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ABSTRACT
We evaluated the evidence in research on the effects 

of melatonin on hypothyroidism and gonadal development. 
According to the World Health Organization, thyroid disor-
ders due to iodine deficiency affect about 740 million people 
worldwide. Hypothyroidism is a thyroid dysfunction charac-
terized by hypometabolism of the gland, with reduced or 
physiologically normal T3 and T4 serum levels, and high 
TSH level. This disorder occurs mainly in adult women in 
the reproductive phase, with a prevalence of 2% among 
the world's female population, with profound repercussions 
on gestation and fetal formation. During the gestational 
period, the thyroid is initially stimulated by high concentra-
tions of human chorionic gonadotrophin; thus, maintaining 
maternal euthyroidism during pregnancy and lactation is 
fundamental for fetal growth and development. Besides, 
the hormones produced by this gland are involved in the 
formation of various organs, such as the skin, brain and 
gonads. Hypothyroidism is associated with several men-
strual abnormalities, anovulation and hyperprolactinemia, 
resulting in a high rate of abortions, premature births, 
placental rupture, and weight-related neonatal deficits. In 
addition, there are studies showing that hypothyroidism 
can affect ovarian morphology (number of ovarian follicles) 
and testicular morphology (changes in the testicular-lumen 
epithelium). Melatonin is a hormone known to modulate 
the estrous cycle and pregnancy, and studies show that the 
exogenous application of melatonin increased T4 levels in 
female rats and controlled the decrease in T3 serum levels, 
reverting the sigs of hypothyroidism.
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INTRODUCTION
The World Health Organization (WHO) stated that ap-

proximately 740 million people worldwide suffer from thy-
roid disorders due to iodine deficiency (Abalovich et al., 
2002). Hypothyroidism is a pathological condition of thyroid 
hormone deficiency that can lead to serious adverse health 
effects. Hypothyroidism is divided into two different bio-
chemical types: overt, where the thyroid-stimulating hor-
mone (TSH) concentrations are above the reference range 
and free thyroxine concentrations below regular range or 
subclinical, where although the TSH concentrations are 
above the reference range, free thyroxine concentrations 
are within the normal range (Chaker et al., 2017). This 
disorder is present in 2% of the world's female population 
(Hapon et al., 2010), interfering directly in gestation and 
fetal formation (Maciel & Magalhães, 2008).

A hormone that plays a regulatory role in the pregnan-
cy and thyroid physiology is melatonin. This hormone mod-
ulates the estrous cycle and pregnancy (Maganhin et al., 

2013) and reverses signs of hypothyroidism in hypothy-
roid rats with the administration of exogenous melatonin 
(Bondarenko et al., 2011).

This review summarizes the connection between mel-
atonin with hypothyroidism and gonadal embryogenesis.

LITERATURE REVIEW
Thyroid
The thyroid gland weighs 20 grams on average in the 

human species, and 40 milligrams in rats. It comprises two 
lobes and an isthmus that unites them. In addition, the 
pyramidal lobe, which may originate from one of the lobes 
or from the isthmus itself, is present in 12-65% (Soukup 
et al., 2001; Ayadi et al., 2017; Kaklamanos et al., 2017). 
While each lobe is 4-5 cm high, 2-3 cm wide and 2-4 cm 
thick, the lobes are usually located between the first and 
fourth tracheal rings. Left and right lobes partially surround 
the front trachea. Laterally, there is the carotid sheath and 
the sternocleidomastoid muscle (Menzilcioglu et al., 2016).

The thyroid gland in humans develops from the neural 
crest and the primitive pharynx, assuming its position still 
attached to the thyroglossal duct. The thyroid is one of the 
first endocrine glands to become active in humans, being 
composed of thyroid follicles, formed by cubic epithelial 
cells, the thyrocytes (Menzilcioglu et al., 2016). Thyrocytes 
have polarity: the basal zone is related to the interstitial 
connective tissue, where the vessels and nerves pass, 
while the apical pole points to the light of the follicle. The 
apical zone has pseudopods that play a fundamental role in 
capturing the elements of the colloid, hormonal synthesis 
and its release (Chastain & Ganjan, 1986).

The thyroid by through the TSH stimulation (thyroid 
stimulating hormone) synthesizes thyroxine (T4) and 
triiodothyronine (T3) hormone, regulating the body's me-
tabolism, of fundamental importance in embryogenesis 
(Menzilcioglu et al., 2016). However, unlike humans, in 
which thyroid hormones are secreted even in the first tri-
mester of gestation (Smallridge & Lendenson, 2001), in 
rats the development of the thyroid is slower, becoming 
active and producing the thyroid hormones around the 17th 
day of gestation (Choksi et al., 2003), making the rodents’ 
fetuses’ embryogenesis dependent on maternal thyroid 
hormones.

After birth, the thyroid and the hypothalamic-pitu-
itary-thyroid axis in rats are immature compared to hu-
mans. During the first 21 postnatal days, this gland grows 
due to increased colloid deposition and follicular cell pro-
liferation, which remains constant from birth until the 
21st day of life, reducing after that period (Parker & Picut, 
2016). Histologically, throughout the postnatal period in 
rats, the thyroid follicles tend to be wider at the periphery 
of the gland, representing a progression in follicle mat-
uration from the center to the periphery. Rats’ thyroids 
fully develop on the 21st postnatal day, but becomes 
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endocrinologically complete only on the 28th postnatal day 
(Parker & Picut, 2016). In addition to follicular cells, the 
thyroid gland contains the C cells, which produce calci-
tonin. These cells become visible in a light microscope 
around the 21st postnatal day, having a low mitotic activity 
until the 42nd postnatal day. It is reported that from birth 
to the 120th postnatal day in rats, the number of C cells 
increases nine fold, and their size increased by up to four 
times (Parker & Picut, 2016).

Its sexual dimorphism in rats becomes apparent 
around the 40th postnatal day, in which the male gland has 
less colloid than in females, and its cells have cytoplasmic 
vacuoles (Parker & Picut, 2016). This dimorphism is due to 
the male follicular epithelium synthesizing the androgen 
hormone through the TSH feedback, where the levels of 
this hormone are lower in male rats until the 21st postnatal 
day (Banu et al., 2002).

Hypothyroidism
Hypothyroidism is a common thyroid dysfunction, char-

acterized by hypometabolism of the gland, and it can be 
identified as overt hypothyroidism when T3 and T4 serum 
levels are reduced, and the TSH level is elevated (Welsh 
& Soldin, 2016; Feldt-Rasmussen & Klose, 2016); or as 
subclinical hypothyroidism, when serum levels of T3 and 
T4 are physiologically normal, and TSH levels are elevated 
(Shizuma, 2016).

Thyroid disorders represent a major public healthcare 
problem worldwide, following diabetes as the most com-
mon endocrine disorder in adult medical practice, and pre-
senting a myriad of devastating consequences if not treat-
ed in advance (Vanderpump, 2011). The epidemiology and 
clinical features of thyroid disease are determined by the 
supply of iodine, an essential element in the synthesis of 
thyroid hormones. In addition, excessive variations in io-
dine levels may represent adverse health effects (Brotfain 
et al., 2013), such as increased or decreased metabol-
ic rate and thermogenesis; and it is also correlated with 
an increase in body mass index (BMI) and obesity (Yim, 
2016).

The relationship between TSH and free T4 is so sen-
sitive that a small decrease in free T4 may result in an 
increase in serum TSH, raising its level above the reference 
range, while the free T4 level is still within the standard 
levels (Surks et al., 2004). Subclinical hypothyroidism is a 
disorder that occurs most frequently in women, the elderly 
and in areas where there is a greater intake of iodine. The 
prevalence rate varies from four to 10% in the adult popu-
lation, and if there is an increased intake of iodine, it goes 
up to 24% (Biondi & Cooper, 2008; Vanderpump, 2011). In 
80% of patients with subclinical hypothyroidism, there are 
a greater number of anti-thyroid antibodies, which means 
that in most cases an autoimmune process is present, 
causing such a condition (Fatourechi, 2009).

The clinical course of subclinical hypothyroidism may 
progress towards the development of overt hypothyroid-
ism, as well as toward the normalization of TSH values. A 
study carried out with 82 women with increased TSH levels 
showed that after a 10-year period, 28% of them devel-
oped overt hypothyroidism; 68% of them still had subclin-
ical disorder, while 4% of them had normal TSH (Huber et 
al., 2002).

Díez & Iglesias (2004) examined the natural course of 
subclinical hypothyroidism in 107 patients, and showed 
that patients with the mild disorder (TSH levels of 5.0 to 
9.9 mU/l) are more likely to have normalized TSH values 
compared to patients whose TSH is greater than 10.0 
mU/l. There are also reports that the TSH value was the 
most important prognostic factor for the diagnosis of sub-
clinical hypothyroidism (Díez & Iglesias, 2004).

Hypothyroidism and pregnancy
Since ovarian and placental development depend on 

the complex interaction between endocrine, paracrine and 
autocrine factors, thyroid dysfunctions compromise fetal 
fertility, gestation and development in humans and rodents 
(Choksi et al., 2003; Hapon et al., 2010).

Thyroxine (T4) and triiodothyronine (T3) act on ovarian 
and placental tissue, modulating their metabolism and de-
velopment (Galton et al., 2001; James et al., 2007). Spe-
cific receptors for T3 are present in the nucleus of ovar-
ian cells, so that this hormone can have a direct effect 
on these tissues (Evans et al., 1983; Maruo et al., 1992). 
However, the placenta, in addition to expressing receptors 
for thyroid hormones (Leonard et al., 2001), accumulates 
and metabolizes T3 and maternal T4 (Calvo et al., 1992). 
Thus, thyroid dysfunctions are associated with several 
ovarian and placental morpho-functional changes with im-
paired reproductive efficiency (Choksi et al., 2003).

Hypothyroidism is common in adult and reproductive 
women, with a prevalence of 2% in the worldwide female 
population (Hapon et al., 2010). The incidence of hypo-
thyroidism during pregnancy is between 0.3% and 2.5% 
(Idris et al., 2005), having profound repercussions on ges-
tation and fetal formation (Maciel & Magalhães, 2008). 
During gestation, the thyroid is initially stimulated by high 
concentrations of human chorionic gonadotrophin (hCG); 
thus, maintaining maternal euthyroidism during gestation 
and lactation, which is critical for fetal growth and devel-
opment (Maciel & Magalhães, 2008), since the hormones 
produced by this gland are involved in the formation of 
organs such as the skin (Amerion et al., 2013), brain (Mor-
reale de Escobar et al., 2004) e testis (Wagner et al., 2008) 
of the fetuses. Hypothyroidism is associated with several 
menstrual abnormalities, anovulation and hyperprolactin-
emia (Sanyal & Raychaudhury, 2016), resulting in a high 
rate of miscarriages, premature births, placental rupture, 
and weight-related neonatal deficiencies (Amerion et al., 
2013).

Adaptive changes in the maternal thyroid occur during 
gestation, in response to the need to provide the fetus 
with T3 and T4 until the fetal hypothalamic-pituitary-thy-
roid system is functional. For this, the maternal thyroid in-
creases in volume, as well as its uptake of iodide (Versloot 
et al., 1997). In addition, estrogen levels stimulate the 
expression of TBG (thyroxine binding globulin) in the liver 
and almost double their serum concentration. The serum 
increase of TBG occurs concomitantly with the increase of 
total serum concentrations of T3 and T4 (Karabinas & Tolis, 
1998).

The main function of T3 is to regulate cell carbohy-
drates and proteins metabolism. Thus, changes in T3 
plasma levels can affect all organs and organ systems, 
with important effects on the cardiovascular, nervous, im-
mune and genital systems (Choksi et al., 2003). T3 levels 
in laboratory rodents influence the control of the estrous 
cycle, behavior, maintenance of pregnancy, fetal growth 
and lactation (Vasudevan et al., 2002). The deiodinases, 
proteins responsible for the activation of thyroid hormones 
present in human and rodent placentas rapidly metabolize 
maternal T4 to T3, which will be used by the fetus, with 
a significant amount of T4 also being transferred (Chan & 
Kilby, 2000). The placenta is freely permeable to iodine 
and thyrotropin releasing hormone (TRH), but not to TSH. 
We believe that maternal TRH transferred to the fetus may 
play an important role in the control of fetal thyroid func-
tion before complete maturation of the hypothalamic-pitu-
itary-thyroid axis.

The authors reported that rat gestations induced to 
hypothyroidism is prolonged, lasting about 24 days, and 
generating on average nine pups per gestation, number 
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smaller than that of the control group average, which are 
usually of 12 pups. In addition, rats with low levels of thy-
roid hormones exhibit higher levels of progesterone at the 
end of gestation, as well as lower levels of estrogen and 
litters with lower weights when compared to data from 
control groups (Hapon et al., 2003). Another observed ef-
fect relating this dysfunction to gestation is the prolonga-
tion of corpus luteum function in pregnant rats (Hapon et 
al., 2007), where there is a reduction in the proliferation, 
apoptosis and expression of angiogenic factors in the cor-
pus luteum of pregnant rats (Silva et al., 2014).

Induced hypothyroidism compromises the placental 
layers of the rat, and it increases glycogen cell population 
in the spongiotrophoblast layer relative to the cytotropho-
blastic cells, and interfere with the vascular development 
of the placental labyrinth, thus reducing proliferative activ-
ity and cellularity, and increasing the apoptotic rate of the 
three layers of the placental disc (Silva et al., 2012). This 
morphological alteration caused by such dysfunction may 
also cause low body weight of the litters of rats induced to 
hypothyroidism, this is because there is a reduction in the 
area occupied by fetal capillary in the placental labyrinth at 
14 days of gestation, and may be insufficient to establish 
with maternal blood, causing low fetal weight (Silva et al., 
2012).

Thus, a state of clinical or subclinical hypothyroidism 
may be worsened by the pregnancy state, and adequate 
function of the mammary glands may be impaired. The im-
pact on mother and offspring is well documented, and one 
of its most pronounced consequences is delayed growth 
and delayed maturation of the newborn, causing mental 
retardation and subnormal height. Although most of these 
effects are attributed to the hypothyroid state of infants, 
any change in maternal metabolism that could lead to de-
creased milk production or excretion could further compli-
cate offspring development (Hapon et al., 2003).

Gonadal embryology
Gonad development has two phases. The initial phase 

has the appearance of the so-called indifferent, bipotential 
gonad or genital crest, which is identical in males and fe-
males. The cell lines that compose it are bipotential, being 
able to turn into male or female gonads. The second stage 
is testicle or ovary development (Wilhelm et al., 2007). 
The gonads develop from the intermediate mesoderm, 
which is situated in the longitudinal urogenital crests; the 
most medial part of these crests are the gonadal ridges, 
occurring during the fifth week of gestation in humans, 
and around the 10th day of gestation in rats (Zayed et al., 
2007). During development, the primordial germ cells mi-
grate from the yolk sac wall through the dorsal mesentery 
of the large intestine to occupy the gonadal ridges. The 
arrival of these cells induces the cells in the crests to form 
primitive sex chords (derived from mesonephros and over-
lapping celomic epithelium). At this stage, the gonad is 
indifferent to sex, and consists of an external cortex and 
an inner medulla. If the germ cells do not migrate to the 
gonadal ridges, the gonads do not grow (Mitchell & Shar-
ma, 2009).

In embryos with no testicle-determining factors, the 
primitive sexual cords extend into the gonad medulla, de-
generate and form a vascular stroma, resulting in an ovary 
(Mitchell & Sharma, 2009). Regarding ovarian develop-
ment, in the postnatal day (PND) 3, primordial, primary 
and secondary follicles are apparent, with a thick periph-
eral cortex of primordial follicles and a central nucleus of 
primary and secondary follicles. At no other time in the 
development of the ovary is the primordial follicle the most 
prominent feature. In PND 10, the secondary and early 
antral follicles are immature compared to the follicles of 

the adult animal in the active estrous cycle. Around PND 
21, large antral follicles can be seen occasionally within the 
medulla. These large antral follicles in the medulla of the 
infant ovary can be distinguished from the ovulatory fol-
licles of the peripuberal and mature ovary, since the ovu-
latory follicles that eventually ovulate are more commonly 
located in the external ovarian cortex. In PND 30, the most 
apparent morphological characteristic is the appearance of 
the ovulatory follicle in the external cortex. These follicles 
are of sufficient size for ovulation and have a distended 
antrum and a primary oocyte coated by the cumulus oo-
phorus layer (Picut et al., 2014; 2015a).

In embryos with testes determining factors, the prim-
itive sexual cords proliferate and penetrate the medulla 
forming the testicular cords. Some of these cells differ-
entiate into Sertoli cells, while the remaining form the 
seminiferous tubules. The testicular cords anastomose to 
form the rete testis, which becomes continuous with 15 to 
20 persistent mesonephric tubules, the efferent duct. The 
testes determining factor also induces the differentiation 
of mesenchymal gonadal cells into interstitial Leydig cells 
(Mitchell & Sharma, 2009). We believe that Sertoli cells act 
as the organizing center of the male gonad, and orches-
trate the differentiation of all other cell types (Wilhelm et 
al., 2007).

In PND 3, the testes consist of gonocyte-coated tubules 
and mitotically active Sertoli cells. In PND 15, spermatogo-
nia are still mitotically active and spermatogonia reach the 
maximum density forming a thick pseudo-stratified lay-
er with Sertoli cells. The mitotic rate in the population of 
spermatogonial cells decreases compared to that of the 
early childhood period (PND 3), and apoptotic spermatogo-
nia are present in the center of the tubules. The period 
between the PNDs 21 to 30 holds the maintenance of the 
first wave of spermatogenesis in rounded spermatids, and 
mainly by a significant increase in the tubular diameter 
(Picut et al., 2015b).

Melatonin
The pineal gland produces and secretes melatonin and 

other peptides still poorly defined, through the release 
of noradrenaline (NE) by intraparenchymal nerve fibers, 
where this release and activity of the pineal gland are ac-
tivated in dark environment and inhibited by light (Magan-
hin et al., 2009; Junqueira & Carneiro, 2013). Also known 
as N-acetyl-5-methoxytryptamine, melatonin derives from 
the serotonin that has tryptophan as the precursor, and is 
the main product of the pineal, exhibiting high solubility 
and a light yellow stain. It is transported through the plas-
ma connected to proteins such as albumin (Sumaya et al., 
2005; Maganhin et al., 2008).

With specific receptors in cell membranes (MT1 and 
MT2), melatonin has several functions as modulating the 
circadian cycle of antioxidant enzymes, bone metabolism, 
growth of ovarian follicles, ovulation, luteinizing hormone, 
fertilization and implantation (Tamura et al., 2009; 2014; 
Sharma et al., 2015). This hormone can also exert anti-
oxidant functions, due to its small molecular size and its 
lipolipid properties, being able to cross all cell membranes 
and reach intracellular compartments, as well as the nucle-
us and mitochondria, organelles with high concentrations 
(León et al., 2005; Waseem et al., 2017), preventing dam-
age to DNA (Sousa Coelho et al., 2018). The reduction in 
the occurrence and growth of tumors causes melatonin to 
be the most important natural oncostatic hormone in the 
human body (Reiter, 2004; Cabrera et al., 2010). We also 
believe that melatonin plays an important role during the 
life cycle, acting in growth, development, maturation and 
aging, decreasing its plasma concentration with the indi-
vidual's age (Tamura et al., 2009; 2014).
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Melatonin is cited in several studies as an important 
part of the neuroendocrine system, influencing the control 
of circadian rhythms and controlling various physiological 
processes (Ferreira et al., 2010). The sites in which the 
interaction between melatonin and the endocrine system 
occur are still unclear. We believe that the activity of this 
hormone involves the hypothalamus, the pituitary, the go-
nads, and the pineal gland, the main one responsible for its 
production (Reiter, 1995).

Melatonin and the gonads
Melatonin is a broad-spectrum functional hormone re-

sponsible for regulating internal hormonal changes in re-
sponse to variations according to periods of light and dark-
ness (Mukherjee & Haldar, 2014). In photoperiodic species, 
melatonin secretion by the pineal gland is responsible for 
the effects of day length on the seasonal reproduction cy-
cle (Maldonado et al., 2012). In these species, melatonin 
has a pro-gonadotrophic effect, increasing follicle-stimu-
lating hormone (FSH) and luteinizing hormone (LH) peak 
concentrations, probably by blocking the inhibitory effects 
of sex steroids on ovulation (Rocha et al., 2011).

In species with non-seasonal reproduction, that is, 
non-photoperiodic, pre-ovulatory release of gonadotro-
phins is controlled by a circadian cycle. These species pres-
ent a daily circadian rhythm of melatonin release (Claustrat 
et al., 2005). There are melatonin receptors, MT1 and MT2, 
in both male and female gonads of these species (Magan-
hin et al., 2008; Mukherjee & Haldar, 2014), thus reaf-
firming its antigonadotrophic properties, such as inhibition 
of gonadal development, spermatogenesis and androgen 
production in males and absence of follicles, corpus luteum 
and proliferation of interstitial tissue in females (Soares Jr 
et al., 2003).

Melatonin plays a significant role in fetal programming, 
since the follicular fluid has high concentrations of it, sug-
gesting its direct participation in oocyte maturation and 
embryo development, due to its ability to reduce oxidative 
stress in the ovarian follicles and to protect these oocytes 
of free radical damage (Nelissen et al., 2011; Brzezinski 
et al., 1987). Melatonin levels in maternal plasma may in-
crease during pregnancy, however, in compromised preg-
nancies, this hormone in the mother and fetus may be af-
fected (Chen et al., 2013).

As for female gonads, the mechanisms that control 
folliculogenesis are still unclear; however, hormones and 
several growth factors are involved (Escames et al., 2012). 
Studies have demonstrated the presence of melatonin re-
ceptors (MT1 and MT2) in the ovarian follicles, thus sup-
porting the hypothesis of its performance in ovarian phys-
iology (Soares Jr et al., 2003; Lee et al., 2014). Regarding 
the male gonads, melatonin plays a protective role in tes-
ticular development both in vitro and in vivo, as well as 
regulates it by controlling the secretion of neurohormones 
(particularly GnRH) and testosterone (Li & Zhou, 2015).

According to Gholami et al. (2013), melatonin may im-
prove the structure of testicular tissue. Such researchers 
have observed that this hormone can induce cell prolif-
eration in normal cells and induce apoptosis in damaged 
cells (Gholami et al., 2014) (Niu et al. 2016); however, 
its addition to the spermatogenic stem cell (SSCs) culture 
medium could increase SSC proliferation by stimulating 
glial-derived neutrophilic factor (GDNF) production in the 
Sertoli cells. Furthermore, low levels of melatonin during 
pregnancy and lactation matrix results in an involution of 
the testes offspring, indicating that their levels during pre 
and postnatal development interfere with testicular growth 
(Tuthill et al., 2005). We also know that pinealectomy in-
creases testicular weight, while administration of exoge-
nous melatonin decreases the above-mentioned weight in 

non-pinealectomized rats (Kuş et al., 2000; Akosman et 
al., 2013).

Melatonin and thyroid
There is a significant relationship between the thyroid 

and pineal glands, suggesting that deficiencies in thyroid 
function may alter the release of melatonin (Rom-Bugo-
slavskaia & Bondarenko, 1984). Hypothyroidism causes a 
significant decrease in plasma melatonin levels, when we 
compare rodents induced to it to healthy rodents. Rats in-
duced to hyperthyroidism have higher levels of this indol-
amine in plasma, suggesting a relationship between the 
thyroid disorders and the pineal gland (Belviranli & Baltaci, 
2008; Baltaci & Mogulkoc, 2017; 2018). Likewise, Bonda-
renko et al. (2011) demonstrated that signs of hypothy-
roidism in rats with low levels of melatonin due to expo-
sure to constant light were reversed with their exogenous 
application.

Laskar et al. (2015) investigated the presence of re-
ceptors of this hormone in the thyroid gland, and reported 
that exogenous application of melatonin increased T4 lev-
els in female rats. Their results were also found by Skipor 
et al. (2010) that, through the exogenous application of 
this indolamine, found a prevention in the decay of serum 
T3 levels and a control in the decay of T4 levels.

Effects of hypothyroidism on morphometry and 
cell proliferation

There are several studies showing that thyroid hor-
mones affect spermatogenesis by promoting changes in 
basal metabolic activity and cellular respiration of the tes-
tes (Oppenheimer et al., 1987; Mutvei & Nelson, 1989; 
Fadlalla et al., 2017), or by affecting Leydig cells, result-
ing in the reduction of testosterone secretion (Zirkin et 
al., 1980; Mendis-Handagama et al., 1991). In addition, 
in hypothyroid rats, testicular morphology is also affected, 
where there is a modification in the relation of the testic-
ular-lumen epithelium, causing changes in lumen size (Ai 
et al., 2007).

Previous studies have shown that such a thyroid dis-
order can also affect ovarian morphology by altering the 
number of ovarian follicles (Meng et al., 2017). The tran-
sition from the primary to the secondary follicle (pre-an-
tral stage) is controlled by intra-ovarian factors such as 
GDF-9 (Differentiation Factor and Growth-9) (McGrath et 
al., 1995; Orisaka et al., 2006). We know that the thyroid 
influences this mitogenic factor, although the mechanism 
is still not fully understood (Dong et al., 1996; Hayashi et 
al., 1999).

Along with morphological changes, we know that during 
pregnancy, in humans and rodents, the uterus undergoes 
a series of morphofunctional changes in order to accom-
modate the growing embryo, but the hypothyroid state de-
creases the proliferative rate of epithelial cells, stroma and 
myometrium by reducing the response of uterine cells to 
estrogen (Kirkland et al., 1981). In addition to this organ, 
hypothyroidism may also cause a decrease in the expres-
sion of proliferative antigens in placentas and testes of rats 
(Silva et al., 2012; Fadlalla et al., 2017), thus showing the 
anti-proliferative effect of hypothyroidism.

CONCLUSION
This selective literature review supports the proposition 

that maternal hypothyroidism affects the development of 
the embryo, focusing specially on their gonads. As it is 
apparent from the studies hereby mentioned, melatonin 
may play a role in the protection of the effects of hypothy-
roidism in both mothers and their offspring, by prevent-
ing the decrease in thyroid hormone levels in rats, and 
reversing signs of hypothyroidism in rats. Additionally, 
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melatonin seems to interfere directly in the embryogenesis 
of both gonads, since there are receptors for this hormone 
in ovaries and testicles. In addition, it is still unclear how 
melatonin affects the ovaries. We know that in testicles, 
melatonin plays a protective role by stimulating normal cell 
proliferation, but it induces apoptosis on damaged cells. 
We hope that because of this paper the interest in the ef-
fects of hypothyroidism in the embryology of fetuses from 
hypothyroid mothers will increase, giving relevance to a 
disease that affects a growing number of females in repro-
ductive ages, since studies on this topic are scarce.
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