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A chemical investigation on the kiwi endophytic fungus Bipolaris sp. Resulted in

the isolation of eight new terpenoids (1–8) and five known analogues (9–13).

Compounds 1–5 are novel sativene sesquiterpenoids containing three

additional skeletal carbons, while compounds 4 and 5 are rare dimers.

Compounds 6–8 and 13 are sesterterpenoids that have been identified from

this species for the first time. Compounds 4 and 5 showed antibacterial activity

against kiwifruit canker pathogen Pseudomonas syringae pv. Actinidiae (Psa)

with MIC values of 32 and 64 μg/ml, respectively.
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1 Introduction

Kiwifruit is an important global food source produced at a scale of 4 million tons per

year (Richardson et al., 2018; Dolly et al., 2021). However, the kiwi plant (Actinidia

chinensis Planch.) is severely attacked by canker caused by the pathogenic bacterium

Pseudomonas syringae pv. Actinidiae (Psa) (Renzi et al., 2012; Scortichini et al., 2012). As

one of the major countries in the kiwifruit industry, China’s kiwifruit has also suffered

extensive damage from canker disease, causing huge economic losses (Serizawa et al.,

1989; McCann et al., 2017; Vanneste, 2017). Traditional Psa inhibitors such as copper-

based preparations and streptomycin are not friendly to the environment and even cause

drug resistance (Bardas et al., 2010; Colombi et al., 2017; Scortichini, 2018; Wicaksono

et al., 2018). Therefore, the development of new antibacterial agents is highly desireable.

Endophytes and hosts have formed a close interrelationship in the long-term

evolution process, making endophytes an excellent resource for the production of

natural antibacterial ingredients (Kusari et al., 2012; Gouda et al., 2016; Gupta et al.,

2020). Our strategy intends to explore the active substances against Psa from the
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metabolites of the endophytic bacteria of the kiwifruit itself.

Some progress has been made in our previous research. For

example, 3-decalinoyltetramic acids and cytochalasins from the

kiwifruit endophytic fungus Zopfiella sp. Showed anti-Psa

activity (Yi et al., 2021; Zhang et al., 2021), while imidazole

alkaloids from Fusarium tricinctum were characterized as anti-

Psa agents (Ma et al., 2022). Bipolaris sp. Is also an endophytic

fungus that was characterized from health kiwi plant. Our

previous chemical investigation on this fungus yielded a series

sesquiterpenoids (bipolarisorokins A–I) and xanthones with

anti-Psa properties from the liquid fermented extract (Yu

et al., 2022). In order to search for more anti-Psa agents from

this fungus, we further investigated the fermentation products

from the culture grown on rice medium. As a result, eight new

terpenoids including five sesquiterpenoids (1–5) and three new

sesterterpenoids (6–8), as well as five known analogues (9–13),

have been obtained (Figure 1). Their structures have been

identified by extensive spectroscopic methods, as well as

quantum chemical calculations. All compounds were

evaluated for their anti-Psa activity. Herein, the isolation,

structure elucidation and anti-Psa activity of these isolates are

reported.

FIGURE 1
Structures of compounds 1–13.

SCHEME 1
Plausible biogenetic pathway for seco-sativene sesquiterpenoids of Bipolaris sp.
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2 Experimental section

2.1 General experimental procedures

Optical rotations were measured with an Autopol IV

polarimeter (Rudolph, Hackettstown, NJ, United States ). UV

spectra were obtained using a double beam spectrophotometer

UH5300 (Hitachi High-Technologies, Tokyo, Japan). 1D and 2D

NMR spectra were run on a Bruker Avance III 600 MHz

spectrometer with TMS as an internal standard. Chemical

shifts (δ) were expressed in ppm with references to the

solvent signals. High resolution electrospray ionization mass

spectra (HR-ESIMS) were recorded on a LC-MS system

consisting of a Q Exactive™ Orbitrap mass spectrometer with

an HRESI ion source (ThermoFisher Scientific, Bremen,

Germany) used in ultra-high-resolution mode (140,000 at m/z

200) and a UPLC system (Dionex UltiMate 3000 RSLC,

ThermoFisher Scientific, Bremen, Germany). Column

chromatography (CC) was performed on silica gel

(200–300 mesh, Qingdao Marine Chemical Ltd., Qingdao,

China), RP-18 gel (20–45 μm, Fuji Silysia Chemical Ltd.,

Kasugai, Japan), and Sephadex LH-20 (Pharmacia Fine

Chemical Co., Ltd., Sweden). Medium-pressure liquid

chromatography (MPLC) was performed on a Büchi Sepacore

System equipped with a pump manager C-615, pump modules

C-605, and a fraction collector C-660 (Büchi Labortechnik AG,

Flawil, Switzerland). Preparative high-performance liquid

chromatography (prep-HPLC) was performed on an Agilent

1,260 liquid chromatography system equipped with Zorbax

SB-C18 columns (5 μm, 9.4 mm × 150 mm, or 21.2 mm ×

150 mm) and a DAD detector. Fractions were monitored by

TLC (GF 254, Qingdao Haiyang Chemical Co., Ltd., Qingdao,

China), and spots were visualized by heating silica gel plates

sprayed with 10% H2SO4 in EtOH.

2.2 Fungal material

The fungus Bipolaris sp. Was isolated from fresh and healthy

stems of kiwifruit plants (Actinidia chinensis Planch,

Actinidiaceae), which were collected from the Cangxi county

of the Sichuan Province (GPS: N 31°12′, E 105°76′) in July 2018.

Each fungus was obtained simultaneously from at least three

different healthy tissues. The strain was identified as one species

TABLE 1 1H and 13C NMR data for 1–3.

No. 1a 2b 3b

δC, type δH (J
in Hz)

δC, type δH (J
in Hz)

δC, type δH (J
in Hz)

1 137.8, C 128.2, C 138.8, C

2 165.9, C 160.0, C 169.1, C

3 52.4, C 52.8, C 53.6, C

4a 33.8, CH2 1.43, d (5.9) 34.5, CH2 1.33, ddd (13.2, 11.9, 5.8) 34.6, CH2 1.51, dd (13.3, 6.3)

4b 1.35, dd (12.4, 5.9) 1.44, m 1.42, td (12.8, 5.9)

5a 25.4, CH2 1.75, dd (11.7, 6.6) 26.4, CH2 1.76, dt (13.6, 5.2) 26.4, CH2 1.78, m

5b 0.87, m 1.00, overlap 0.92, dd (10.3, 6.4)

6 44.4, CH 1.02, overlap 46.2, CH 1.06, m 45.8, CH 1.09, m

7 44.9, CH 3.00, br s 48.5, CH 2.93, br s 46.2, CH 2.96, br s

8 19.4, CH3 0.93, s 20.3, CH3 0.92, s 19.6, CH3 0.98, s

9 31.7, CH 1.03, overlap 32.8, CH 1.18, m 32.7, CH 1.01, overlap

10 20.8, CH3 0.75, d (6.0) 21.2, CH3 0.81, d (6.6) 21.1, CH3 0.78, d (6.2)

11 21.8, CH3 1.04, overlap 22.1, CH3 1.00, overlap 22.1, CH3 1.03, d (6.2)

12 11.0, CH3 2.02, s 12.6, CH3 2.01, s 10.9, CH3 2.07, s

13 63.5, CH 2.06, d (9.5) 65.5, CH 2.06, d (9.3) 64.7, CH 2.14, d (9.2)

14 134.5, CH 5.68, ddd (15.4, 9.5, 1.4) 135.2, CH 5.79, ddd (15.4, 9.3, 1.4) 134.8, CH 5.69, ddd (15.5, 9.3, 1.4)

15 188.2, CH 10.04, s 169.9, C 190.1, CH 10.03, s

16 127.5, CH 5.51, dd (15.3, 5.8) 129.8, CH 5.62, dd (15.3, 6.1) 129.8, CH 5.60, dd (15.4, 5.9)

17 71.5, CH 4.58, dd (5.8, 1.4) 73.2, CH 4.52, d (6.1, 1.4) 72.6, CH 4.52, dd (5.9, 1.4)

18 174.2, C 177.0, C 176.3, C

19 53.0, CH3 3.77, s 49.8, CH3 3.35, s

aMeasured in CDCl3.
bMeasured in CD3OD.
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of the genus Bipolaris by observing the morphological

characteristics and analysis of the internal transcribed spacer

(ITS) regions. A living culture (internal number HFG-20180727-

HJ32) has been deposited at the School of Pharmaceutical

Sciences, South-Central Minzu University, China.

2.3 Fermentation, extraction, and isolation

The fungus Bipolaris sp. Was cultured on potato dextrose

agar (PDA) medium for 7 days, which was used as “seed” to

incubate in rice medium. The 500 ml Erlenmeyer flasks

containing 100 g rice and 80 ml distilled water in each were

sterilized at 120°C for 15 min. Then the pieces of Bipolaris

sp. PDA medium was inoculated into Erlenmeyer flasks. A

total of a hundred 500 ml Erlenmeyer flasks were incubated

statically in dark place at 25°C for 28 days.

The cultures of Bipolaris sp.Were extracted with 5 Lmethanol

four times, and the total residue was obtained by reduced pressure

evaporation. Then, the remaining aqueous phase was further

extracted four times by EtOAc to afford a crude extract

(45.0 g). The latter was subjected to silica gel CC

(200–300 mesh) eluted with a gradient of CHCl3-MeOH (from

1:0 to 0:1, v/v) to obtain five fractions, A–E. Fraction B was

separated by CC over silica gel with a gradient elution of the

CHCl3-MeOH system (from 15:1 to 0:1, v/v) to give five fractions

(Fr. B1–B5). Fraction B2 was applied to Sephadex LH-20 eluting

with CHCl3-MeOH (1:1, v/v) and was separated by HPLC with

MeCN-H2O (21:79, v/v, 4.0 ml/min) to obtain 6 (4.3 mg, retention

time (tR) = 26.3 min), and 13 (5.2 mg, tR = 29.4 min). Fraction

B3 was subjected to Sephadex LH-20 (MeOH) and then further

repeatedly purified by semipreparative HPLC with MeCN-H2O

(32:68, v/v, 3.0 ml/min) to afford 11 (86.2 mg, retention time

(tR) = 24.2 min) and 12 (94.3 mg, tR = 27.2 min). Fraction

B4 was purified using semipreparative HPLC with MeCN-H2O

(20:80, v/v, 4.0 ml/min) to afford 10 (7.8 mg, tR = 16.8 min) and

9 (9.6 mg, tR = 20.6 min). Fraction C was purified by

semipreparative HPLC with MeCN-H2O (26:74, v/v, 4.0 ml/

min) to afford 7 (4.8 mg, tR = 24.6 min) and 8 (7.3 mg, tR =

27.5 min). Fraction D was separated by CC over silica gel with a

gradient elution of PE-acetone (from 50:1 to 0:1, v/v), and then

was purified by semipreparative HPLC with MeCN-H2O (18:

82, v/v, 4.0 ml/min) to obtain 1 (6.4 mg, tR = 29.6 min), 2

(3.8 mg, tR = 24.3 min), and 3 (7.6 mg, tR = 18.5 min). Fraction

E was purified over Sephadex LH-20 eluted with MeOH, and

was further separated using semipreparative HPLC with

MeOH-H2O (78:22, v/v, 3.0 ml/min) to afford 4 (8.7 mg,

tR = 38.2 min) and 5 (12.8 mg, tR = 34.3 min).

Bipolarisorokin J (1): colorless oil; [α]20D – 99.8 (c 0.05,

MeOH); UV (MeOH) λmax (log ε) 260 (3.86); 1H NMR

(600 MHz, CDCl3) and
13C NMR (150 MHz, CDCl3) data, see

Table 1; positive ion HR-ESI-MS m/z 343.18790, [M + Na]+,

(calculated for C19H28NaO4
+, 343.18798).

Bipolarisorokin K (2): colorless oil; [α]20D – 58.9 (c 0.05,

MeOH); UV (MeOH) λmax (log ε) 245 (3.82); 1H NMR

(600 MHz, CD3OD) and 13C NMR (150 MHz, CD3OD) data,

see Table 1; positive ion HR-ESI-MS m/z 359.18268, [M + Na]+,

(calculated for C19H28NaO5
+, 359.18290).

Bipolarisorokin L (3): colorless oil; [α]17D – 83.3 (c 0.05,

MeOH); UV (MeOH) λmax (log ε) 265 (3.78); 1H NMR

(600 MHz, CD3OD) and 13C NMR (150 MHz, CD3OD) data,

see Table 1; positive ion HR-ESI-MS m/z 307.19046, [M + H]+,

(calculated for C18H27O4
+, 307.19039).

Bipolarisorokin M (4): colorless oil; [α]17D – 48.9 (c 0.05,

MeOH); UV (MeOH) λmax (log ε) 265 (4.15); 1H NMR

(600 MHz, CDCl3) and
13C NMR (150 MHz, CDCl3) data, see

Table 2; positive ion HR-ESI-MS m/z 525.35706, [M + H]+,

(calculated for C33H49O5
+, 525.35745).

Bipolarisorokin N (5): colorless oil; [α]17D – 45.6 (c 0.05,

MeOH); UV (MeOH) λmax (log ε) 255 (4.07); 1H NMR

(600 MHz, CDCl3) and
13C NMR (150 MHz, CDCl3) data, see

Table 2; positive ion HR-ESI-MS m/z 541.35254, [M + H]+,

(calculated for C33H49O6
+, 541.35237).

Bipolariterpene A (6): colorless oil; [α]20D ‒ 25.3 (c 0.05,

MeOH); UV (MeOH) λmax (log ε) 260 (3.96); 1H NMR

(600 MHz, CD3OD) and 13C NMR (150 MHz, CD3OD) data,

see Table 3; positive ion HR-ESI-MS m/z 483.27176, [M + Na]+,

(calculated for C27H40NaO6
+, 483.27171).

Bipolariterpene B (7): colorless oil; [α]20D ‒ 28.9 (c 0.04,

MeOH); UV (MeOH) λmax (log ε) 265 (3.92); 1H NMR

(600 MHz, CD3OD) and 13C NMR (150 MHz, CD3OD) data,

see Table 3; positive ion HR-ESI-MS m/z 441.26044, [M + Na]+,

(calculated for C25H38NaO5
+, 441.26115).

Bipolariterpene C (8): colorless oil; [α]20D + 26.3 (c 0.035,

MeOH); UV (MeOH) λmax (log ε) 205 (4.05); 1H NMR

(600 MHz, CDCl3) and
13C NMR (150 MHz, CDCl3) data, see

Table 3; positive ion HR-ESI-MS m/z 461.28955, [M + H]+,

(calculated for C27H41O6
+, 461.28977).

2.4 Preparation of (S)-MTPA and (R)-MTPA
esters of 1

The samples of 1 (1.5 mg each) were dissolved in pyridine

(500 μl), and added with DMAP (2 mg) and (R)- or (S)-MTPA-

Cl (10 μl) to the solution. The reaction was stirred at room

temperature for 12 h. The productions were individually purified

by semipreparative HPLC and eluted with MeCN-H2O (78:22, v/

v, 4.0 ml/min) to obtain the (S)-MTPA ester 1a (1.0 mg, tR =

14.0 min) and (R)-MTPA ester 1b (0.8 mg, tR = 14.0 min),

respectively.

(S)-MTPA ester (1a). 1H NMR (600 MHz, CDCl3): 1.44 (1H,

d, J = 6.9 Hz, H-4a), 1.35 (1H, m, H-4b), 1.75 (1H, dd, J = 12.0,

6.7 Hz, H-5a), 0.88 (1H, m, H-5b), 1.06 (1H, overlap, H-6), 3.00

(1H, br s, H-7), 0.92 (3H, s, H-8), 1.03 (1H, overlap, H-9), 0.76

(3H, d, J = 5.8 Hz, H-10), 1.05 (3H, overlap, H-11), 2.01 (3H, s,
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H-12), 2.09 (1H, d, J = 9.4 Hz, H-13), 5.79 (1H, dd, J = 15.3,

9.4 Hz, H-14), 10.05 (1H, s, H-15), 5.62 (1H, dd, J = 15.3, 7.4 Hz,

H-16), 5.55 (1H, d, J = 7.5 Hz, H-17), 3.74 (3H, s, H-19); positive

ion HR-ESI-MS m/z 537.24640, [M + H]+, (calculated for

C29H36F3O6
+, 537.24585).

(R)-MTPA ester (1b). 1H NMR (600 MHz, CDCl3): 1.43 (1H,

m, H-4a), 1.34 (1H, m, H-4b), 1.74 (1H, m, H-5a), 0.83 (1H, m,

H-5b), 1.01 (1H, overlap, H-6), 2.93 (1H, br s, H-7), 0.86 (3H, s,

H-8), 1.00 (1H, overlap, H-9), 0.75 (3H, d, J = 5.3 Hz, H-10), 1.02

(3H, overlap, H-11), 1.98 (3H, s, H-12), 2.04 (1H, d, J = 9.4 Hz,

H-13), 5.67 (1H, m, H-14), 10.02 (1H, s, H-15), 5.56 (1H, overlap,

H-16), 5.57 (1H, overlap, H-17), 3.77 (3H, s, H-19); positive ion

HR-ESI-MS m/z 559.22748, [M + Na]+, (calculated for

C29H35F3NaO6
+, 559.22779).

2.5 NMR calculations

The NMR calculations were carried out using the Gaussian

16 software package (Frisch et al., 2010). Systematic

conformational analyses were performed via SYBYL-X

2.1 using the MMFF94 molecular mechanics force field

calculation with 10 kcal/mol of cutoff energy (Hehre, 2003;

Shao et al., 2006). The optimization and frequency of

conformers were calculated on the B3LYP/6-31G(d) level in the

Gaussian 16 program package. All the optimized conformers in an

energy window of 5 kcal/mol (with no imaginary frequency) were

subjected to gauge-independent atomic orbital (GIAO)

calculations of their 13C NMR chemical shifts, using density

functional theory (DFT) at the mPW1PW91/6-311 + G (d,p)

level with the PCM model. The calculated NMR data of these

conformers were averaged according to the Boltzmann

distribution theory and their relative Gibbs free energy. The 13C

NMR chemical shifts for TMS were also calculated by the same

procedures and used as the reference. After the calculation, the

experimental and calculated data were evaluated by the improved

probability DP4+ method (Grimblat et al., 2015).

2.6 Antibacterial activity assay

All compounds were evaluated for their antibacterial activity

against Pseudomonas syringae pv. Actinidae. The antibacterial

assay was conducted by the previously described method (Yu

et al., 2022). The sample to be tested was added into a 96-well

culture plate, and the final compound concentration range from

4 to 256 μg/ml. Bacteria liquid was added to each well until the

final concentration is 5 × 105 CFU/ml. It was then incubated at

27°C for 24 h, and the minimum inhibitory concentration (MIC,

with an inhibition rate of ≥90%) was determined by the

microplate reader at OD600 nm. The medium blank control

was used in the experiment. Streptomycin was used as the

positive control.

3 Results and Discussion

3.1 Structure characterizations

Bipolarisorokin J 1) was isolated as a colorless oil. The

molecular formula was determined as C19H28O4 with six

TABLE 2 1H and 13C NMR data for 4 and 5 in CDCl3.

No. 4 5

δC, type δH (J in Hz) δC, type δH (J in Hz)

1 137.7, C 137.7, C

2 165.9, C 165.9, C

3 52.3, C 52.3, C

4a 33.8, CH2 1.36, td (12.8, 5.8) 33.8, CH2 1.37, d (5.6)

4b 1.45, dd (13.3, 6.3) 1.45, dd (13.3, 6.3)

5a 25.4, CH2 0.86, m 25.4, CH2 0.88, m

5b 1.74, overlap 1.75, overlap

6 44.5, CH 1.05, overlap 44.5, CH 1.04, overlap

7 45.0, CH 2.98, br s 45.0, CH 2.99, br s

8 19.6, CH3 0.95, s 19.6, CH3 0.95, s

9 31.7, CH 1.03, overlap 31.7, CH 1.02, overlap

10 20.9, CH3 0.76, overlap 20.9, CH3 0.75, d (5.8)

11 21.9, CH3 1.05, overlap 21.9, CH3 1.04, overlap

12 10.8, CH3 2.02, s 11.0, CH3 2.02, s

13 63.6, CH 2.08, d (9.5) 63.6, CH 2.08, d (9.5)

14 134.3, CH 5.70, dd (15.3, 9.5) 134.4, CH 5.70, dd (15.2, 9.6)

15 188.2, CH 10.05, s 188.2, CH 10.05, s

16 127.2, CH 5.52, dd (15.3, 5.5) 127.4, CH 5.53, dd (15.3, 5.6)

17 71.2, CH 4.56, d (5.5) 71.3, CH 4.58, d (5.4)

18 173.8, C 173.9, C

1′ 137.3, C 126.0, C

2′ 165.1, C 161.7, C

3′ 51.0, C 50.8, C

4’ 34.0, CH2 1.42, overlap 33.8, CH2 1.34, dd (13.0, 5.6)

5′a 25.2, CH2 0.89, overlap 25.0, CH2 0.99, overlap

5′b 1.77, overlap 1.76, overlap

6′ 44.9, CH 1.01, overlap 45.2, CH 0.99, overlap

7′ 41.7, CH 3.09, br s 43.6, CH 3.06, br s

8′ 18.7, CH3 1.04, s 19.2, CH3 0.99, s

9′ 31.7, CH 1.03, m 31.6, CH 1.22, m

10′ 20.8, CH3 0.76, overlap 21.0, CH3 0.8, d (6.5)

11′ 21.8, CH3 1.05, overlap 21.8, CH3 1.04, overlap

12′ 11.0, CH3 2.02, s 12.8, CH3 2.03, s

13′ 57.7, CH 1.81, dd (8.7, 5.9) 58.2, CH 1.76, overlap

14′a 66.0, CH2 3.80, dd (10.9, 8.9) 66.3, CH2 3.91, m

14′b 4.25, dd (11.0, 5.8) 4.27, dd (10.8, 5.6)

15′ 188.1, CH 10.05, s 171.3, C
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degrees of unsaturation based on the HRESIMS data (measured

atm/z 343.18790 [M + Na]+, calcd for C19H28NaO4
+ 343.18798).

The 13C NMR data of 1 displayed 19 carbon signals, which were

assigned as five methyls, two methylenes, eight methines, and

four quaternary carbons in association with the HSQC data

(Table 1). The 1H NMR data of 1 showed five methyl signals

at δH 0.93 (3H, s, H-8), 0.75 (3H, d, J = 6.0 Hz, H-10), 1.04 (3H,

overlap, H-11), 2.02 (3H, s, H-12), and 3.77 (3H, s, H-19), two

olefinic protons at δH 5.68 (1H, ddd, J = 15.4, 9.5, 1.4 Hz, H-14)

and 5.51 (1H, dd, J = 15.3, 5.8 Hz, H-16), and an aldehyde proton

at δH 10.04 (H, s, H-15) (Table 1). The characteristic signals of 1D

NMR, together with the data of analogues from the same origin,

suggested that 1 was most likely a seco-sativene type

sesquiterpenoid derivative. According to 1H−1H COSY

spectrum, two structural fragments were deduced as shown

with bold lines in Figure 2. Based on this, the HMBC

TABLE 3 1H and 13C NMR data for 6–8 (δ in ppm).

no. 6a 7a 8b

δC, type δH (J
in Hz)

δC, type δH (J
in Hz)

δC, type δH (J
in Hz)

1 50.2, C 49.8, C 49.0, C

2a 40.5, CH2 1.69, overlap 39.9, CH2 1.94, m 39.3, CH2 2.23, dd (14.8, 8.0)

2b 2.35, m 2.07, m 1.78, m

3 123.3, CH 5.33, overlap 120.9, CH 5.26, m 119.6, CH 5.12, m

4 138.6, C 138.4, C 139.2, C

5a 41.3, CH2 2.31, m 42.9, CH2 2.78, m 35.3, CH2 2.29, dd (14.5, 7.2)

5b 2.06, m 2.11, m

6a 24.3, CH2 2.44, overlap 126.1, CH 5.75, m 30.1, CH2 1.81, m

6b 2.22, m 1.60, m

7 128.7, CH 5.35, overlap 138.0, CH 5.48, d (15.5) 75.7, CH 3.38, dd (8.1, 3.7)

8 137.6, C 74.3, C 74.8, C

9a 31.4, CH2 2.42, overlap; 1.77, m 39.0, CH2 1.74, m 35.3, CH2 1.65, overlap

9b 1.64, m 1.43, m

10a 31.0, CH2 1.79, m 30.6, CH2 1.62, m 29.5, CH2 1.76, overlap

10b 1.61, overlap 1.52, m 1.51, m

11 77.1, CH 4.01, dd (9.3, 4.3) 80.5, CH 3.88, m 79.1, CH 4.09, m

12 137.6, C 139.1, C 138.1, C

13 130.0, CH 5.39, d (5.4) 127.4, CH 5.20, d (8.1) 126.2, CH 5.43, d (5.3)

14a 30.2, CH2 2.44, overlap 30.0, CH2 2.34, d (15.7) 29.6, CH2 2.36, d (16.1)

14b 1.95, dt (17.9, 9.4) 1.87, m 1.93, m

15 50.7, CH 2.72, d (10.6) 50.9, CH 2.50, d (9.5) 49.8, CH 2.54, d (8.7)

16 149.9, C 152.2, C 147.4, C

17 149.5, C 148.8, C 146.6, C

18 209.0, C 210.1, C 207.8, C

19 16.8, CH3 0.96, s 16.5, CH3 0.99, s 16.0, CH3 1.00, s

20 15.5, CH3 1.66, s 18.0, CH3 1.67, s 17.8, CH3 1.63, s

21a 59.5, CH2 4.20, d (12.0) 30.4, CH3 1.26, s 24.6, CH3 1.24, s

21b 4.08, d (12.0)

22 10.5, CH3 1.57, s 11.4, CH3 1.56, s 12.3, CH3 1.62, s

23 35.2, CH 2.81, q (7.1) 38.8, CH 2.59, q (6.9) 34.1, CH 2.77, q (7.2)

24a 67.6, CH2 4.31, m 65.8, CH2 3.82, m 66.5, CH2 4.27, dd (10.5, 7.8)

24b 4.26, m 3.68, dd (10.4, 6.5) 4.22, dd (10.6, 7.0)

25 14.7, CH3 1.30, d (7.0) 14.6, CH3 1.24, d (7.1) 14.7, CH3 1.31, d (7.1)

26 172.7, C 171.1, C

27 20.8, CH3 2.00, s 21.0, CH3 2.02, s

aMeasured in CD3OD.
bMeasured in CDCl3.
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correlations from δH 2.02 (3H, s, Me-12) to δC 165.9 (s, C-2), 52.4

(s, C-3) and δC 137.8 (s, C-1), from δH 0.93 (3H, s, Me-8) to C-2,

C-3, 33.8 (t, C-4) and 63.5 (d, C-13), from δH 3.00 (1H, br s, H-7)

to C-1, C-13, and δC 134.5 (d, C-14) established a seco-sativene

type sesquiterpene backbone. In addition, one aldehyde group

was connected to C-1, which was deduced from HMBC

correlations from δH 10.04 (H, s, H-15) to δC 44.9 (d, C-7)

and C-1. Furthermore, the HMBC correlations from δH 3.77 (3H,

s, Me-19) and 4.58 (1H, dd, J = 5.8, 1.4 Hz, H-17) to δC 174.2 (s,

C-18) suggested that the connections among C-17, C-18 and C-

19. The planar structure of 1 was thus deduced as shown in

Figure 2, resembling bipolarisorokin G (10) (Yu et al., 2022). The

ROESY correlations (Figure 3) of H-13/H-8, H-13/H-6 and H-

12/H-14 revealed that H-3, H-6, H-7 and H-8, were co-facial and

assigned to be β-oriented. Correlations between H-13 and H-16,

as well as large coupling constants (J = 15.4 Hz), confirmed the

double bonds (C-14 and C-16) to be E-geometry. However, the

geometry of H-17 cannot be determined by using the NOESY

correlation. Regarding the same origin of 1 and 10, the absolute

configuration of 1 thus was suggested to be the same as that of 10,

except for C-17. However, the stereo-chemistry at C-17 was

determined using a modifie Mosher’s method (Hoye et al., 2007).

FIGURE 2
Key 1H−1H COSY and HMBC correlations for 1, 4, 6, and 8.

FIGURE 3
Key ROESY correlations for 1, 4, 6, 7, and 8.
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The observed differences of chemical shifts (Δδ = δS − δR)

(Figure 4) indicated that the C-17 absolute configuration is R.

Consequently, the absolute configuration of 1was assigned as 3R,

6R, 7S, 13S, 17R.

Bipolarisorokin K (2), a colorless oil, was assigned the

molecular formula of C19H28O5 with six degrees of

unsaturation based on HRESIMS data (measured at m/z

359.18268 [M + Na]+, calcd for C19H28NaO4
+ 359.18290). The

1H and 13C NMR data of 2 (Table 1) are closely similar to those of

1. The significant difference was the presence of a carboxyl group

at C-15 (δC 169.9, s) in 2, instead of the aldehyde group in 1. This

deduction was identified by the HMBC corrections from δH 2.93

(1H, br s, H-7) to δC 128.2 (s, C-1), δC 160.0 (s, C-2) and C-15,

together with its HRESIMS data. Moreover, the absolute

configuration of 2 was suggested to be the same with that of 1

based on the nearly identical NMR data, the biosynthetic

pathway, and the consistent experimental ECD data of these

two compounds (Figure 5).

Bipolarisorokin L 3) was obtained as a colorless oil. Its

molecular formula was determined to be C18H26O4 based on

HRESIMS data (measured at m/z 307.19046 [M + H]+, calcd for

C18H27O4
+ 307.19039). Comparing its 1D and 2D NMR data

with those of 1 indicated that they shared almost the same

chemical construction. However, the major difference was that

the methyl ester group in 1 was replaced by a carboxyl group at

C-18 in 3. The loss of a methoxy signal in the 13C NMR spectrum,

the HMBC correlation from δH 4.52 (1H, dd, J = 5.9 Hz, 1.4 Hz,

H-17) to δC 176.3 (s, C-18), and the mass data analysis confirmed

the above deduction. The relative configurations of in 3 should be

in agreement with the configuration of 1 based on the nearly

identical NMR data. Finally, the experimental ECD curve of 3

matched well with that of 1 (Figure 5), suggesting that the

absolute configuration of 3 was identical to that of 1.

Bipolarisorokin M 4) was obtained as a colorless oil. Its

molecular formula of C33H48O5, together with ten degrees of

unsaturation, were established by its HRESIMS data (measured

atm/z 525.35706 [M + H]+, calcd for C33H49O5
+ 525.35745). The

1HNMR data of 4 displayed signals for two olefinic protons, eight

methyl groups, and two protons of aldehyde group (Table 2). The
13C NMR and DEPT data of 4 exhibited 33 carbon resonances,

including eight methyls, five methenes (one oxygenated), twelve

methines (one oxygenated, two olefinic and two aldehyde

carbons), seven nonprotonated carbons (four olefinic and one

ester carbonyl) (Table 2). After literature investigations, the

aforementioned NMR data indicated that compound 4 should

comprise of two different seco-sativene sesquiterpenoid units.

Interpretation of the 1H−1H COSY spectrum of 4 revealed the

presence of four discrete proton−proton spin systems as shown

with bold lines in Figure 2. Further analysis of its HMBC spectra

demonstrated the existence of two building blocks of units A and

B, which were highly similar to 3 and 11, respectively. The above

deduction was confirmed by the HMBC correlations as shown in

Figure 2, together with comparison of the 1H and 13C NMR

spectroscopic data. Meanwhile, the key HMBC correlation from

δH 3.80 (1H, dd, J = 10.9 Hz, 8.9 Hz, H-14′a) and 4.25 (1H, dd, J =

FIGURE 4
Δδ= δS − δR values in ppmobtained from theMTPA esters of 1.

FIGURE 5
ECD spectra of compounds 1–5 in methanol.

Frontiers in Chemistry frontiersin.org08

Yu et al. 10.3389/fchem.2022.990734

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.990734


11.0 Hz, 5.8 Hz, H-14′b) to δC 173.8 (s, C-18), along with analysis
of the HRESIMS data, suggested the connection by an ester bond

between units A and B. Therefore, considering similar NMR data

and coupling constants, as well as their concurrent biogenetic

relationship, the absolute configurations of 4 should agree with

those of 3 and 11, respectively. Finally, the structure of 4 was

established as depicted in Figure 1.

Bipolarisorokin N 5) was also isolated as a colorless oil. Its

molecular formula was established as C33H48O6 based on the

HRESIMS ion peak at m/z 541.35254 [M + H]+ (calcd for

C33H49O6
+, 541.35237), corresponding to ten degrees of

unsaturation. The 1D NMR data of 5 closely resembled those

of 4 (Table 2), except for the obviously shifted signal of C-15′
(−16.8 ppm) and the absence of aldehyde hydrogen proton signal

at H-15′. The HMBC correlations from δH 3.06 (1H, br s, H-7′)
to δC 126.0 (s, C-1′) and 171.3 (s, C-15′), as well as the HRESIMS

data analysis, led to the location of a carboxyl group (C-15′) at C-
1′. Furthermore, the similar ROESY data and experimental ECD

curves of 4–5 (Figure 5) suggested that they shared the same

absolute configuration. Therefore, the structure of 5 was finally

established as shown in Figure 1.

Bipolariterpene A 6) was assigned a molecular formula of

C27H40O6 with eight degrees of unsaturation based on its

HRESIMS data (measured at m/z 483.27176 [M + Na]+, calcd

for C27H40NaO6
+ 483.27171). The 1H and 13C NMR data

(Table 3) showed 27 carbon resonances comprising five

methyls (δC 16.8, 15.5, 10.5, 14.7, and 20.8); eight methylenes

including six aliphatic ones (δC 40.5, 41.3, 24.3, 31.4, 31.0, and

30.2) and two oxygenated ones at δC 59.5 and 67.6; six methines

including two aliphatic ones at δC 50.7 and 35.2, three olefinic

ones (δC 123.3, δC 128.7 and δC130.0), and a oxygenated one at δC
77.1; eight non-protonated carbons with a aliphatic one at δC
50.2, five olefinic ones (δC 138.6, δC 137.6 × 2, δC 149.9, δC 149.5),

a carbonyl one at δC 209.9, and a ester carbonyl one at δC 172.7.

The general features of its NMR data closely resembled those of

the co-isolated known bicyclic sesterterpene fusaproliferin 13)

(Nihashi et al., 2002; Gao et al., 2020). The major difference was

that an additional hydroxy group was substituted at C-21 in 6,

which could be fully established through the HMBC corrections

from δH 4.20 (1H, d, J = 12.0 Hz, H-21a) and 4.08 (1H, d, J =

12.0 Hz, H-21b) to δC 128.7 (d, C-7), 137.6 (s, C-8) and 31.4 (t, C-

9). The ROESY correlations between Me-20/H-2b, H-3/H-5b, H-

FIGURE 6
13C NMR calculation results of two possible isomers of 7 (A): Linear correlation plots of predicted versus experimental 13C NMR chemical shift. (B) Relative
errors between the predicted δC of two potential structures and recorded δC.).

Frontiers in Chemistry frontiersin.org09

Yu et al. 10.3389/fchem.2022.990734

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.990734


21a/H-6a, H-7/H-9a, H-11/H-13, Me-22/H-14b indicated that

the configurations of C-3/C-4, C-7/C-8, and C-12/C-13 double

bonds were assigned as E, Z, and E, respectively. Furthermore, as

indicated by its ROESY spectrum, the cross-peaks of H-11/H-13,

H-13/H-15, H-15/H-23 suggested that H-11, H-15 and H-23 is

β-oriented. Meanwhile, the key interaction of H-14b/Me-19, Me-

22/Me-19 and H-14b/Me-22, along with the lack of H-15/Me-19,

implied that Me-19 was α-oriented. Thus, compound 6 was

determined to share the same stereochemistry with that of 13

for which the absolute configuration had been earlier confirmed

by X-ray crystallographic analysis (Santini et al., 1996) and total

enantioselective synthesis (Myers et al., 2002). By comparing the

specific rotation of 6 ([α]20D ‒25.3) with 13 ([α]25D ‒35) (Santini

et al., 1996), as well as the close biogenetic relationship, the

absolute configuration of 6 was further identified to be the same

as that of 13, as depicted in Figure 1.

Bipolariterpene B 7) was obtained as a colorless oil. The

molecular formula of 7 was assigned as C25H38O5 based on its

HRESIMS spectrum (measured at m/z 441.26044 [M + Na]+,

calcd for C25H38NaO5
+ 441.26115), which showed two fewer

carbon atoms than fusaproliferin (13) (Nihashi et al., 2002).

Additionally, the 1H and 13C NMR data of 7 were similar to those

of 13 (Table 3). The significant difference between 7 and 13 was

the absence of an acetyl group in 7, which was confirmed by the

HMBC correlations from δH 3.82 (1H, m, H-24a) and 3.68 (1H,

dd, J = 10.4, 6.5 Hz, H-24b) to δC 14.6 (q, C-25), 38.8 (d, C-23)

and 152.2 (s, C-16), together with its HRESIMS data. Moreover,

the HMBC correlations from δH 1.26 (3H, s, H-21) to δC 138.0 (d,

C-7), 74.3 (s, C-8) and 39.0 (t, C-9), as well as chemical shift of C-

8, indicated that an additional hydroxy group was located at C-8.

Furthermore, the HMBC correlations from δH 5.75 (1H, m, H-6)

and 5.48 (1H, d, J = 15.5 Hz, H-7) to δC 42.9 (t, C-5) and C-8,

along with the observed 1H−1H COSY cross-peak of δH 2.78 (2H,

m, H-5)/H-6/H-7, confirmed that one double bond between C-7

and C-8 in 13 migrated to C-6 and C-7 in 7. Based on the

biogenetic and NOESY data consideration, the absolute

configuration of 7 was proposed to be consistent with the

known compound 13, except for C-8. To determine its

absolute configuration, the NMR calculations with DP4+

analysis for two possible isomers (1S, 8R, 11S, 15R, 23S)-7A

and (1, 8, 11S, 15R, 23S)-7B were carried out using the GIAO

method at the mPW1PW91/6-311+G (d,p) level with the PCM

model. As a result, the calculated chemical shifts of 7B matched

well with the experimental ones (Figure 6), showing a better

correlation coefficient (R2 = 0.9977) and a low root-mean-square

deviation value (RMSD = 2.65), together with a high DP4+

probability of 100% (all data) probability (Supplementary

Tables S3 in the Supporting Information). Hence, compound

7 was identified as shown in Figure 1 and named as

bipolariterpene B.

Bipolariterpene C 8) was also isolated as a colorless oil. Its

molecular formula was established as C27H40O6 based on the

HRESIMS ion peak at m/z 461.28955 [M + H]+ (calcd for

C27H41O6
+, 461.28977), suggesting eight degrees of

unsaturation. Analyses of NMR spectra (Table 3) indicated

that the structure of 8 was explicitly similar to that of

fusaprolifin A (Liu et al., 2013). However, the signals for two

olefinic methines were replaced by signals of a methylene δC 30.1

(t, C-6) and an oxygenated methine δC 75.7 (d, C-7). These

observations indicated the hydration of the double bond in

fusaprolifin A, leading to the location of a hydroxy group at

C-7 in 8. It was supported by HMBC correlations from δH 3.38

(1H, dd, J = 8.1, 3.7 Hz, H-7) to δC 35.3 (t, C-5), 30.1 (t, C-6), 74.8

(s, C-8), 35.3 (t, C-9) and 24.6 (q, C-21), along with the 1H–1H

COSY cross peaks of H-5/H-6/H-7. Furthermore, the chiral

centers in 8, except for C-7, were found to be identical to that

of fusaprolifin A based on their highly similar coupling constant

and ROESY data. In order to confirm the assigned chemical

architecture of 8 and its the stereochemistry, the 13C NMR

calculations and DP4+ analysis of (1S, 7R, 8S, 11R, 15R, 23S)-

8A and (1, 7, 8S, 11R, 15R, 23S)-8B were carried out at the

mPW1PW91/6-311+G (d,p) level. The results showed that 8A

was the most likely structure based on a better correlation

coefficient (R2 = 0.9970) and a low root-mean-square

deviation value (RMSD = 3.05), as well as a high DP4 +

probability of 100% (all data) probability (Supplementary

Figure S6 and Supplementary Table S6 in the Supporting

Information). Finally, the absolute configuration of 8 was

defined.

In addition, the structures of five known compounds were

identified as bipolarisorokin H (9), bipolarisorokin G (10),

helminthosporol (11), helminthosporic acid (12) and

fusaproliferin (13), by comparing the spectral data with those

reported in the literature (Osterhage et al., 2002; Abdel-Lateff

et al., 2013; Liu et al., 2013; Yu et al., 2022). In this study,

TABLE 4 Inhibitory effects of the isolates against Psa (MIC, μg/mL).

Compd Psa

1 128

2 128

3 128

4 32

5 64

6 NAb

7 NA

8 256

9 256

10 128

11 256

12 NA

13 NA

Streptomycina 8

aPositive control;
bNA = no activity at 256 μg/ml.
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compounds 1 and 2 were isolated as methyl esters, which could

be derived from the separation process since methanol was used

as the solvent. To verify whether these compounds are of natural

origin, we analyzed the ethanol extract of the fermentation broth

of the fungus by HPLC (see Supporting Information). As a

results, all compounds could be confirmed their natural

attributes.

Structurally, compound 9 possessed two additional skeletal

carbons, while compounds 1–5 and 10 possessed three

additional skeletal carbons, which might be derived from

acetyl-CoA or acetoacetyl-CoA. Compounds 11 and 12 were

isolated as major components, which were most probably

employed as the original precursor to assemble the above

compounds. The hydroxyl group at C-14 in 11 was oxidized

to produce an aldehyde product, which then underwent aldol

condensation with the acetyl-CoA to give 9. Similarly, the

aldehyde product combined an acetoacetyl-CoA to give

compounds 1–3 and 10. Finally, additional esterification

happened between 3 and 11 or 12 led to the formation of 4

or 5, respectively Scheme 1.

3.2 Anti-Psa activity

All compounds (1–13) were evaluated for their anti-Psa

activity by using the method as described previously (Yu

et al., 2022). Streptomycin was used as the positive control. As

a result, compounds 4 and 5 showed certain inhibitory activity,

with MICs of 32 and 64 μg/ml, respectively. Additionally,

compounds 1–3, and 10 showed weak activity, with MICs of

128 μg/ml (Table 4). The results demonstrated that the additional

skeletal carbons of seco-sativene sesquiterpenoids may be vital

for Psa inhibitory activity.

4 Conclusion

In conclusion, eight new terpenoids (1–8), along with five

known analogues (9–13) was identified from the culture medium

of an endophyte Bipolaris sp, a fungus isolated from fresh and

healthy stems of kiwifruit plants. Compounds 1–3, together with

the known compound 10, represented novel structures of seco-

sativene sesquiterpenoids possessing three additional skeletal

carbons, which were only found in this fungus. In addition,

compounds 4 and 5 were rare seco-sativene/seco-sativene

adducts. In anti-Psa activity assay, compounds 4 and 5

displayed certain inhibitory activity against Psa. This study,

together with our previous work (Yu et al., 2022), further

supported that it is an effective approach to search for anti-

Psa agents from endophytic fungi of kiwi plant itself. The

endophyte Bipolaris sp. Could be a potential antibacterial

strain, while its sativene sesquiterpene products could be

potential anti-Psa agents.
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