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novel 7-amino-3,4-dihydroquinolin-2(1H)-one derivatives incorporating mono or
dipeptide moiety
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ABSTRACT
New dipeptide–dihydroquinolinone derivatives were successfully synthesised by benzotriazole mediated
nucleophilic acyl substitution reaction and their structures were elucidated by spectroscopic and analytic
techniques. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was deter-
mined against four human (h) isoforms, hCA I, hCA II, hCA IX and hCA XII. While all compounds showed
moderate to good in vitro CA inhibitory properties against hCA IX and hCA XII with inhibition constants in
the micromolar level (37.7–86.8 and 2.0–8.6mM, respectively), they did not show inhibitory activity against
hCA I and hCA II up to 100mM concentration. The antioxidant capacity of the peptide–dihydroquinolinone
conjugates was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Most
of the synthesised compounds showed low antioxidant activities compared to the control antioxidant
compounds BHA and a-tocopherol.
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1. Introduction

2-Quinolinones derivatives constitute a privilege class of hetero-
cyclic compounds for their wide range of important biological
properties such as such as antibacterial1,2, antimalarial3, antitu-
mor4, carbonic anhydrase inhibitor5,6, antioxidant, anti-tubercu-
losis7, antiparasitic8 and anti-hepatit C and B viruses activity9. For
example, the 3,4-dihydro-2-quinolinone structure is found in a
number of biologically active and FDA approved medicine such as
cilostazol, carteolol and aripiprazole. Compounds containing the
3,4-dihydro-2(1H)-quinolone moiety also exhibit a variety of activ-
ities in both the peripheral and central tissues, which includes
phosphodiesterase inhibition, blocking of b-adrenergic receptors,
antagonism of vasopressin receptors and interaction with sero-
tonin and dopamine receptors10. Since heterocyclic compounds
containing peptide have been of particular interest because their
biocompatibility of the peptide parts play a crucial role in trans-
porting into mammalian tissue of these type drug candidates11.
The carbonic anhydrase enzymes play a role in many physiological
events, such as acid base balance, regulation of cardiovascular
tone, digestion, ion exchange between cell sections and providing
the necessary bicarbonate for different enzymatic reactions12–14.
The emergence of possible relationships between carbonic anhy-
drase enzyme and cancer in recent years has increased the inter-
est in carbonic anhydrase enzyme inhibitors15,16.

Encouraged by the above literature information and our inter-
est in the biological and chemical properties of such compounds,

synthesis and carbonic anhydrase and antioxidant properties of
mono and dipeptide containing dihydroquinolinone derivatives
have been studied.

2. Material and methods

2.1. Chemistry

The starting materials and reagents used in the reactions were
supplied commercially by Across, Aldrich or Merck Chemical Co.
1H NMR (400.13MHz) and 13C NMR (100.62MHz) spectra were
obtained using Bruker Advance 400 Ultra shield high performance
digital FT NMR spectrometer. Infra-red spectra were recorded with
ATR equipment in the range 4000–200 cm�1 on a Perkin-Elmer FT-
IR spectrophotometer. Elemental analyses were performed by
LECO CHNS-932 elemental analyser. Melting points were recorded
using an electrothermal-9200 melting point apparatus and are
uncorrected. Positive or negative-ion electrospray ionization (ESI)
mass spectra were recorded on a double-focusing Finnigan MAT
95 instrument with BE geometry. All microwave-assisted reactions
were carried out in a microwave oven system manufactured by
Milestone (Milestone Start S Microwave Labstation for Synthesis).
Benzotriazole derivatives of N-protected amino acids (I–V)3,17,18

and dipeptide (VI)19,20 were prepared according to litera-
ture procedure.
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2.2. General procedure for the synthesis of mono or
dipeptide–dihydroquinolinone conjugates, 1–6

A mixture of equivalent amounts of the appropriate N-protected
aminoacylbenzotriazole and 7-amino-3,4-dihydroquinolin-2(1H)-
one was subjected to microwave irradiation (100W, 70 �C) in
anhydrous THF (5ml) for 30min. On completion of the reaction
followed by TLC, all volatiles were removed by rotavapor and the
obtained crude product was crystallised from methanol.

2.2.1. Tert-butyl (R)-(1-oxo-1-((2-oxo-1,2,3,4-tetrahydroquinolin-
7-yl)amino)propan-2-yl)carbamate, 1

Cream solid (77%); mp 197–198 �C; 1H NMR (DMSO-d6,
400MHz), d 10.17 (s, 1H, NHlactam), 9.91 (s, 1H,NH), 7.28 (d, 1H,
N–H, J¼ 4Hz), 7.17–7.09 (m, 3 H, Ar–H) , 4.16–4.13 (m, 1H, CHNH),
2.86 (t, 2H, COCH2, J¼ 8Hz), 2.47 (t, 2H, COCH2CH2, J¼ 8Hz), 1.44
(s, 9H, (OCH(CH3)3), 1.29 (d, 3H, CHCH3, J¼ 8Hz). 13C NMR (DMSO-
d6, 400MHz), d 171.8 (COCH2), 170.8 (COCH), 155.5 (COOCH2Ph),
138.93, 138.51, 128.21, 118.82, 113.29, 106.71 (Ar–C), 78.5
(OCH(CH3)3), 50.8 (CHNH), 31.1 (COCH2CH2), 28.7 (COCH2CH2), 24.8
(OCH(CH3)3), 18.5 (CHCH3). �(C¼O)carbamate: 1605 cm�1,
�(C¼O)amide: 1672, 1687 cm�1, �(N–H)amine: 3200, 3344 cm�1.
Elemental analysis: C17H23N3O4 required C, 61.25; H, 6.95; N, 12.60;
S, 6.74, found C, 61.02; H, 6.94; N, 12.63. HRMS m/z for C17H23N3O4

[MþNa]þcalcd. 356.1586, found 356.2000.

2.2.2. Tert-butyl (R)-(1-oxo-1-((2-oxo-1,2,3,4-tetrahydroquinolin-
7-yl)amino)-3-phenylpropan-2-yl)carbamate, 2

Cream solid (87%); mp 180–181 �C; 1H NMR (DMSO-d6,
400MHz), d 10.14 (s, 1H, NHlactam), 9.99 (s, 1H,NH), 7.33–7.07 (m,
9 H, Ar–HþNH) , 4.34–4.29 (m, 1H, CHNH), 2.99–2.95 (m, 1H,
CH2Ph), 2.83–2.79 (m, 3H, COCH2þCH2Ph), 2.42 (t, 2H, COCH2CH2),
1.32 (s, 9H, OCH(CH3)3).

13C NMR (DMSO-d6, 400MHz), d 171.1
(COCH2), 170.8 (COCH), 155.8 (COOC(CH3)3), 138.9, 138.4, 138.32,
129.7, 128.5, 128.2, 126.6, 1189.0, 113.5, 106.8 (Ar–H),78.7
(OCH(CH3)3), 56.9 (CHNH), 37.9 (CHCH2), 31.1 (COCH2CH2), 28.6
(COCH2CH2), 24.8 (OCH(CH3)3). �(C¼O)carbamate: 1604 cm�1,
�(C¼O)amide: 1623, 1671 cm�1, �(N–H)amine: 3326 cm�1.
Elemental analysis: C23H27N3O4 required C, 67.46; H, 6.65; N, 10.26,
found C, 67.11; H, 6.56; N, 10.30.HRMS m/z for C23H27N3O4

[M�H]þcalcd. 408.1923, found 408.2000.

2.2.3. Tert-butyl (S)-(4-(methylthio)-1-oxo-1-((2-oxo-1,2,3,4-tetrahy-
droquinolin-7-yl)amino)butan-2-yl)carbamate, 3

Beige solid (86%); mp 171–172 �C; 1H NMR (DMSO-d6,
400MHz), d 10.12 (s, 1H, NHlactam), 9.93 (s, 1H,NH), 7.23 (d, 1H,
N–H, J¼ 4Hz), 7.13–7.06 (m, 3 H, Ar–H) , 4.15–4.10 (m, 1H, CHNH),
2.80 (t, 2H, COCH2, J¼ 8Hz), 2.48–2.40 (m, 4H,
COCH2CH2þCHCH2CH2S), 2.06 (s, 3H, CH3), 1.88–1.85 (m, 2H,
CHCH2CH2S), 1.38 (s, 9H, OC(CH3)3).

13C NMR (DMSO-d6, 400MHz),
d 171.2 (COCH2), 170.9 (COCH), 156.0 (COOC(CH3)3), 138.9, 138.3,
128.2, 119.0, 113.5, 106.9 (Ar–H), 78.7 (OCH(CH3)3), 65.4 (CHNH),
54.8 (COCH2CH2), 31.1 (CHCH2CH2S), 30.2 (COCH2CH2), 28.6 (SCH3),
24.8 (CHCH2CH2S), 15.1 (OCH(CH3)3). �(C¼O)carbamate:
1613 cm�1, �(C¼O)amide: 1669, cm�1, �(N–H)amine: 3224 cm�1.
Elemental analysis: C19H27N3O4 required: C, 57.99; H, 6.92; N,
10.68; S, 8.15, found: C, 57.89; H, 6.86; N, 10.67; S, 8.18. HRMS m/z
for C19H27N3O4S [M�H]þ calcd. 392.1644, found 392.1000;
[MþNa]þ calcd. 416.1620, found 416.3000.

2.2.4. Benzyl (R)-(1-oxo-1-((2-oxo-1,2,3,4-tetrahydroquinolin-7-
yl)amino)-3-(phenylthio)propan-2-yl)carbamate, 4

Cream solid (74%); mp 150–151 �C; 1H NMR (DMSO-d6,
400MHz), d 10.24 (s, 1H, NHlactam), 10.20 (s, 1H, NH), 7.88 (d, 1H,
N–H, J¼ 8Hz), 7.45–7.12 (m, 13H, Ar–H) , 5.11 (s, 2H, CH2Ph),
4.44–4.43 (m, 1H, CHNH), 3.42–3.39 (m, 1H, CH2S), 3.27–3.22 (m,
1H, CH2S), 2.86 (t, 2H, COCH2, J¼ 8Hz), 2.48 (m, 4H, COCH2CH2,
J¼ 8Hz). 13C NMR (DMSO-d6, 400MHz), d 170.8 (COCH2), 169.0
(COCH), 156.4 (COOCH2Ph), 138.9, 138.1, 137.3, 136.3, 129.6, 128.8,
128.8, 128.3, 128.2, 126.4, 119.3, 113.7, 107.1 (Ar–C), 66.1 (CH2Ph),
55.3 (CHNH), 35.3 (CHCH2S), 31.1 (COCH2CH2), 24.8 (COCH2CH2).
�(C¼O)carbamate: 1606 cm�1, �(C¼O)amide: 1659, 1680 cm�1,
�(N–H)amine: 3288 cm�1. Elemental analysis: C26H25N3O4S
required: C, 65.67; H, 5.30; N, 8.84; S, 6.74, found C, 65.39; H, 5.04;
N, 8. 71; S, 6.63. HRMS m/z for C26H25N3O4S [MþH]þ calcd.
476.1644, found 476.3000.

2.2.5. Benzyl (S)-(4-(methylthio)-1-oxo-1-((2-oxo-1,2,3,4-tetrahy-
droquinolin-7-yl)amino)butan-2-yl)carbamate, 5

Cream solid (78%); mp 137–138 �C; 1H NMR (DMSO-d6,
400MHz), d 10.19 (s, 1H, NHlactam), 10.08 (s, 1H, NH), 7.70 (d, 1H,
N–H, J¼ 8Hz), 7.51–7.12 (m, 8 H, Ar–H) , 5.09 (s, 2H, CH2Ph),
4.31–4.25 (m, 1H, CHNH), 2.86 (t, 2H, COCH2, J¼ 8Hz), 2.60–2.39
(m, 4H, CHCH2CH2þCOCH2CH2), 2.10 (s, 3H, CH3), 1.99–1.91 (m,
2H, CHCH2CH2SCH3).

13C NMR (DMSO-d6, 400MHz), d 170.9
(COCH2), 170.9 (COCH), 156.6 (COOCH2Ph), 138.9, 138.3, 137.4,
128.8, 128.3, 128.2, 119.1, 113.5, 108.5, 106.9 (Ar–C), 66.0 (CH2Ph),
55.2 (CHNH), 32.0 (COCH2CH2), 31.1 (CHCH2CH2), 30.2 (COCH2CH2),
24.8 (CH3), 15.1 (CH2CH2S). �(C¼O)carbamate: 1604 cm�1,
�(C¼O)amide: 1654, 1684 cm�1, �(N–H)amine: 3283 cm�1.
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Elemental analysis: C22H25N3O4S required C, 61.81; H, 5.89; N, 9.83;
S, 7.50, found C, 61. 72; H, 5.81; N, 9.62; S, 7.51. HRMS m/z for
C22H25N3O4S [MþH]þ calcd. 427.1644, found 428.2000.

2.2.6. Benzyl ((R)-1-oxo-1-(((S)-1-oxo-1-((2-oxo-1,2,3,4-tetrahydro-
quinolin-6-yl)amino)-3-phenylpropan-2-yl)amino)-3-phenylpro-
pan-2-yl)carbamate, 6

Cream solid (62%); mp 197–198 �C; 1H NMR (DMSO-d6,
400MHz), d 10.15 (s, 1H, NHlactam), 10.06 (s, 1H, NH), 8.30 (d, 1H,
N–H, J¼ 8Hz), 7.47 (d, 1H, N–H, J¼ 8Hz), 7.33–7.09 (m, 18H,
Ar–H) , 4.95 (s, 2H, CH2Ph), 4.73–4.68 (m, 1H, CHNH), 4.32–4.26 (m,
1H, CHNH), 3.10–3.06 (m, 1H, CH2Ph), 2.98–2.91 (m, 2H, CH2Ph),
2.81 (t, 2H, COCH2, J¼ 8Hz), 2.73–2.66 (m, 1H, 1H, CH2P), 2.42 (t,
2H, COCH2CH2, J¼ 8Hz). 13C NMR (DMSO-d6, 400MHz), d 171.9
(COCH2), 170.8, 170.3 (COCH), 156.2 (COOCH2Ph), 138.9, 138.4,
138.2, 137.8, 137.5, 129.7, 129.6, 128.8, 128.6, 128.5, 128.2, 128.1,
127.9, 126.9, 126.7, 119.1, 113.5, 106.9 (Ar–C), 65.7 (OCH2Ph), 56.5
(CHNH), 55.2 (CHNH), 38.3 (CHCH2), 38.0 (CH2CH2), 31.1 (CHCH2),
24.8 (CH2CH2). �(C¼O)carbamate: 1608 cm�1, �(C¼O)amide: 1647,
1680 cm�1, �(N–H)amine: 3282 cm�1. Elemental analysis:
C35H34N4O5 required C, 71.17; H, 5.80; N, 9.49, found C, 71. 05;
H, 5.78; N, 9.21. HRMS m/z for C35H34N4O5 [MþH]þ calcd.
591.2607, found 593.4000; [MþNa]þ calcd. 613.2427,
found 613.3000.

2.3. Ca inhibition

An Applied Photophysics Stopped-Flow instrument has been used
for assaying the CA catalysed CO2 hydration activity by using
method of Khalifah21. Phenol red (at a concentration of 0.2mM)
has been used as indicator, working at the absorbance maximum
of 557 nm, with 20mM HEPES (pH 7.5) as buffer and 20mM
Na2SO4 (for maintaining constant the ionic strength), following
the initial rates of the CA-catalysed CO2 hydration reaction for a
period of 10–100 s. The CO2 concentrations ranged from 1.7 to
17mM for the determination of the kinetic parameters and inhib-
ition constants. For each inhibitor at least six traces of the initial

5–10% of the reaction have been used for determining the initial
velocity. The uncatalysed rates were determined in the same man-
ner and subtracted from the total observed rates. Stock solutions
of inhibitor (0.1mM) were prepared in distilled–deionised water
and dilutions up to 0.01 nM were done thereafter with the assay
buffer. Inhibitor and enzyme solutions were pre-incubated
together for 15min at room temperature prior to assay, in order
to allow for the formation of the E–I complex. The inhibition con-
stants were obtained by non-linear least-square methods using
PRISM (www.graphpad.com), and non-linear least squares meth-
ods, values representing the mean of at least three different deter-
minations, as described earlier by us22–27.

2.3. Antioxidant testing

2.3.1. DPPH radical scavenging activity
Antioxidant activity was determined based on the ability of the
antioxidants to act as radical scavengers towards the stable free
radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH). As detailed by Yang
et al28, 1ml of antioxidant solution (solubilised in ethanol) was
added to 3ml of a 0.1mM ethanolic solution of DPPH. After
30min at ambient temperature in darkness, absorbance readings
were taken at 517 nm. Inhibition (%) was calculated using the
equation

1 – As� Aoð Þ=Ab� �� 100

where As was the absorbance reading for samples containing anti-
oxidant, Ao was the absorbance of the antioxidant in pure metha-
nol and Ab corresponded to the absorbance of the
DPPH solution.

3. Results and discussion

3.1. Synthesis and characterization of the new mono and
dipeptide–dihydroquinolinone derivatives

New N-protected monopeptide and dipeptide–dihydroquinolinone
conjugates (1–6) were synthesised by the reaction of 7-amino-3,4-
dihydroquinolin-2(1H)-one with N-protected aminoacylbenzotria-
zole under microwave heating at 70 �C for 30min with good
yields of 62–87%. The synthesis of the N-protected mono and
dipeptide–dihydroquinolinone conjugates 1–6 is summarised in
Scheme 1.

The structures of N-protected mono and dipeptide–dihydroqui-
nolinone conjugates (1–6) were elucidated by 1H NMR, 13C NMR,

Scheme 1. Synthesis pathways of the new dihydroquinolinone conjugates of N-protected amino acids and dipeptide. Conditions and reagents: (i) r.t., 2 h in THF;
70 �C, 30min in THF.
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IR, mass and elemental analyses. The characteristic NH resonances
of the lactam moiety of the mono or dipeptide–dihydroquinoli-
none conjugates in the 1H NMR spectra of compounds (1–6) were
observed at 10.12–10.24 ppm region as singlet peak. The NH
peaks at position 7 of the quinolinone part of the mono and
dipeptide–dihydroquinolinone conjugates were observed at
9.91–9.20 ppm region as a singlet peak in the 1H NMR spectra.
The carbamate NH proton signals for the protected group of the
conjugates 1–6 were observed as doublet at 7.23–7.77 ppm,
except compound 2 which resonated together with aromatic pro-
tons. Other NH peak for compound 6 was observed as doublet at
8.30 ppm. All NH protons were confirmed by deuterium exchange
by D2O. Carbonyl resonances of the lactam carbonyl, amide car-
bonyl and carbamate carbonyl for monopeptide–dihydroquinoli-
none conjugates were observed around 170.8–171.9, 169.0–170.9
and 155.5–156.6 ppm, respectively. Carbonyl resonances of dipep-
tide–dihydroquinolinone conjugates 6 were appeared at 171.9,
170.8, 170.3 and 156.2 ppm, respectively. All other aliphatic and
aromatic protons and carbons for mono and dipeptide–dihydro-
quinolinone conjugates observed at expected regions and were in
accordance with the assumed structures. The IR spectra of mono
and dipeptide–dihydroquinolinone conjugates, 1–6, showed char-
acteristic lactam or amide carbonyl peaks around between 1687
and 1623 cm�1, whereas the carbamate carbonyl peaks around
between 1613 and 1604 cm�1.

It was observed that in the mass spectra of all compounds 1–6,
there were corresponding molecular ion peaks for
assumed structures.

3.2. Carbonic anhydrase inhibition

Among the biological activities, human carbonic anhydrase (hCA,
EC 4.2.1.1) inhibition has been the subject of several investigations
since the discovery of the biological importance of this enzyme in
several living organisms29. Since many heterocyclic compounds
exhibit CA inhibitor properties6,30,31, we synthesised novel type
mono and dipeptide–dihydroquinolinone conjugates to explore
their possible carbonic anhydrase enzyme inhibition capacities
against human carbonic anhydrase hCA I, II, IX and XII.

In order to explore the inhibitory capacity of all the prepared
new mono and dipeptide–dihydroquinolinone conjugates (1–6)
have been evaluated by means of a stopped flow CO2 hydrase
assay against four human (h) CA isoforms (hCA I, hCA II, hCA IX
and hCA XII). Inhibition results of the compounds are reported in
Table 1, along with those referred to acetazolamide (AAZ), used as
standard inhibitor. When the results in Table 1 are analysed, the
following structure–activity relationships (SAR) can be obtained.

i. All compounds were found to be ineffective up to 100 mM
concentration against hCA I and hCA II compared to AAZ,
which has an inhibition value of 0.250 mM (Table 1).

ii. All the synthesised mono and dipeptide–dihydroquinolinone
conjugates exhibited weak inhibitory properties against hCA
IX, with Ki values among the series, ranging from 37.7 to
86.8 mM (Table 1). Among the compounds, it was found that
those containing methionine (compounds 2 and 5) had a
stronger inhibition capacity with 37.7 and 41.2 K values than
others in the series.

iii. As for the tumour associated isoform CA XII, it revealed to
be moderately inhibited by all compounds with Ki values
among the series, ranging from 2.0 to 8.6mM (Table 1).
However, the results are still lower than the Ki value of
standard compound AAZ.

3.3. Antioxidant testing

3.3.1. DPPH radical scavenging activity
The antioxidant activity of the compounds was determined based
on the ability of the antioxidants to act as radical scavengers
towards the stable free radical, 1,1-diphenyl-2-picrylhydra-
zyl (DPPH)28.

Monopeptide–dihydroquinolinone derivatives, 1–5, from syn-
thesised compounds generally did not show antioxidant activity
compared to standard antioxidant compounds a-tocopherol and
BHA. Only the dipeptide, 6, showed some antioxidant activity at a
concentration of 125 lg/ml (Table 2).

4. Conclusions

Mono and dipeptide–dihydroquinolinone derivatives synthesised
within the scope of this study were synthesised by benzotriazole-
mediated method with good yields. The synthesised compounds
were found to be ineffective up to 100 mM concentration against
hCA I and hCA II, whereas it was found to be effective against
hCA IX and hCA XII at the studied concentrations. The antioxidant
activity of the synthesised compounds were generally found to be
ineffective at concentrations of 12.5–125 mg/ml. Only the dipepti-
de–dihydroquinolinone compound 6 showed an activity at a con-
centration of 125 mg/ml, close to half the antioxidant values
shown by standard antioxidants, a-tocopherol and BHA.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Table 1. Inhibition data of hCA I, hCA II, hCA IX and hCA XII with compounds
1–6 and the standard sulphonamide inhibitor acetazolamide (AAZ) by a stopped
flow CO2 hydrase assay.

Ki (mM)
a

Cmp. no. hCA I hCAII hCA IX hCA XII

1 >100 >100 86.8 2.0
2 >100 >100 41.2 3.8
3 >100 >100 42.6 8.5
4 >100 >100 65.4 5.7
5 >100 >100 37.7 7.0
6 >100 >100 47.6 8.6
AAZ 0.250 0.012 26.0 0.006

aMean from three different assays, by a stopped flow technique (errors were in
the range of ±5–10% of the reported values).

Table 2. Antioxidant activities of the synthesised mono and dipeptide–dihydro-
quinolinone conjugates.

Comp. no.
Antioxidant activity, %

12.5 lg/ml 25 lg/ml 37.5 lg/ml 62.5 lg/ml 125 lg/ml

1 3.8 2.2 2.5 1.6 0.6
2 3.1 2.2 0.0 0.9 0.6
3 0.9 0.3 nd nd nd
4 2.5 1.6 0.9 2.2 1.6
5 2.8 1.9 1.9 2.8 2.8
6 1.9 6.3 8.8 16.4 30.8
a-Toc. 62.9 63.4 68.4 72.8 74.0
BHA 61.1 63.0 67.5 71.0 72.4

nd, not detected.
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