with 40 mM glucose under aerobic condition. Primer extension analysis was
carried out as described under ‘Materials and Methods.’ Lanes C, T, A and G
show the DNA sequencing reaction products from the corresponding region
within the sdhC regulatory region using the same primer.
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repression of sdhC-lacZ expression in agreement with the
previous study (10). Loss of glucose repression of sdhC-
lacZ expression in TSDH02 and TSDH03 implies that the
glucose-specific PTS proteins play crucial roles in the glucose
repression of sdhCDAB expression.

In agreement with the previous study by Takeda et al. (10),
the results in Figure 3 demonstrate the complete loss of the
glucose repression of sdhC-lacZ expression in ptsG mutant. It
was previously shown that the induction of ptsG and ptsHIcrr
expression by glucose was also ptsG-dependent, and various
studies showed that Mlc is the repressor responsible for this
glucose induction (18,25–28). Further studies revealed that
the dephospho-form of EIICBGlc could sequester the global
repressor Mlc through the direct protein–protein interaction
and induce expression of the Mlc regulon (11–13). Thus, the
simplest model that could account for the glucose repression of
sdhCDAB expression and its dependence on ptsG was the
existence of a transcription regulator interacting with EIICBGlc

and repressing the expression of the sdhCDAB operon in the
presence of glucose. To search for a protein(s) interacting with
EIICBGlc and thus mediating the glucose repression of
sdhCDAB expression, we carried out a ligand fishing experi-
ment. When the crude extracts prepared from MG1655 and its
isogenic mlc mutant were mixed with EIIB or 6His-tagged
form of EIIB (His-EIIB) and subjected to pull-down assays
using the BD TALON� metal affinity resin, we could not find
out any proteins other than Mlc that specifically interacted
with the glucose-sensing EIIB domain of the ptsG gene

product (data not shown). Although it is well established
that Mlc is the global transcription repressor regulating expres-
sion of many genes in response to the presence of glucose, the
possibility that Mlc may participate in the glucose repres-
sion of sdhCDAB expression was ruled out as the mlc null
mutant, TSDH04, still exhibited the glucose repression of
sdhC-lacZ expression (Figure 3), in agreement with a previous
report (10).

Regulation of sdhCDAB expression by the
CRP·cAMP complex

Considering the fact that only Mlc, which is known to exist in a
very limiting concentration in E.coli (18,25), could be fished
out from the crude extract of MG1655 using EIIB as bait (data
not shown), we assumed that the glucose repression of the
sdhCDAB operon might not involve any transcription regulat-
ors interacting with EIICBGlc in E.coli and that the effect of
ptsG on the glucose repression of sdhCDAB expression might
be indirect.

To search for the cis-acting region(s) responsible for regu-
lation of the glucose repression of the sdhCDAB operon, a
series of single-copy transcriptional lacZ fusion constructs
containing various promoter regions of sdhC were generated
and introduced into the E.coli strain MC4100. The glucose
repression of sdhC expression in TSDH00 and four different
50 deletion constructs of sdhC-lacZ fusion, TSDH10, TSDH20,
TSDH30 and TSDH40, was monitored in cultures grown
aerobically in the presence or absence of glucose (Figure 4).

Figure 4. 50 Deletion analysis of the sdhC promoter region. Each construct was inserted into the MC4100 chromosome and monolysogens were selected and
grown in LB media with or without glucose to search for the cis-acting region(s) responsible for regulation of the glucose repression of the sdhCDAB operon.
(A) 50 Deletion constructs of the transcriptional sdhC-lacZ fusions. Four ArcA binding sites, one CRP binding site and the translation start site are schematically
shown. Mutated CRP binding site on TDH50 is shown as hatched box. The numbers refer to the nucleotide positions relative to the transcription start site of sdhC.
Effect of glucose on sdhC expression is presented on the right side of each construct as the ratio of b-galactosidase activities in cells grown in LB to those in cells
grown in LB with glucose. (B) b-Galactosidase activities of 50 deletion constructs of the sdhC-lacZ fusion. Cells harboring each fusion construct were aerobically
grown in LB medium or LB medium supplemented with 40 mM glucose, and b-galactosidase activities were measured as described above. Values represent the
average of at least four independent determinations ± SD.
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Disruption of the upstream ArcA site centered at �205 bp
relative to the transcription start site (the TSDH10 strain)
modestly reduced the level of aerobic gene expression as
previously reported (9), while deletion of the DNA region
containing the ArcA site centered at �119 elevated the
level of aerobic sdhC-lacZ expression (TSDH20 strain).
Regardless of the changes in the aerobic sdhC-lacZ expression
levels, both the promoter fusions TSDH10 and TSDH20 still
exhibited the glucose repression of sdhC-lacZ expression to
significant levels similar to wild-type TSDH00 (Figure 4). On
the construct TSDH30, lacZ was fused to the region covering
from �60 to +450 bp relative to the sdhC transcription start,
and thus the presumed CRP-binding site centered at �79.5
(29) was deleted but it still retains the ArcA binding site
centered at �28 (9). This construct resulted in the significant
reduction of b-galactosidase activity and growth of the
TSDH30 strain in LB with glucose resulted in only a marginal
decrease (1.49 fold) of sdhC-lacZ expression when compared
with growth without glucose (Figure 4). These results indicate
that the factor mediating the glucose repression may bind to
the region extending from �126 to �60 relative to the tran-
scription start site of the sdhC promoter, where the presumed
CRP-binding site is located (29) (Figures 1 and 4). Since it was
reported that the crp deletion mutant cell still showed the
glucose repression of sdhC-lacZ expression (7), it had been
believed that a regulator other than CRP would be responsible
for the glucose repression of sdhCDAB expression (10). The
promoter deletion experiments in this study, however, led us to
speculate that CRP may be the direct regulator of the glucose
repression of sdhCDAB expression. Therefore, we mutated the
putative CRP binding site centered at �79.5 to check whether
it is directly involved in the glucose repression of sdh expres-
sion. TSDH50, which contains a single copy of the sdhC-lacZ
transcriptional fusion gene with mutated CRP binding site
(CGTGACCTGGATCACT to CTCTGCCTGGACTGCA),
resulted in the significant reduction of b-galactosidase activity
and almost complete loss of the glucose repression of lacZ
expression similar to the TSDH30 strain (Figure 4). From
these results, we concluded that the CRP binding site on
the sdhC promoter region is directly involved in the glucose
repression of sdhCDAB expression.

The involvement of CRP and cAMP on the glucose repres-
sion of sdhC expression was further investigated using two
deletion mutants lacking either CRP or cAMP production.
Cells of the crp mutant strain, SA2777, were used to generate
an isogenic crp deletion mutant of the parental strain TSDH00
by P1 transduction. After crp deletion was confirmed by west-
ern blot analysis using anti-CRP polyclonal antibody in this
strain, TSDH05 (data not shown), b-galactosidase activities
were measured in TSDH05 cells grown in LB media in the
presence and absence of glucose. Contrary to the previous
report, the glucose repression was completely abolished in
this mutant strain (compare data for the crp mutant with
wild type in Figure 3A and B). The sdhC-lacZ expression
of TSDH05 grown in LB was even lower than that of wild-
type cells grown in the presence of glucose, indicating that
CRP is directly involved in the regulation of sdhCDAB expres-
sion. To determine whether the glucose repression of sdhC-
lacZ expression is dependent on cAMP, an isogenic cya
deletion mutant of TSDH00 was also generated by P1 trans-
duction from the CA8000Dcya strain (30). The sdhC-lacZ

expression in this mutant strain TSDH06 showed a similar
pattern with that of TSDH05 and was not affected by the
presence of glucose (cya mutant in Figure 3). From these
results, we concluded that the CRP·cAMP complex is one
of the major transcriptional regulators of the sdhCDAB operon
and it is directly involved in the glucose repression of
sdhCDAB.

To confirm the direct involvement of CRP and cAMP in the
glucose repression of the sdhCDAB operon, we tested the
effect of episomally expressed CRP and cAMP added in
the medium on sdhC-lacZ expression in the two mutant
cells. The genomic DNA fragment containing the crp gene
including its own promoter was cloned into the low copy
number plasmid pBR322, and the product pBRcrp was trans-
formed into the crp deletion mutant to see whether the glucose
repression phenotype is recovered. The episomal expression
of CRP increased the sdhC-lacZ expression in TSDH05
cells and the TSDH05 cells transformed with pBRcrp showed
the glucose-dependent repression of sdhC-lacZ expression
(Figure 5A). The sdhC-lacZ expression of TSDH05 cells
harboring pBRcrp grown in the absence of glucose showed

Figure 5. Restoration of sdhC-lacZ expression by the addition of cAMP and
episomal expression of CRP in the cya and crp mutants, respectively.
(A) Complementation of the crp mutation phenotype on sdhC-lacZ expression
by episomally expressed CRP. The open bars represent the sdhC-lacZ
expression in the TSDH05 (Dcrp) strain harboring pBRcrp grown in LB and
the shaded bars represent that in LB supplemented with glucose (40 mM). The
TSDH05 strain harboring pBR322 was used as a control. (B) Addition of
cAMP in growing medium increases the expression of sdhC-lacZ in cya mutant
cells. Freshly grown TSDH06 (Dcya) cells were inoculated into LB medium.
After incubation for 2.5 h (marked with arrow) under aerobic condition at 37�C,
cAMP (1 mM) was added to the medium (triangle), b-galactosidase activities
were determined in cells taken at the indicated times and compared with those
in cells grown without addition of cAMP (circle).
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�1.8-fold higher b-galactosidase activity than that of cells
grown in the presence of glucose, while TSDH05 cells har-
boring pBR322 showed the lower b-galactosidase activity
regardless of the presence of glucose. These results suggest
that elimination of the glucose repression of sdhCDAB expres-
sion in TSDH05 resulted from the failure of activation of gene
expression by CRP. Inducibility of the sdhC promoter by
cAMP was also investigated in the cya mutant strain
(Figure 5B). The sdhC-lacZ expression level in TSDH06 cells
was not significantly changed during the cell growth (filled
circles). When 1 mM of cAMP was added to the growth
medium, however, the sdhC-lacZ expression of TSDH06
cells was increased to �3-fold within 1 h. These results
support that intracellular cAMP production as well as crp
expression plays a crucial role in the regulation of sdhCDAB
expression.

The CRP·cAMP complex binds to the sdhC promoter
and regulates transcription in vitro

To show the direct binding of the CRP·cAMP complex to the
sdhC promoter in vitro, gel shift assays were carried out using
purified CRP and the sdhC promoter fragment in the presence
of cAMP. The results showed that CRP·cAMP specifically
binds to the sdhC promoter (Figure 6A). As the amount of
CRP added in the reaction mixture increased, the amount of
the CRP–promoter DNA complex also increased. Binding
affinity of the CRP·cAMP complex toward the sdhC promoter
was comparable with that toward the ptsG promoter.

To investigate the effect of CRP·cAMP binding to the pro-
moter on sdhCDAB transcription, the in vitro transcription
assay was performed with a supercoiled DNA template
(pTSDHpro) containing base pairs �183 to +209 relative to
the transcription start site, covering the sdhC promoter and its
CRP and ArcA binding sites. When RNA polymerase alone
was present in the reaction, transcription from the sdhC pro-
moter did not occur efficiently (Figure 6B, lane 1). The addi-
tion of CRP and cAMP, however, remarkably increased the
promoter activity (Figure 6B, lanes 2–5). Most intriguingly,
incubation of the reaction mixture with ArcA-P repressed the
CRP-activated promoter activity in a dose-dependent manner
(Figure 6B, lanes 6–8). The specificity of CRP·cAMP function
in sdhCDAB transcription was confirmed by the consistent
activity of rep that originates from replication origin of the
DNA template regardless of the presence of CRP and ArcA-P.
These data confirm that the CRP·cAMP complex affects the
sdhCDAB transcription initiation and is directly involved
in the glucose repression of sdhCDAB expression.

The level of phosphorylated EIIAGlc correlates with the
intracellular cAMP concentration and sdhC-lacZ
expression

It was reported that expression of sdhC-lacZ varied depending
on the type of carbon source added in the medium (7). From
the above results, it could be assumed that the different exp-
ression levels of sdhC-lacZ on various sugars might result
from the change in the intracellular cAMP concentration
depending on the type of carbon source. To verify this assu-
mption, the relationship between the intracellular cAMP
concentrations and b-galactosidase activities was determined
in TSDH00 cells grown in LB with various carbon sources.

b-Galactosidase activities of TSDH00 revealed the carbon
source-dependent expression of sdhC-lacZ (Figure 7A).
Growth with mannose, fructose or maltose did not affect
the expression level of sdhC-lacZ, while N-acetylglucosamine
and galactose showed the similar effect with glucose on
sdhC-lacZ expression. To investigate the effect of cAMP on
sdhC-lacZ expression, the levels of intracellular cAMP were
also measured (Figure 7A). The intracellular cAMP level in
TSDH00 cells decreased when glucose was added to the
medium, in agreement with the previous reports [reviewed
in (1)]. The intracellular cAMP level in cells grown on
glucose, N-acetylglucosamine or galactose was lower than
that in cells grown on mannose, fructose or maltose. The result
showed that carbon source-dependent expression of sdhC-lacZ
is in accordance with the intracellular cAMP concentration.
Although the mechanism for the regulation of the intracellular
cAMP level is not fully understood, a popular model for the
regulation of adenylate cyclase activity is that phosphorylated
EIIAGlc stimulates adenylate cyclase activity and increases the
intracellular cAMP concentration (1). Therefore, we measured
the level of EIIAGlc phosphorylation in the cells grown with
various carbon sources by western blot analysis according to
the procedure developed by Takahashi et al. (22) as described
under ‘Materials and Methods’ (Figure 7B). It is well

Figure 6. CRP binds to the sdhC promoter and activates sdhCDAB expression
in vitro in the presence of cAMP. (A) CRP binds to its target sites on the ptsG
and sdhC promoters. 32P-labeled DNA probes containing the ptsG or sdhC
promoter regions were mixed with the indicated CRP concentrations in the
presence of 100 mM cAMP and then electrophoresed on 6% polyacrylamide
gels. (B) The effect of CRP·cAMP and ArcA on sdhCDAB transcription in vitro.
The supercoiled DNA template, pTSDHpro, was used for the in vitro transcrip-
tion. The templates were preincubated with RNA polymerase and CRP and/or
ArcA as described under ‘Materials and Methods.’ The reaction was started and
stopped by the addition of NTP solution containing heparin and loading dye,
respectively, and analyzed on a 5% polyacrylamide gel containing 8 M urea.
Lanes 2–5 contain 5, 10, 20 and 40 nM CRP in the reaction, respectively; lanes
6–8 contain 100, 200 and 400 nM ArcA with 40 nM CRP in the reaction,
respectively. The transcripts from the plasmid origin of replication (106/107
nt) are marked as rep. The 248 nt transcript from sdhC promoter is indicated.
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established that phosphorylated EIIAGlc migrates slower than
the dephosphorylated form on an SDS–polyacrylamide gel
(22). The data in Figure 7A and B show that there is a general
correlation between the level of EIIAGlc phosphorylation and
the intracellular cAMP concentration in the cells grown on
each carbon source: the level of phosphorylated EIIAGlc in
cells grown with glucose, N-acetylglucosamine or galactose
was lower than that in cells grown with mannose, fructose or
maltose (Figure 7B). Taken together with above results, this
result led us to the conclusion that the different phosphoryla-
tion state of EIIAGlc on each sugar reflects the different cAMP
concentration in the cell, and consequently the different sdh-
CDAB expression level depending on the type of carbon
source added to the medium. From these facts, it could be
predicted that the ptsG gene plays an indirect role and the crr
gene product is the major determinant on the glucose repres-
sion of sdhC expression. It could be assumed that the level of
EIIAGlc phosphorylation may be unaffected by glucose in the
ptsG mutant because EIIAGlc cannot pass the phosphate group
on to EIICBGlc. To verify this, we measured the level of
EIIAGlc phosphorylation in ptsG cells. As shown in
Figure 7C, glucose in the growth medium did not affect the
phosphorylation state of EIIAGlc in the ptsG mutant cells.
Based on these results, it is assumed that the loss of glucose
repression of sdhCDAB expression in the ptsG mutant results
from the lack of glucose-dependent regulation of the EIIAGlc

phosphorylation state in the mutant that affects the level of
intracellular cAMP.

DISCUSSION

It was reported that activities of E.coli TCA cycle enzymes
such as succinate dehydrogenase are remarkably reduced
during anaerobiosis and in the presence of glucose in the
medium almost 40 years ago (31). The recent studies in
the transcriptomic and proteomic levels also revealed that
the genes involved in the TCA cycle are strongly repressed
by glucose and/or anaerobiosis (32–34). While the mechanism
underlying the anaerobic repression of sdhCDAB was well
documented in previous studies (7,9), the mechanism of the
glucose repression of sdhCDAB expression still remains as a
puzzling issue.

Although CRP was excluded from the regulatory circuit
of sdhCDAB expression (7), several reasons prompted us to
re-consider the CRP·cAMP complex as the direct mediator of
the glucose repression of sdhCDAB: (i) the CRP·cAMP com-
plex has been established as the major regulator of the glucose-
mediated carbon catabolite repression of more than 100 genes
(1); (ii) a putative CRP-binding site was proposed to be
located on the sdhC promoter region (29) (Figure 1), although
binding of CRP to the promoter has never been demonstrated;
(iii) we could not find any transcription regulators other than
Mlc that interact with the glucose-sensing EIIB domain of the
ptsG gene product (data not shown), while it was shown that
the ptsG gene acts as a crucial mediator of the glucose repres-
sion of the sdhCDAB operon (10). Furthermore, the mlc mut-
ant still showed the glucose repression of sdhCDAB (10)
(Figure 3); (iv) in a previous review, it was proposed that
catabolite repression of the sdhCDAB operon is controlled
presumably by the CRP·cAMP complex (35). (v) Finally,
recent reports on the transcriptome analyses of the crp mutant
using microarray techniques indicated that expression of the
sdhCDAB operon was affected by deletion of the crp gene
(36,37). It was proposed that the sdhCDAB operon might
actually be regulated by the CRP homologue Fnr in vivo
(37), based on the facts that Fnr has been shown to regulate
sdhCDAB expression in response to anaerobiosis (7), the
consensus sequence for Fnr is similar to that for CRP,
and both proteins can bind to the DNA site for the other
protein (38).

From the results in this study, it is evident that CRP is
directly involved in the regulation of sdhCDAB expression
and the glucose repression of sdhCDAB occurs in a cAMP-
dependent manner. Genetic studies using cya and crp mutants
and the sdhC-lacZ fusion strain harboring the mutated crp
binding site on the sdhC promoter region suggest that both
cAMP and CRP are required for sdhCDAB expression and its
glucose repression (Figures 3–5). In vitro studies demonstrate
binding of CRP to the sdhC promoter and activation by the
CRP·cAMP complex of sdhC transcription (Figure 6). Further-
more, the phosphorylation level of EIIAGlc in cells grown with
different carbon sources correlates with the intracellular con-
centration of cAMP and the sdhC-lacZ expression level
(Figure 7). It was previously reported that the phosphorylation
level of EIIAGlc is dependent on the type of carbon source in
the medium (39). Although no biochemical evidence has been

Figure 7. The phosphorylation level of EIIAGlc correlates with the intracellular
cAMP concentration and the sdhC-lacZ expression level. (A) Samples from
exponentially growing cultures of the TSDH00 in LB or LB containing indic-
ated sugars (40 mM) were taken and b-galactosidase activities (open bars) and
cAMP concentrations (shaded bars) were determined as described above.
(B) Using the same samples, the phosphorylation states of EIIAGlc were de-
termined by western blot analysis as described under ‘Materials and Methods.’
Amounts of the phosphorylated EIIAGlc were quantitated using an image ana-
lyzer, and ratios compared with the sample from cells grown in LB are shown
below the protein bands. (C) Western blot analysis indicates that the phosphor-
ylation state of EIIAGlc is not affected by the presence of glucose in the ptsG
mutant. Ratios of the amount of phosphorylated EIIAGlc compared with the
sample from wild-type cells grown in LB are indicated below the protein bands.
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provided, it is generally believed that the phosphorylated
form of EIIAGlc stimulates adenylate cyclase activity (1). In
the presence of glucose, N-acetylglucosamine or galactose in
the medium, the level of the phospho-form of EIIAGlc

decreased (Figure 7B). This decrease seems to be responsible
for reduced activity of adenylate cyclase and reduced produc-
tion of cAMP required to activate sdhCDAB expression after
binding to its receptor protein CRP. Thus, we conclude that
the CRP·cAMP complex mediates the glucose repression
of the sdhCDAB operon. There still remains one question
why the ptsG mutant exerts a more profound effect than muta-
tion of crr on the glucose repression of the sdhCDAB promoter
(Figure 3), that is in conflict with our conclusion that the
crr gene product EIIAGlc is the major regulator in orchestrat-
ing glucose repression of the sdhCDAB promoter. One pos-
sibility for this conflict may be due to the pleiotropic effect of
the ptsG and crr mutants on expression of many genes expec-
ted from the fact that both EIICBGlc and EIIAGlc interact
with and regulate activities of many regulatory proteins
(1,5,11–13). More studies need to be carried out to fully
understand this question.

Under fully aerobic conditions, the TCA cycle in E.coli
operates as an oxidative pathway that needs the activities
of succinate dehydrogenase, encoded by sdhCDAB, and a-
ketoglutarate dehydrogenase. In the presence of readily fer-
mentable sugars and/or under anaerobic conditions, however,
the TCA cycle hardly operates in an oxidative way because
coupling of the pathway to terminal respiration is absolutely
required to maintain the activities of the succinate dehydro-
genase complex and a-ketoglutarate dehydrogenase complex
that produce FADH2 and NADH, respectively. On the
other hand, the reactions that make oxaloacetate, succinyl-
coenzyme A and a-ketoglutarate are necessary because
these intermediates are still required for the biosynthesis of
amino acids and tetrapyrroles. Under these conditions, the
TCA cycle is converted from an oxidative and cyclic into a
reductive and branched pathway to solve the problem. In the
reductive pathway, succinyl-coenzyme A is made by reversing
the reactions between oxaloacetate and succinyl-coenzyme A,
using the enzyme fumarate reductase instead of succinate
dehydrogenase (40). Thus, the decreased sdhCDAB expression
by carbon catabolite repression in the presence of glucose
provides one of the mechanisms to maintain the TCA cycle
in a reductive pathway, leading to accumulation of succinate
and succinyl-coenzyme A (41). The sdhCDAB operon in
this study is not the first example of genes encoding the
TCA cycle enzymes whose expression are activated by
CRP and repressed by ArcA and Fnr. The acnB, encoding
one of the two aconitases differentially expressed in E.coli,
has been shown to be regulated in the same way as the sdh-
CDAB operon (42). Intriguingly, expression of both fumA and
sdhCDAB was recently shown to be down-regulated by the
small RNA, RyhB (8). Expression of the fumA and fumC genes
encoding two fumarase isozymes of the TCA cycle in E.coli
was also shown to be subject to the glucose repression and
require cAMP (43). Thus, decrease in the CRP·cAMP level
in the presence of readily fermentable glucose seems to
be responsible for the reduced expression of genes
encoding enzymes necessary to maintain the TCA cycle in
an oxidative pathway and conversion of the cycle into a
reductive pathway.
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