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Abstract
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Introduction

Mitotic count is  one the contributing factors in 
Bloom–Richardson–Elston grading system[1] and also has an 
independent prognostic value in breast cancer.[2] However, 
previous studies showed that the agreement among pathologists 
in counting mitoses is fairly modest.[1,3‑7] For example, Meyer 
et al.[1] asked a group of five to seven pathologists to examine 
10–23 patients’ slides and found that the Cohen’s kappa for 
pairwise agreement on mitotic grade ranged from 0.45 to 
0.67  (moderate agreement) and the average Cohen’s kappa 
for the object‑level agreement was 0.38  (fair agreement). 
Malon et  al.[5] performed larger object‑level agreement 
on 4204 figures and found that the Cohen’s kappa ranged 

from 0.13 to 0.44 (slight to fair agreement). Furthermore, 
a quality control program[8] performed among 13 Italian 
pathologists showed that the Cohen’s kappa for agreement of 
pathologists to the reference value ranged from 0.11 to 0.86 
(slight to good agreement).

Context: Previous studies showed that the agreement among pathologists in recognition of mitoses in breast slides is fairly modest. 
Aims: Determining the significantly different quantitative features among easily identifiable mitoses, challenging mitoses, and 
miscounted nonmitoses within breast slides and identifying which color spaces capture the difference among groups better than others. 
Materials and Methods: The dataset contained 453 mitoses and 265 miscounted objects in breast slides. The mitoses were grouped into 
three categories based on the confidence degree of three pathologists who annotated them. The mitoses annotated as “probably a mitosis” by 
the majority of pathologists were considered as the challenging category. The miscounted objects were recognized as a mitosis or probably 
a mitosis by only one of the pathologists. The mitoses were segmented using k‑means clustering, followed by morphological operations. 
Morphological, intensity‑based, and textural features were extracted from the segmented area and also the image patch of 63 × 63 pixels 
in different channels of eight color spaces. Holistic features describing the mitoses’ surrounding cells of each image were also extracted. 
Statistical Analysis Used: The Kruskal–Wallis H‑test followed by the Tukey‑Kramer test was used to identify significantly different features. 
Results: The results indicated that challenging mitoses were smaller and rounder compared to other mitoses. Among different features, the 
Gabor textural features differed more than others between challenging mitoses and the easily identifiable ones. Sizes of the non‑mitoses were 
similar to easily identifiable mitoses, but nonmitoses were rounder. The intensity‑based features from chromatin channels were the most 
discriminative features between the easily identifiable mitoses and the miscounted objects. Conclusions: Quantitative features can be used to 
describe the characteristics of challenging mitoses and miscounted nonmitotic objects.
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Investigating causal agents for discrepancies in recognition of 
mitotic figures will be helpful in avoiding overcounting and 
undercounting of these figures. The wide range of appearances 
of mitotic figures and their similarity to other objects such as 
apoptoses within histopathology slides could be two potential 
reasons for misrecognition.

With the advent of whole‑slide imaging, computer‑based 
image analysis on the digital slides has become possible. 
Previously, different image processing features were used 
to automatically detect the mitoses on breast slides.[9] In this 
study, we aimed at determining image processing features 
differed significantly among easily identifiable mitoses, 
challenging mitoses, and miscounted nonmitoses. This study 
also seeks to compare different color spaces to determine 
which color spaces capture the difference among groups 
better than others.

Materials and Methods

Data
The images were obtained from the Mitosis‑Atypia grand 
challenge 2014 dataset,[10] which is publicly available and 
contained the location of mitotic figures. The slides were 
from six patients and were scanned using Aperio ScanScope 
XT slide scanner (Aperio Technologies, Vista, CA). Each 
image, with the size of 1376 × 1539 pixels, covered 0.1276 
mm2 of tissue.

The dataset contained 453 mitoses and 265 nonmitoses. 
Two senior pathologists were asked to mark the center 
of mitoses and label them either as a “true mitosis” or 
“probably a mitosis.” In case of disagreement, the opinion 
of a third expert pathologist was requested. Based on the 
annotation provided by the readers, the marked objects 
were classified into four categories, those recognized by 
both pathologists (C1), those missed by one of the first two 
pathologists and recognized as a “true mitosis” by the third 
pathologist (C2), those labeled as “probably a mitosis” by 
majority of the readers  (C3), and objects recognized as a 
mitosis by only one reader and labeled as nonmitosis by 
other two pathologist  (C4). As stated in the dataset, the 
first three groups were considered as true mitoses while C4 
was considered as false positive markings, i.e. miscounted 
nonmitoses. In the original dataset, the confidence level 
of being mitoses for these four categories was 1, 0.8, 
0.6, and 0.2, respectively. Here, we considered C1 as the 
easily identifiable group while C3 was considered the most 
challenging category because the majority of the readers 
could not make a decision about it confidently.

Feature extraction
The center of each mitotic figure was provided in the dataset. 
Hence, an image patch of 63 × 63 pixels in the neighborhood 
of each annotation was used and the mitotic figures were 
segmented using k‑means clustering.[11,12] Mitotic figures 
have different appearances in different stages of mitosis. 
For example, during telophase, where two daughter cells are 

being created, two separated connected components could 
be detected in the image patch, and in late metaphase, a hole 
could exist within the extracted component. In addition, in 
anaphase, segmentation might result in a large connected 
component and a few nearby smaller regions. To address 
these issues, morphological closing followed by filling holes 
was used. In addition, the convexity (area over convex area) 
of the largest connected component centered at the image 
patch was calculated. Only the largest connected component 
was considered as a mitotic figure unless the convexity was 
low and the area of the second largest connected component 
was comparable to that of the largest connected component. 
In this case, both connected components were included in the 
final segmentation.

From each segmented mitotic figure, 13 shape‑based features 
were extracted. The features are listed in Table  1. A  brief 
intuitive description about the features along with a few 
sample images with high and low values of the particular 
feature is also shown in the table. When more than two 
components were segmented, major and minor axis length, 
and features of the second group  [Table 1] were extracted 
from the larger component. In addition, the intensity‑based 
features were also extracted from the largest segmented area. 
These features were extracted from each of the channels of red, 
blue, green (RGB) color space. Moreover, the image patches 
were converted to YDbDr, YUV, Lab, hue, saturation, and 
value (HSV), hue, saturation, and lightness (HSL), XYZ, and 
CAT02 long, medium, and short (LMS), and the features were 
also extracted from channels of these color spaces. A sample 
mitotic figure in different channels is shown in Figure 1. The 
intensity‑based features were listed in Table 1 as well.

In addition, three groups of textural features, namely 
Haralick and Shanmugam texture,[13] neighborhood grey tone 
difference matrix,[14] and grey level run length matrix[15] were 
extracted from both image patches and the segmented areas. 
The features extracted from the segmented area describe 
the second and higher order statistics of the intensity value 
distribution within the area, while those extracted from the 
patch describe the local context of the objects. In addition, 
Gabor textural features[10] were extracted from the patches 
and the segmented areas’ border. The textural features are 
also listed in Table 1. Finally, we extracted three measures 
for describing the contrast between the segmented area and 
its surrounding. The first and second contrast measures are 
the difference and the ratio of mean intensities of the mitotic 
figure and its surrounding respectively while the third measure 
is the difference in mean intensities normalized to the sum 
of the standard deviation of intensities of the mitotic figure 
and its surrounding.

In the original dataset, three pathologists also assessed six 
criteria related to the nuclear atypia in each image and gave a 
score from 1 to 3. These criteria were nuclei size, nucleoli size, 
anisonucleosis, chromatin density, and membrane thickness. 
Here, we used these criteria as global descriptors of each 
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image. We hypothesized that in addition to the appearance of 
the mitotic figure and its local surrounding area, the contextual 

features from the image could also affect the detectability of 
mitotic figures. As there was variability among the pathologists’ 

Contd...

Table 1: Extracted features from each object

Feature Sample Description

High Low
Shape‑based (13)

Group 1: Size‑related (6)
Area, perimeter, major axis length, minor axis length, 
convex area, circumscribed circle diameter

Group 2: Other (7)
Euler number, Solidity, Eccentricity, Compactness, 
circularity, mean distance to the nearest border 
point (MBD), shape factor

        
Area

        
Solidity

        
Eccentricity

        
Circularity

Solidity is defined as area/convex area 
and is lower when the area is concave
Eccentricity is 0 for circle, 1 for the 
line, in between for ellipse
Euler number shows whether there are 
any holes in the mask generated after 
segmentation
Compactness, circularity, MBD, and 
shape factor are different measures for 

quantifying the compactness and circularity

Intensity‑based features (21)
First order statistical (6)

Mean, SD, kurtosis, skewness, Maximum, min
Percentiles (11)

5th, 10th, 15th, 20th, 25th, 50th, 75th, 80th, 85th, 90th, 95th 
percentiles

Ranges (4)
Minimum‑Maximum, Interquartile, 5th‑95th percentile, 
1st‑95th percentile

    
Mean

 
Different 

interquartile while 
mean is similar

These describe the 
distribution of intensity 
values in the segmented 
area. These features 
could be calculated from 
the probability density 
function (top) or 
cumulative distribution 
function (bottom) of 
intensity values

2nd order textural (40)
Haralick texture (area[20] and patch [20])

Energy, entropy; contrast, dissimilarity, homogeneity; 
correlation, autocorrelation, information measures of 
correlation 1 and 2 (infh1 and infh2); cluster prominence, 
cluster shad, maximum probability; sum of squares, 
sum of average; sum of variance, difference of variance; 
sum of entropy, difference of entropy; inverse difference 
normalized, inverse difference moment normalized

    
Dissimilarity

From area

  
Homogeneity 

From area

  
Correlation
From patch

  
infh1

From patch

Features are extracted from grey level co‑occurrence matrix 
and capture textural information
For example, energy measures the image homogeneity. 
Entropy indicates the randomness of the image texture. 
Contrast measures the local variations. Dissimilarity 
shows local variations but considers absolute differences. 
Homogeneity is inversely correlated to contrast and shows the 
local homogeneity. Correlation indicates the linear dependency 
among grey levels of neighboring pixels. Sum of average 
indicates the presence of punctate regions of high intensity. 
infh1 and infh2 measure grey level linear dependency with 
respect to directional entropy and randomness of spatial 
dependency

Higher order textural (14)
GLRM (area[7] and patch [7])

SRE, LRE, GLN, RP, RLN, LGRE, HGRE

  
LRE

From area

  
RLN

From area

A run is a string of consecutive pixels which have the same 
grey level. It gives clues about the relative distribution 
of intensity levels. SRE (LRE) shows the prevalence of 
short (long) runs, high in the fine (coarse) texture. GLN (RLN) 
is low when intensity levels (run lengths) are equally 
distributed among runs (grey levels). RP is lowest in linear 
texture. LGRE (HGRE) is high when there are long runs in the 
low (high) grey levels

Higher order textural (10)
NGTDM (area[5] and patch [5])

Coarseness, NGTDM contrast, busyness, complexity, 
strength

  
Coarseness

  
Complexity

Coarseness: The perceived granularity
NGTDM contrast: The local fluctuations of intensity levels
Busyness: The rate of changing intensity
Complexity: Sum of normalized differences between intensity 
values taken in pairs
Strength: Combines the concepts of coarseness and busyness

Gabor textural features (24)
Energy features (border[12] and patch [12])

Energy contented of filtered images in 2 scales (2 and 4 
pixel/cycle) and 6 orientations (S1O1, S1O2,…S1O6, 
S2O1, S2O2,…, S2O6)

  
From patch

Border features: High when the sharp border exists in the 
particular orientation
Patch features: High when there are linear structures in the 
patch and sharp borders
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grades, the majority of the different scores was considered as 
a grade of each image.

Statistical analysis
To find features that differed significantly among different 
categories, the Kruskal–Wallis H‑test was utilized and a P < 0.05 
was considered as statistically significant. For those features 
differed significantly based on the result of Kruskal–Wallis 
H‑test, pairwise comparisons were done using the rank‑based 
Tukey‑Kramer test to identify the pairs that differed significantly. 
Here six pairs, namely, C1 versus C2, C1 versus C3, C1 versus 
C4, C2 versus C3, C2 versus C4, and C4 versus C3 were 
possible. Moreover, we sought to determine whether there was 
a trend in any of the features from C4 to C1 and also examined 
features for trend from C1 to C3 (from the most challenging ones 

to easily identifiable). For this purpose, Spearman correlation 
was used. The statistical tests were performed using MATLAB 
2016 b (Mathwork Inc., Natick, MA).

Results

Significantly different features
As stated in section 2–4, 14 sets of local features were 
extracted from either the segmented area or the patch for each 
channel. From the shape‑based features, all features except 
solidity  (χ2  (3, 718) =7.7992, P  =  0.0504) and eccentricity 
(χ2 (3, 718) =3.9022, P = 0.2722) were significantly different 
among the groups.

A post hoc test showed that the miscounted objects (C4) were 
different from the challenging mitotic figures (C3) in terms of 

Table 1: Contd...

Feature Sample Description

High Low
Contrast (3)

Three measures based on difference in mean intensity of 
mitotic figure and its surrounding (Co1, Co2, Co3)

  
C3

Co1=Mean intensity1-Mean intensityS

l
2

S

Mean intensity
Co =

Mean intensity
                               

Co =
C1

(std + std )3
l S

SD: Standard deviation, SRE: Short run emphasis, LRE: Long run emphasis, GLN: Grey level nonuniformity, RP: Run percentage, RLN: Run length 
nonuniformity, LGRE: Low grey level run emphasis, HGRE: High grey level run emphasis, NGTDM: Neighborhood grey tone difference matrix, MBD: 
Mean Border Distance

Figure 1: A mitotic figure in different color spaces

I (Image) S (surround)
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circularity and mean distance to the nearest border point. None 
of the shape‑based features resulted in a significant difference 
between C4 and C2, while the circularity of miscounted 
objects (mean rank = 382.41, standard deviation [SD] = 12.74) 
was significantly larger than that of easily identifiable 
mitotic figures (mean rank  =  307.78, SD  =  15.54). The 
mean distance to the border was also significantly different 
between C4  (mean rank  =  389.03, SD  =  12.74) and 
C1  (mean rank  =  332.75, SD  =  15.54). All size‑related 
and shape factor features of challenging mitotic figures 
were significantly different from those of both C2 and 
C1. Among the size‑related features, the magnitude of 
differences between the challenging mitotic figures and 
others were highest for the length of major axis. Shape 
factor was significantly different between C3  (mean 
rank = 314.02, SD = 15.55) and C1 (mean rank M = 378.13, 
SD  =  15.54) as well as C3 (mean rank  =  314.02, 
S D   =   1 5 . 5 5 )  a n d  C 2  ( m e a n  r a n k   =   4 0 6 . 8 7 , 
SD  =  21.05). Compactness was significantly different 
between C3  (mean rank  =  321.98, SD  =  15.54) and 
C2 (mean rank = 407.50, SD = 21.05) while circularity was 
significantly different between C3  (mean rank  =  390.33, 
SD = 15.54) and C1 (mean rank = 307.78, SD = 15.54).

For different types of intensity‑based features, the 
percentage of significantly different features is shown in 
Figure  2a in each color space. Overall, intensity‑based 
features are more highlighted in Lab color space. Similarly, 
for eight sets of textural features, the percentage of 
significantly different features per each color space 
was shown in Figure  2b and c. As shown, overall the 
discriminative ability of the textural features from the 
image patch was the highest. Furthermore, XYZ and LMS 
captured the differences in the texture better than other 
color spaces.

Figure  3a‑c shows the percentage of features that differed 
significantly per each feature set in the pairwise comparisons 
of C4  (miscounted non‑mitoses) with C1, C2, and C3. As 
shown, textural features from patches generally captured 
the difference between different categories of mitotic figures 
and the miscounted objects better than other features. The 

features were ranked based on the obtained P value for each 
comparison. After considering the 50 features with the lowest 
P value, it was found that the percentile and contrast features 
from Db (YDbDr), U (YUV), and b (Lab) led to the lowest 
P values (that is, highest differences) for C1 versus C4 and 
also C2 versus C4. The Haralick and Gabor textural features 
extracted from the patches from all LMS and XYZ along with 
saturation channel led to the highest difference between C1 
and C3.

Figure 4a and b presents the percentage of features that differed 
significantly per each feature set in the pairwise comparisons 
of C3 versus C1 and C3 versus C2, respectively. Ranking 
the features showed that the major axis length, perimeter, 
convex area, contrast, and Gabor features extracted from the 
patches led to the lowest P values for both C3 versus C1 and 
C3 versus C2 and the hue channel captured the differences 
better than others.

The analysis of the global features showed that all global 
scene descriptors except nuclei contour were significantly 
different among the groups. The post hoc test revealed the 
nuclei size of surrounding cells was significantly smaller for 
the miscounted objects  (mean rank =  329.52, SD =  12.11) 
compared to C1  (mean rank  =  408.69, SD  =  20.02) and 
C2 (mean rank = 410.42, SD = 14.78). It was also shown that 
the nuclei size was significantly smaller in the challenging 
mitotic figures  (mean rank  =  326.41, SD  =  14.78) in 
comparison with the easily identifiable ones  (C1 and C2). 
On the other hand, the nucleoli size was significantly larger 
for C3  (mean rank  =  410.66, SD  =  13.94) compared to 
C1 (mean rank = 352.43, SD = 13.94). The value was lowest 
for C4 and the difference was significant for C4 versus C2 
and C4 versus C3.

The mean anisonucleosis score of the mitoses’ surrounding 
cells was lowest for the miscounted objects and differed 
significantly from all three categories of mitotic figures. 
The density of chromatin was significantly different for 
C4  (mean rank  =  341.36, SD  =  6.71) versus C3  (mean 
rank = 371.47, SD = 8.19). Finally, the membrane thickness 
was significantly different for C4  (mean rank  =  336.02, 

Figure 2: Percentage of features that differ significantly in each color space; total number of features in each set is shown in the parenthesis. 
(a) Intensity‑based features; (b) textural features from patches; (c) textural features from the segmented area

cba
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SD  =  7.69) versus C3  (mean rank  =  382.43, SD  =  9.39) 
and C1 (mean rank = 369.36, SD = 9.39). Again none of 
the global descriptors led to a significant difference for C1 
versus C2.

Seventeen features were significantly different among 
all pairwise comparisons except C1 versus C2. All 
these features were percentile‑based, from which fifteen 
were from Db  (YDbDr), U  (YUV), b  (Lab) channels 
(five features per channel) and two from saturation channel 
of HSV and HSL.

For 1241 features, the P  value for Spearman correlation 
between features’ value and the ordinal variable represent the 
groups (C1 to C4) was <0.05. The distribution of 100 features 
with the highest correlation across different feature types is 
shown in Figure 5. The corresponding Spearman correlation 
ranged from 0.21 to 0.32 with P < 0.0001. For 1059 features, 
there was a trend from the easily identifiable category (C1) 
to the challenging category  (C3). Figure  5 also shows 
the distribution of 100 highest correlated features across 
different feature sets. The range of Spearman correlation for 
these features was 0.18–0.25 with P < 0.0001.

Table 2 shows a few examples of the features for which a trend 
was observed from C1 to C3. The examples are shown in a format 

Figure 3: Percentage of each type of features that differed significantly in 
the pairwise comparisons of C4 (miscounted nonmitoses) with C3 (a), 
C2 (b), C1 (c)

c

b

a

Figure 4: Percentage of features in each set that differed significantly in 
the pairwise comparisons of C3 with C1 (a) and C2 (b)

b

a

Table 2: Examples of features for which a trend was 
observed within mitoses categories

Increase in variable resulted in a significant level of correlation → 
increase or decrease in the probability of being challenging

1 ↑ Major axis length → ↓challenging
2 ↑ Compactness → ↑ challenging
3 ↑ 95th percentile in CH b (Lab); roughly means ↑ greenness → 

↓challenging
4 ↑ 5th percentile of CH. Db (YDbDr); roughly means ↑ blueness 

→ ↑challenging
5 ↑ Haralick contrast CH R (RGB); roughly means ↑ local 

contrast in CH R → ↓challenging
6 ↑ Infh1 CH R (RGB); roughly means ↑ linear dependency with 

respect to directional entropy → ↓challenging
7 ↑ Dissimilarity in the segmented area CH R (RGB); roughly 

means ↑ local intensity variations → ↓challenging
8 ↑ Coarseness of the segmented area CH B (RGB); roughly 

means ↑ granularity within the area → ↑challenging
9 ↑ Business CH H (HSV); roughly means↑patches with high rate 

of changes in hue → ↓challenging
10 ↑ Patch Gabor feature (+30°, −30° 1st Scale) CH R (RGB); 

roughly means↑thin linear structures → ↓challenging
11 ↑ Patch Gabor feature (0° 1st Scale) CH L (Lab); roughly 

means↑thin linear structures→ ↓challenging
12 ↑ Patch correlation CH V (HSV); roughly means ↑ linear 

dependency to neighboring pixels → ↑challenging
HSV: Hue, saturation, and values, RGB: Red, green, and blue. An upward 
arrow, ↑, and downward arrow, ↓, represent an increase and decrease in 
the value of the parameters (either features or probability of belonging 
to a certain group) respectively. An arrow to the right, →, indicates a 
conditional, an “if…then…” rule

of the if‑then condition, for example, the first rule in the table 
could be interpreted as “recognition of mitotic figures with larger 
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major axis length is less challenging.” Similarly, Table 3 shows 
examples of observed C1–C4, which represent the 100%–20% 
confidence level of being mitoses in the original dataset.

Discussion

This study focused on a systematic analysis of different 
types of features and various color spaces to find quantitative 

features that differed significantly among easily identifiable 
mitotic figures, challenging ones, and the objects that were 
misrecognized as being mitotic figures by a pathologist.

Overall, the data demonstrated that quantitative features can 
capture the differences between appearances of the challenging 
mitotic figures (C3) and the easily identifiable ones (C1 and C2) 
and also miscounted objects  (C4), and those of all three 
categories of mitotic figures (C1, C2, and C3). However, none 
of the features were significantly different between the mitotic 
figures missed by only one pathologist (C2) and those found 
by all pathologists (C1). The results further suggested that the 
missing the mitotic figures in category C2 could not be because 
of their appearance  (image‑based features). Furthermore, 
the mitotic figures were not equally distributed among the 
categories; C1 and C3 contained 178 mitoses and C2 contained 
97 ones. The lower number of significantly different features 
in comparisons between C2 with other categories could be 
due to a lack of observations and thus lower statistical power.

It was also found that the distribution of significantly different 
features varies among color spaces. We can group the color 
spaces into four categories: RGB, which is an additive color 
space and often used for display technology, the Lab family, 
which separates luminance from chromatin and includes Lab, 
YUV, and YDbDr, the HSV family, which includes HSV and 
HSL and present color as HSVs, and color spaces such as 
XYZ and LMS, which are based on responsivity of three types 
of cones in the human eye. As shown in Figure 6, these two 
perceptually motivated color spaces capture the difference better 
than other color spaces. RBG followed in terms of capturing 
such differences. It should be noted that there is L, M, and S 
channels, named after cone cells responsive to LMS wavelength 
roughly correspond to RGB channels in RGB space. However, 
the better performance of LMS compared to RGB could be as 
result of being more robust to illumination conditions.

As indicated in Figure 7, the discriminative ability of various 
color spaces was not the same for different comparison pairs. 
As expected, the different color spaces in the same family 
perform almost similarly. Among different mitoses categories, 

Figure 5: Distribution of features ranked the highest in terms of showing a trend from C1 to C4 (red) and C1 to C3 (yellow)

Table 3: Examples of features for which a trend was 
observed from easily identifiable mitoses to nonmitoses

Increase in variable resulted in a significant level of correlation → 
increase or decrease in the probability of being nonmitoses

1 ↑ Mean intensity CH U (YUV); roughly means ↑ blueness → 
↑nonmitoses

2 ↑ Range (95th‑5th) CH Dr (YDbDr); roughly means ↑ range of 
redness → ↑nonmitoses

3 ↑ Contrast CH Z (XYZ); roughly means ↑ difference in blueness 
of the area and its surrounding → ↑nonmitoses

4 ↑ Sosvh CH S (HSV); roughly means ↑ heterogeneity of 
saturation values of the area → ↑nonmitoses

5 ↑ Patch strength CH M (LMS); roughly means ↑ combined 
granularity and change rate → ↑nonmitoses

6 ↑ Patch coarseness CH V (YUV); roughly means ↑ granularity 
of patch → ↑nonmitoses

7 ↑ Patch RP CH G (RGB); roughly means ↓ linear structures → 
↓nonmitoses

8 ↑ Patch GLN CH B (RGB); roughly means ↑ evenness of blue 
values distribution across runs → ↓nonmitoses

9 ↑ Patch LRE CH S (HSV); roughly means ↑ similar saturation 
value for a long pixel sequence → ↑nonmitoses

10 ↑ HGRE CH V (YUV); roughly means↑granularity within the 
area → ↓nonmitoses

11 ↑ Patch Gabor feature (120 2nd scale) CH L (LMS); roughly 
means↑thick linear structures→ ↓nonmitoses

12 ↑ Patch homogeneity CH G (RGB); roughly means ↑ granularity 
within the area → ↑nonmitoses

LRE: Long run emphasis, RGB: Red, green, and blue, HSV: Hue, 
saturation, and values, LMS: Long, medium and short. An upward arrow, 
↑, and downward arrow, ↓, represent an increase and decrease in the value 
of the parameters (either features or probability of belonging to a certain 
group) respectively. An arrow to the right, →, indicates a conditional, an 
“if…then…” rule
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the miscounted objects’ appearances and less easily identifiable 
mitoses resulted to the highest number of significantly different 
features. This could be because less easily identifiable mitoses 
deviate from the typical appearances of mitotic figures that 
pathologists have in their mind, while the miscounted objects 
share some similarity with this typical appearance and thus 
they are mistaken as being true mitoses because of this 
similarity. Across all color spaces, the numbers of significantly 
different features for the three comparisons that involved the 
miscounted objects were higher than those of comparisons 
among different categories of mitoses. Therefore, in spite of 
differences between the challenging mitoses and the easily 
identifiable ones, the magnitude of similarity between them 
still exceeds that of mitoses versus nonmitoses. In addition, 
features from HSL and HSV resulted into a higher number of 
significantly different features for C3 versus C1 and C3 versus 
C2, while LMS and XYZ captured the differences among the 
miscounted objects and mitoses better than other color spaces.

The analysis of the shape‑based features indicated that the less 
easily identifiable mitotic figures are rounder and smaller (based 
on all of the size‑related measures) than other mitotic figures, 
while the average miscounted object’s size was similar to that 
of an average easily identifiable mitotic figure. However, the 
miscounted objects were rounder (based on circularity measure). 
The median of circularity of the different mitoses categories 
is lowest for C1 and highest for C3, and the circularity of C3 
was approximately similar to that of the miscounted objects. 
In the early metaphase, the circularity measure is high, and 
it could be hypothesized that most of the miscounted objects 
were mistaken by cells in their early metaphase. It should be 
noted that performing morphological closing on the binary 
masks corresponding to the mitotic figures slightly affects the 
shape‑based features. Morphological closing is defined as a 
dilation followed by erosion, using a structuring element. The size 
of the structuring element determines the smoothness of edge, the 
size of the filled gaps, and the size of the filled holes in the output 
of the operator. Here, we used a disk‑shaped structuring element 
with a radius of two pixels. The morphological closing operator 
resulted in a slightly larger area (on average <1.4% increase in 
the size of the area when only one connected component existed); 
however, this operation was helpful because it included a few 

nearby smaller regions and thus it generated a better estimate for 
the mask of the mitoses. As a two‑pixel disk‑shaped structuring 
element was used here, smaller regions that are one or two pixels 
apart from the main connected component were included as a 
result of applying the morphological closing.

Also, in the k‑means clustering algorithm, the final segmentation 
depends on the initial seeds. This could result in a noisy border 
in the final segmented region. The use of morphological opening 
could be beneficial in smoothing the edges and compensating 
the segmentation error. Among all features, the perimeter was 
affected the most (about 6%), however, the smoothed borders 
in the output of the morphological closing could lead to better 
estimates for the perimeter of mitotic figures. Among other 
size‑related shape‑based features, i.e. major axis length, minor 
axis length, convex area, and circumscribed circle diameter 
the observed changes were <1%. The effect of the operation 
on other shape‑based features was negligible as they are 
proportional values. In addition, it should be mentioned that the 
size of the structuring element was small enough (two pixels) 
to make sure that the outer‑borders of the segmented areas 
did not change dramatically. Moreover, changes due to the 
closing operation were significantly smaller than the differences 
between categories. For example, the changes in area due to the 
closing operation were about 7.5 pixels, which was significantly 
smaller than the differences between miscounted objects and 
mitotic figures (on average 90 pixels). Therefore, the closing 
operation did not affect the final comparisons.

As shown in Figures 3 and 4, some of the textural and intensity 
features differed significantly between different pairs. Ranking 
the obtained P  value of significantly different features for 
comparison between the challenging mitoses  (C3) and easily 
identifiable ones  (C1) revealed that Gabor features from the 

Figure 6: Distribution of significantly different features among various 
color spaces

Figure 7: Number of significantly different features in various color spaces 
for pairwise comparisons
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patches are the most discriminative features, while a high 
proportion of intensity‑based features showed no significant 
differences between the two groups. Therefore, challenging 
mitoses are mostly different from the easily identifiable ones in 
their texture and shape rather than the intensity levels. Gabor 
filter bank mimics the human visual system, which responds 
selectively to orientations and scales. Utilizing the energy content 
of a filtered image in a particular scale and orientation as a 
feature resembles the same procedure. This could be the reason 
why these features captured information about a mitotic figure 
being perceptually challenging for the readers. The significantly 
different intensity based features were either extracted from 
chromatin channels of Lab family or hue channel. Compared 
to other color spaces, Lab family is more perceptually uniform, 
which means that a change in the value of their channels produces 
a change of the same amount in perceived color. On the other 
hand, for comparing nonmitoses and easily identifiable mitoses, 
intensity‑based features were the most discriminative ones.

All global scene descriptors except nuclei contour led into 
significant P values. When the context of mitotic figures contained 
smaller nuclei or larger nucleoli, recognizing mitotic figures was 
more difficult for pathologists. It could be hypothesized that these 
two factors made the scene more complex. Also, it was shown 
that the miscounted objects were often marked in images with 
smaller nuclei size, smaller nucleoli size, lower anisonucleosis 
score, and lower membrane thickness score.

The Kruskal–Wallis H‑test is a nonparametric equivalent of 
ANOVA and dealt the groups as categorical variables. The 
group variable could be also treated as an ordinal variable, 
as the confidence level decrease from C1 to C3. We used the 
Spearman correlation to find whether there is a trend in change 
of the feature values from the less easily identifiable category 
to the challenging one. A similar analysis was also utilized to 
explore trends from C1 to C4, which represent the 100%–20% 
confidence level of being mitoses in the original dataset. 
Identifying these rules could be beneficial in improving the 
training provided to pathology residents and general pathologists. 
Paradiso et al. showed that extracting the methodological skills 
required to enhance performance from a quality control study[8] 
and reviewing these skills in a training course can increase the 
pathologists’ performance in a short‑term.[16]

Our study has a number of limitations. First, we used the 
opinion of pathologists while assessing hematoxylin and 
eosin (H and E) images as the ground truth. A definition of 
mitosis phase could be better accomplished with a combination 
of Ki‑67 label and H and E image data. Particularly for C3, 
which was labeled as “probably a mitosis” by the majority 
of the readers, the Ki‑67 label could help in establishing the 
ground truth. Moreover, the pathologists who annotated the 
images for this data set were expert readers (as stated in the 
data description). The quantitative features describing the 
appearances of challenging mitoses for pathology trainees 
or less experienced observers could be different from those 
features extracted here. Using the methodology described 
here for pathology residents could help us in quantifying the 

perceptual difficulty in recognition of mitotic figures for them 
and improve their education. In this study we used all cases 
and readers of a publicly available dataset  (Mitosis‑atypia 
challenge 2014), which included only data from senior 
pathologists, and hence we did not have access to data from 
less experienced readers. However, this study provides a 
methodology to systematically analyze the quantitative data 
and presents preliminary results from such methodology, 
and we hypothesize that a similar methodology could be 
used to analyze data from pathology residents and study 
their behavior. The data suggested that none of the features 
differed significantly between C1 and C2. Even in the simplest 
visual tasks, missing a few targets are inevitable. However, 
as other categories outnumbered C2, the lack of statistical 
power could be the reason of insignificant P  values of the 
pairwise comparisons involved C2. One potential venue for 
further work is the expansion of this study to a larger dataset 
to quantify the differences between C1 and C2. In addition, 
intrapathologist variations could exist in recognizing mitotic 
figures. Therefore, another potential venue for future work 
could be investigating whether a reader would miss mitotic 
figures belonging to C2 (i.e., the ones which were missed one 
time) in the second reading.
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