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Abstract
Electrospray ionization (ESI) generates bare analyte ions from charged droplets, which result from spraying a liquid in a strong
electric field. Experimental observations available in the literature suggest that at least a significant fraction of the initially
generated droplets remain large, have long lifetimes, and can thus aspirate into the inlet system of an atmospheric pressure
ionization mass spectrometer (API-MS). We report on the observation of fragment signatures from charged droplets penetrating
deeply the vacuum stages of three commercial mass spectrometer systems with largely different ion source and spray configu-
rations. Charged droplets can pass through the ion source and pressure reduction stages and even into the mass analyzer region.
Since droplet signatures were found in all investigated instruments, the incorporation of charged droplets is considered a general
phenomenon occurring with common spray conditions in ESI sources.
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Introduction

Electrospray ionization (ESI) [1–3] is one of the most fre-
quently applied ionization methods in mass spectrometry
(MS) [4–7]. Essentially, an electrospray ion source consists
of a glass or metal capillary in a strong electric field gradient.
Liquid analyte solution is pumped or aspirated into the capil-
lary. Charge separation processes in the liquid driven by the
present electric field lead to the formation of a spray of
charged droplets from the ESI capillary [6]. These charged
droplets undergo a temporal evolution: Evaporation of neutral
molecules, primarily solvents, leads to droplet shrinkage.
Thus, the charge density due to the ions present in the droplet
increases. If the resulting electric field in the droplet is high

enough to overcome the surface tension of the liquid, often
described as Rayleigh limit, fission occurs and the droplet
disintegrates [8, 9]. These processes generally repeat multiple
times. Eventually, very small and highly charged droplets
with a radius of a few nanometers are formed from which
gas phase ions are generated by different proposed mecha-
nisms [1, 10–16]. The generation and evolution of the droplets
have been studied extensively [8, 9, 17–25]. However, the
experimentally observed initial droplet sizes often differ sig-
nificantly from the size of first-generation droplets in the tem-
poral evolution of fission events proposed in textbook litera-
ture [4, 6, 7] and older review articles [26, 27]. This proposed
temporal evolution model starts with droplet sizes around 1–
1.5 μm and assumes total droplet lifetimes well below 1 ms.

This is in disagreement to reported experimental results.
Significantly larger and much longer lived droplets are exper-
imentally found, mostly by direct optical detection of droplets
with methods such as phase Doppler anemometry. Some ex-
emplary results extracted from the literature are summarized
in Table 1.

The results reported from diverse experimental setups de-
scribed in the literature show a heterogenous and inconclusive
picture. However, on average, the experimentally observed
droplets are significantly larger and longer lived as the as-
sumed initial particles in the proposed droplet evolution
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models. Cole gives an overview of some additional experi-
mentally observed droplet sizes [6].

Experiments with charge detection mass spectrometry sys-
tems [28, 29] underline that large droplets generated by ESI
can be transferred into the analyzer region of the used special-
ized instruments which allows analysis of the mass and charge
distribution of such large droplet systems.

The diverging and sometimes even contradicting experi-
mental results can be rationalized when considering the high
complexity of the electrohydrodynamic processes occurring
close to the capillary tip, which are leading to the generation
of charged droplets. The electrospray process exhibits a vari-
ety of spray modes with different spray characteristics
[30–32], which lead to a very broad range of initial droplet
sizes [18, 33]. The spray mode depends strongly on the oper-
ation parameters, e.g., liquid flow rate, electric conductivity of
the sprayed liquid or spray voltage. There is currently no com-
prehensive model, which sufficiently describes all possible
spray modes.

In contrast, for the cone jet mode, which represents a par-
ticular spray mode of an undisturbed electrospray, a compre-
hensive model is available in the literature [34–39]. This mode
is characterized by the formation of a Taylor cone and a fine
jet emerging from the cone tip. The assumed initial droplet
sizes in the proposed droplet evolution [9, 27] are derived
from calculations of the liquid jet diameter in this cone jet
mode [31, 40]. The required conditions for establishing an
ideal, undisturbed, cone jet mode are more likely to be found
in nano-electrospray (nESI) [5] sources. Peschke et al. [41]
report a droplet evolution with an even smaller initial droplet
size of 0.15 μm for nESI, which is also compiled in a review
article by Kebarle and Verkerk [9]. Olumee et al. report a wide
droplet size distribution with droplet sizes significantly below
1 μm [42], which is in turn referenced by Peschke to support
the droplet evolution sequence for nESI. However, the
average initial droplet size in these experiments was 1.5 μm
using an electrically highly conductive liquid. Remarkably, it
was observed that droplets from highly conductive solutions
even grew larger with increasing distance from the ESI
emitter.

A majority of electrospray sources employed for chemical
analysis however are not of the nano-spray type. Common
“high-flow” electrospray sources use large capillary diame-
ters, high liquid flow rates, asymmetric electric fields, and
strong assisting nebulizing gas flows which are injected coax-
ially to the ESI capillary in addition to sometimes extensive
heating [5, 43, 44]. It thus appears to be unlikely that com-
mercial high-flow electrospray ion sources typically generate
initial droplets of 1 μm diameter, but rather a vast variety of
initial droplet size distributions depending on the actual oper-
ating conditions of the ion source. The diverging experimental
results mentioned above strongly support this notion. The ex-
perimental results reported suggest that the actual average
initial droplet size in high-flow ion sources is significantly
larger than 1 μm and the average lifetimes of the primary
droplets are generally much longer than 1 ms.

It is concluded that highly charged droplets generated by
electrospray in commercial ESI sources may well reach the
MS inlet caused by the long droplet lifetimes. The time re-
quired by droplets to reach the MS inlet is readily estimated:

The terminal drift velocity vd of charged particles moving
in a gas within an electric field E is reached when the drag
force Fd and the Coulomb force from the field Fc are in equi-
librium:

Fd ¼ Fc ð1Þ

The Coulomb force is the product of the droplet charge q
and electric field E [45]:

Fc ¼ q E ð2Þ

The viscous drag force acting on a sphere with radius R
moving with velocity v through a fluid with dynamic viscosity
μ is estimated using Stokes law [46]:

Fd ¼ 6 π μ R v ð3Þ

The drag force is affected by non-continuum effects for
very small particles. This is considered with the
Cunningham slip correction factor C [47]:

Table 1 Experimentally observed sizes of droplets generated in electrosprays

Analyte/solvent Observed droplet size Reference

Pure solvents (water, acetonitrile,
n-heptane, n-octane, p-xylene)

25–35 μm with an observed droplet lifetime of 200–400 ms Smith et al. [19]
Grimm et al. [20]

Heptane Up to 100 μm with 466 μL/min liquid flow rate,
5 μm with 4 μL/min liquid flow rate

Gomez and Tang [8]

Fluorescent dyes in acetonitrile 6 μm in positive mode, 20 μm in negative mode Wortmann et al. [22]

Water/methanol solution with desorption
electrospray ionization (DESI) emitter

Up to 10 μm with 2 μL/min liquid flow rate Venter et al. [21]

Fluorescent dye in 20% methanol/water mixture 2 μm with 50 μL/min liquid flow rate Girod et al. [24]
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C ¼ 1þ 2 λ
d

A1 þ A2 exp
−A3 d
λ

� �� �
ð4Þ

Here, λ is the mean free path of the background gas parti-
cles and d is the diameter of the charged particles. A1, A2, and
A3 are empirical factors. For air, the numerical values are as
follows: A1 = 1.257, A2 = 0.4, and A3 = 1.1 [47]. The calculat-
ed drag force is divided byC, yielding the actual drag force on
a small particle.

Solving the force balance in Eq. (1) for v gives the estimat-
ed drift velocity:

vd ¼ qEC
6πμR

ð5Þ

The drift velocity is also described by the electrical mobil-
ity K of a charged particle [48]:

vd ¼ K E ð6Þ
and thus:

K ¼ qC
6πμR

ð7Þ

Experimentally generated droplets can reach surprisingly
high electrical mobilities: The charged water droplets exam-
ined by Smith et al. [19] are representative in terms of exper-
imentally observed droplet sizes. They have an initial diameter
of approximately 27 μm and an initial total charge of 5 · 106

elementary charges. With these parameters, the estimated ini-
tial ion mobility for such droplets is 1.7 cm2 V−1 s−1, which is
very similar to the mobility of “naked” small molecular ions:
The proton bound water cluster H3O

+ · 2H2O has a mobility of
2.1 cm2 V−1 s−1 [49]. The estimated droplet mobility is in
qualitative accordance to direct experimental observations of
the velocity of mixed methanol/2-methoxyethanol droplets in
an electric field by Grimm and Beauchamp [23]: The field
gradient in the reported experiments was 50 V/cm and the
observed droplet speed was around 55 cm/s, which corre-
sponds to a mobility of 1.1 cm2 V−1 s−1.

The transfer times of such droplets from the ESI capillary
to the MS inlet thus become very short. Assuming an average
electrical field of 1000 V/cm and a transfer distance from the
ESI capillary to the MS inlet of 1.5 cm, the required transfer
times are between 1.3 and 0.8 ms for K = 1.1 and
1.7 cm2 V−1 s−1. This in fact is much shorter than the exper-
imentally determined lifetimes of the charged droplets.
Numerical simulation of a nano-ESI source further indicates
transfer times of few milliseconds for ions with similar ion
mobilities even with a substantial counter gas flow [50].

Since the electric mobilities of droplets are similar to the
mobility of small molecular ions, droplets and ions will also
have similar trajectories in the viscous environment of an at-
mospheric pressure high-flow ESI source. Therefore, charged

ESI droplets are probably aspirated to a large extent into the
vacuum system of MS. This notion is supported by experi-
mental evidence available from the literature: Fomina et al.
[51] investigated the transfer of droplets generated by an un-
disturbed cone jet electrospray into anMS interface. The drop-
lets were comparably small and resembled closely the as-
sumptions for the “ideal” droplet evolution sequence: The
initial droplet size was around 1 μm and the droplet charge
was around 104 elementary charges, which results in a com-
parably low ion mobility of roughly 0.1 cm2 V−1 s−1, accord-
ing to Eq. (7). Even in this case, the experimental results show
that a large faction (up to 90%) of the total ion current enters
the MS as charged droplets, which in turn survive the passage
through inlet nozzles or inlet capillaries.

This situation leads to potentially adverse effects for the
instrument operation: Large amounts of charged droplets as-
pirated into an MS result in large amounts of liquid solvent
being deposited in the inlet system of the instrument. This
leads to significant contamination of surfaces and ion optical
elements in the first vacuum stages of an instrument, which
results in increased maintenance times. This effect was dem-
onstrated experimentally by Kang et al. [52]. In addition, in-
corporated droplets can induce complex physico-chemical
processes regarding the analyte ionization pathway:

The detailed dynamics (e.g., trajectories, internal tempera-
tures) of charged droplets in the electrical field and the pressure
gradients within an MS inlet stage are currently unknown. Since
the final release of analyte ions from incorporated droplets and
nano-droplets potentially occurs deep inside the inlet system, the
state of the droplets at this point in time and thus the detailed
dynamics of the ion release is unclear as well. In addition, evap-
orating charged droplets can release a large amount of neutral
solvents and similar components of the sprayed solution into the
MS inlet stage which can interact with analyte ions, e.g., by
clustering reactions [53–55]. Finally, the droplets may transport
a large amount of charge into the MS system, which is however
not visible in the recorded mass spectra. This could lead to un-
expectedly high amounts of space charge in ion focusing and ion
trapping elements, resulting in deteriorated performance. The
aspiration of charged droplets potentially affects the analytical
performance of instruments, even in cases when they do not
reach the detector and are thus not directly visible in the recorded
mass spectra.

It remains currently unclear how common the aspiration of
charged droplets into the different stages of a mass spectrom-
eter is, when using commercial ESI sources. The direct obser-
vations of droplets in such ion sources with optical methods as
for example Doppler anemometry or micrograph flash pho-
tography represent high experimental efforts. However, Kang
et al. reported an indirect but much more feasible approach to
detect charged droplets and large clusters penetrating deeply a
triple quadrupole MS system [52]. The first quadrupole (Q1)
of the instrument was used in RF-only mode in these

5589Observation of charged droplets from electrospray ionization (ESI) plumes in API mass spectrometers



experiments. Q1 acts as a high-pass filter in this case, rejecting
all particles with a mass-to-charge ratio (m/z) below the low
mass cutoff (LMCO) of the quadrupole [56]. The subsequent
collision cell and the third quadrupole of the instrument allow
fragmentation of large particles, which have passed Q1, and
mass analysis of the fragments of such particles, respectively.
Similar indirect signatures of large charged aggregates and/or
droplets penetrating the ion inlet stage are also detected with
different experimental setups, e.g., using an early ESI inter-
face with a heated inlet capillary [57].

To investigate how common droplet aspiration using com-
mercial ion source/interface designs is, we searched for exper-
imental evidence for charged droplets penetrating the inlet
stages of three commercial API-mass spectrometers (a triple
quadrupole, a quadrupole ion trap, and a quadrupole-ToF in-
strument) under various operational conditions.

Throughout this manuscript, we use the term “charged
droplet/droplet fragments” for all multiply charged systems
of a substantial size (at least a few nanometers in diameter)
consisting of sprayed liquid originating from the spray plume.

Methods

Instruments

Three instruments equipped with largely different inlet sys-
tems were employed (cf. to Fig. S1 in Supplementary
Information (ESM) for schematic depictions of the different
ion paths in each instrument). The main focus was on a
SCIEX Triple Quad 6500 System with an IonDrive Turbo V
ion source, which was operated with a TurbolonSpray ESI
probe (SCIEX, Ontario, Canada). The inlet of the MS is an
orifice downstream of a curtain plate leading directly into the
first focusing quadrupole (“Q-Jet”). It is noted that the SCIEX
system has no inlet capillary. The temperature in the ion
source is regulated by heaters. The spray needle was operated
with a typical voltage of 5.5 kV, if not noted otherwise. The
analyte solution was infused with the instruments’ internal
syringe pump; the flow rate was set to 7 μL/min, if not noted
otherwise. In consultation with the manufacturer, the system
was operated in a special scan mode, which is usually not
accessible via the instrument control software. In this “droplet
scan” mode, the first mass selective quadrupole (Q1) is oper-
ated as a high-pass filter in true RF-only mode [52].

Droplets with m/z higher than the low mass cutoff (LMCO)
m/z are transmitted throughQ1 and are subsequently fragmented
in the collision cell (which is also a quadrupole and is thus
denoted as Q2) via collision-induced dissociation (CID). The
background gas pressure of the nitrogen gas in the collision cell
can be adjusted but is not measured directly by the instrument.
The corresponding control software parameter (CAD) was set to

CAD= 6 for most experiments, which corresponds to a pressure
of approximately 5∙10−3 mbar in the collision cell.

Ions are accelerated into the collision cell by a potential
difference between the Q0 region, in which the ions are fo-
cused, and the Q2 (“collision voltage”). This potential differ-
ence determines the kinetic energy of the analyzed ions and
thus the collision energy in the fragmentation process. In the
third quadrupole (Q3), a normal m/z scan is done, which al-
lows recording the fragment spectrum.

This instrument has a high mass mode, which allows mass-
scanning up to m/z = 2000, corresponding to a LMCO of ap-
proximatelym/z = 1550, and a lowmassmodewith amaximum
mass range of m/z = 1250 and a LMCO of about m/z = 990.

To investigate the transmission of charged droplets/droplet
fragments into a largely different instrument, ESI experiments
were performed with a Bruker amaZon ETD quadrupole ion
trap (QIT). The instrument was fitted with an Apollo Ion
Source (Bruker Daltonics, Bremen, Germany). Furthermore, it
is equipped with an off-axis inlet capillary system as first pres-
sure reduction system (instead of an orifice) and features a dual
ion funnel assembly as inlet stage. The system is able to perform
MSn experiments: Ions of a selected mass range can be isolated
and fragmented within the QIT. The resulting fragment ions can
be mass analyzed or a subsequent stage of isolation and frag-
mentation can be executed. The voltage on the spray shield was
set to −4.5 kV for positive mode. In a set of experiments, the ion
trapping window was set to 2500 m/z with a width of 100 m/z.
The storage time was varied between 40 and 1000 ms.

A third instrument was used to gather additional informa-
tion about any charged droplets/droplet fragments detected: A
solution of thermometer ions was analyzed in an Agilent 6538
UHD Q-ToF (Agilent, Waldbronn, Germany). This instru-
ment has a similar capillary entrance system as the Bruker
QIT, but without ion funnels for focusing and transporting
ions; here the metallized capillary exit cap and a subsequent
skimmer act as focusing elements. This Q-ToF has a much
wider m/z range, reaching m/z = 10,000. The ESI voltage was
set to 2.9 kV with a liquid flow rate of 8 μL/min. The mass
selective quadrupole of the instrument was set to 2500 m/z
and the DC was switched off, which again creates an RF high
pass filter. Similarly to the SCIEX triple-quadrupole instru-
ment, the ions pass a collision cell quadrupole and are finally
transferred into the ToF mass analyzer. This allows running
the droplet fragmentation experiments similarly to the triple-
quadrupole instrument, but with a much wider mass range.

Due to limitations of the control software of the Q-ToF
instrument, no acquisition mode (i.e., storable) spectra with
the first quadrupole in RF-only mode and different collision
energies in the collision cell could be recorded. However, the
software shows the live mass spectra in tune mode, in which
the DC on the first quadrupole can be switched off. We thus
recorded screenshots of the mass spectrum window in tune
mode. These are shown in the ESM.
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Chemicals

Para-substituted benzylpyridinium ions were used as analytes
for experiments with the triple-quadrupole and ion trap instru-
ments [58, 59]. They are referred to as thermometer ions due to
their well-known fragmentation behavior depending on their
internal energy. The compounds were synthesized in one-pot
synthesis from derivatized benzyl bromide (96–98% purity, ob-
tained from Sigma-Aldrich), with equimolar amounts of dry
pyridine (⩾ 99% purity, obtained from J.T. Baker) and partially
acetonitrile (HPLC-gradient grade, obtained from VWR
chemicals) as solvent. After the reaction had been completed
under constant stirring, the benzylpyridinium species were puri-
fied by re-crystallization from ethanol (96% purity, obtained
from Sigma-Aldrich) or diethyl-ether (⩾ 98% purity, obtained
fromMerckKGaA). This synthesis is based on the experimental
specification by Katritzky et al. [60], but has been modified in
some steps: Acetonitrile (HPLC-gradient grade, obtained from
VWR chemicals) and water (ultrapure water from water treat-
ment systemMilli-Q Reference) were used as solvent. For better
spraying conditions, 0.1 %V formic acid (~ 98% purity, obtain-
ed from Fluka Analytical) was added to the solution. A solution
of 10 μmol/L of each thermometer molecule species in 1:1
mixture of water/acetonitrile was used in the experiments.

The m/z of the precursor and fragment ions are shown in
Table 2. A second set of experiments was done with reserpine
(≥ 99% purity, obtained from Sigma-Aldrich) in a 1:1 mixture
of isopropanol (HPLC grade, obtained from Fisher Chemical)/
water and 0.1% formic acid (≥ 98% purity, obtained from
Sigma-Aldrich) added. The solution had a concentration of
0.8 μmol/L.

Results and discussion

Droplet data from triple-quadrupole MS (SCIEX 6500)

Benzylpyridinium thermometer ions

In the first set of experiments, the SCIEX Triple Quad 6500
system was run in a “droplet scan mode” by setting Q1 to RF-

only mode as described in the “Methods” section. The LMCO
was m/z 1550 in this set of experiments.

Figure 1 shows the mass spectra of the thermometer ions in
a 1:1 water/acetonitrile solution. At a collision voltage setting
of 5 V (Fig. 1a), an abundant and wide signal distribution is
discernible above the LMCO. Analyte signals are detected in
the range around m/z 200 with moderate intensities.
Additional unassigned signals below the LMCO are present
with low intensities. These low m/z ions are generated
downstream of Q1, since this mass range is rejected from
the ion beam by Q1 acting as high-pass filter. In Fig. 1b, the
collision voltage is increased to 80 V. The signals above the
LMCO decrease, while the intensity of the analyte signals,
most pronounced between m/z 184–215, and the signal inten-
sity of the entire mass region below the cutoff increase. The
LMCO is at this point no longer discernible in the mass spec-
trum.When the collision voltage is further increased to 155 V,
the signals above the LMCO almost vanish and the primary
analyte signals at m/z 204 (precursor species p-Cl) (cf.
Table 2) and m/z 215 (precursor species p-NO2) almost dou-
ble in intensity. The change in the observed signal pattern is
continuous: There are no abrupt changes in the spectrum pat-
tern when the collision voltage is varied.

The high ion current above the LMCO in the spectrum at
low collision energy (Fig. 1a) and the occurrence of analyte
signals below the LMCO indicate that substantial amounts
of large charged aggregates enter the system, although
countermeasures (e.g., curtain gas flow) within the ion
source were operated regularly in this experiment.
Notably, the variation of the curtain gas flow does not have
a significant impact on the charged droplets/droplet frag-
ments in the spectra (cf. ESM Fig. S2). Considering the
experimental information from the literature described in
the Introduction we attribute the observed signals to
charged droplets/droplet fragments of the sprayed fluid
with initial diameters well above 1 μm. This is underlined
by the occurrence of analyte signals shown in Fig. 1b and c:
The observed bare analyte ions have to be transported
through Q1 within charged droplets or large droplet frag-
ments. These particles penetrate the collision cell (Q2) and
interact with the background/collision gas under the influ-
ence of the collision voltage. The increase of collision en-
ergy leads to a stronger extent of collision induced
dissociation/fragmentation inside the collision cell. This
in turn shifts the droplet sizes to smaller values by fragmen-
tation and leads eventually to the generation of bare analyte
ions. The released analyte ions are detected subsequently in
a Q3 scan, which explains the larger abundance of bare
analyte ions in the spectra with high collision voltage pres-
ent. Furthermore, the analyte ions released from the droplet
phase fragment as well, depending on the collision energy
settings. The signals of the main fragments of the thermom-
eter ions appear around m/z 100 (cf. Table 2).

Table 2 Nominal masses of benzylpyridinium (p) thermometer ions
and their main fragment species [61]

Ions m/z (precursor ion) m/z (fragment ion)

p-CH3 184 105

p-F 188 109

p-Cl 204 125

p-CN 195 116

p-NO2 215 136
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Droplets penetrating deeply the MS system conclusively
explain the results from the first set of measurements. A lower
limit of the droplet size is estimated by transforming the equa-
tion for the number of charges in a droplet at the Rayleigh
limit [6, 61]:

Q ¼ 8π ϵ0γr3
� �1=2 ð8Þ

With the number of charges Q, the electrical permittivity
ε0, the surface tension γ, and the radius of the droplet r. The
mass of a spherical droplet is derived from the density of the
liquid forming the droplet and the corresponding radius. Thus,
the radius determines the mass and the critical charge of the
droplets at their Rayleigh limit, which allows calculation of
the critical m/z, as presented in Table 3.

This estimate shows that droplets with m/z between 1550
and 2000, which is well in the mass range above the LMCO
visible in the triple-quadrupole instrument, consisting of a
water/acetonitrile mixture, should have a minimal radius
above the critical limit of 2 nm. Charged fragments of even

larger droplets do fall also in this size regime and can contrib-
ute to the observed ion current above the LMCO.

Collision gas pressure variation

In a second set of experiments, the droplet scan was repeated
in the lowmass mode of the SCIEX instrument. The lowmass
mode provides an analyzer mass range of up to m/z 1250, with
a higher resolution than the high mass mode. The LMCO
shifts down to approximately m/z 990. The calculated size
of detectable droplets (cf. Eq. (8)) shrinks to about 1–
1.25 nm in radius (cf. Table 3).

The pressure in the collision cell is determined by the CAD
parameter in the control software of the instrument. The pres-
sure is ranging between 1 × 10−3 and 9 × 10−3 mbar; the de-
fault setting for the CAD parameter is 6, which corresponds to
approximately 5 × 10−3 mbar.

Figure 2 presents the result of the variation of the collision
gas pressure, at a fixed collision voltage of 12 V. As expected,
the pressure variation demonstrates that the fragmentation

Fig. 1 SCIEX Triple Quad 6500 instrument: Spectra recorded in droplet
scan mode with thermometer ions sprayed from a water/acetonitrile so-
lution at different collision voltages. Collision gas parameter (CAD) was

set to 6. Liquid flow was set to 7 μL/min. The m/z region filtered out in
Q1 is indicated by the shaded areas

Table 3 Estimated radius r of critical spherical droplets at the Rayleigh limit

Surface tension (mN/m) Density (g/cm3) r for m/z=990 (nm) r for m/z=1550 (nm) r for m/z=2000 (nm)

Water 72.8 1.00 1.3 1.8 2.0

Acetonitrile 29.0 0.79 1.2 1.6 1.9

Methanol 22.7 0.79 1.1 1.4 1.7
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process of the droplets is determined by not only the average
collision energy but also the collision frequency, which are
both governed by the collision gas pressure. When the CAD
parameter is increased, the abundance of signals above m/z
990 is shifted to smaller m/z, which indicates the disintegra-
tion of the droplets.

With decreasing collision gas pressure, and therefore less gas
collisions, ions above the LMCO begin to pass through the col-
lision cell unaffected. As a consequence, a sharp signal step
occurs at the LMCO due to the high-pass filtering of Q1, which
is “blurred” at higher CAD values. The sharp signal cutoff at the
LMCO boundary is much more apparent in the low mass mode
as it was in the high mass mode (cf. Figs. 2 and 3), but it occurs
reproducibly with very low collision gas pressures in both oper-
ation modes (not shown here for the high mass operation mode).
Although the shape of the continuous signal above the LMCO
with smaller collision energies is highly reproducible between
two experiments in one of the operation modes, the selection of
an operation mode appears to have a significant effect on the
droplet fragmentation and potentially the transfer efficiency
through the collision cell. The cause of this effect is speculated
to be caused by changes of the DC voltage and RF amplitude
configuration along the ion path when the operation mode is
changed.

The variation of the collision gas pressure was also done in
high mass mode with thermometer ions sprayed from water/
acetonitrile solution. CAD settings of 6 (about 5 × 10−3 mbar
cell pressure) and 12 (9 × 10−3 mbar cell pressure) are com-
pared in Fig. 3 for different collision energies. Note that the
liquid flow rate in Fig. 3a–c is higher (10 μL/min) than that in
the set of spectra at the same CAD and comparable collision
voltages shown in Fig. 1 (7 μL/min).

If the pressure in the collision cell is set to CAD = 12, the
ion current above the LMCO is smaller (Fig. 3d) than at lower
pressure. The overall intensity below the LMCO is reduced as
well. At the default setting of CAD = 6 and a collision energy
of 5 V, small analyte signals are visible at approximately m/z
200. When the collision energy is increased in the same incre-
ments as in the first set of experiments, the signals at a higher
m/z decrease, similar to the spectra shown in Fig. 1. Due to the
higher collision gas pressure in the cell, the charged droplet/
droplet fragment signals above the LMCO decrease and the
fragments in the spectrum Fig. 3e are on average smaller as in
Fig. 3b. In the last spectrum (Fig. 3f), the signals of the un-
identified fragments have vanished when compared to the
signals of the liberated bare analyte.

The results obtained with the triple-quadrupole instrument
provide substantial evidence of the presence of droplets in
such a type of commercial instrument. The behavior of the
droplets and their disintegration can be influenced by the ap-
plied collision energy and the background gas pressure in the
collision cell.

The chemical composition of the sprayed solution is very
likely an important contributing factor for the behavior of the
droplets in the instrument. Differences are likely to be discern-
ible in the mass spectra. To validate this hypothesis, the ex-
periments were repeated with reserpine as analyte in a 1:1
mixture of isopropanol/water with the same settings of the
droplet scan and the same collision energies.

Reserpine

Another set of experiments was performed to investigate the
influence of different solvents used for spray generation on the

Fig. 2 SCIEX Triple Quad 6500: Variation of gas pressure (CAD
parameter) in the collision cell at a fixed collision energy of 12 V.
Measurement of benzylpyridinium thermometer ions sprayed from

water/acetonitrile solution in low mass mode. Liquid flow was set to
7 μL/min. The m/z region filtered out in Q1 is indicated by the shaded
areas
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droplet fragment spectra. The SCIEX triple-quadrupole instru-
ment with the same system settings as described above was
used, but with reserpine as analyte and isopropanol/water as
solvent. As before, the protonated analyte reserpine at m/z 609
is filtered out by Q1 in high pass mode.

In comparison to the results with the thermometer ions, the
overall appearance of the mass spectra is similar. However,
there are notable differences in the signal shape above the
LMCO: The thermometer ion solution shows a broad, nearly
continuous signal, particularly in the region around the
LMCO at 5 V collision voltage. In contrast, an abrupt signal
drop at the LMCO boundary around 1550 m/z is discernible
when spraying the reserpine solution. The much less pro-
nounced “bleed-over” towards signals below the LMCO in
Fig. 4a indicates less fragmentation at 5 V collision voltage
with the reserpine solution. A possible explanation for this
finding is the protic behavior of isopropanol as a solvent. It
potentially leads to a higher stability of the charged droplets
due to more pronounced hydrogen bond formation in compar-
ison to droplets consisting of a mixture of acetonitrile and
water [62]. Subsequently, this could lead to a different frag-
mentation pattern of the large primary droplets and eventually
to the observed discontinuity in the fragment signals of the
isopropanol/water droplets.

Nevertheless, the general appearance of the observed reser-
pine solution mass spectra is essentially similar to the findings
observed with the thermometer ions: A wide continuous sig-
nal is found above the LMCO with low collision voltage (Fig.
4a) and, as seen above, a higher collision energy leads to the
appearance of bare analyte ion signals, while the signal above
the LMCO vanishes (Fig. 4b and c). The signal intensities do
not change considerably with varying collision voltages,

although the signals in spectra with a collision voltage of
80 V have a slightly higher intensity.

The comparison between the fragment spectra of the two
investigated analyte/solvent systems thus strongly suggests
that the choice of solvent has, among numerous other things,
also a significant influence on the droplets population and thus
the resulting fragment mass spectra.

Bruker ion trap data

The mixture of thermometer ions dissolved in water/
acetonitrile was also analyzed with a Bruker amaZon ETD
quadrupole ion trap. In one set of experiments, ions around
m/z 2500were trapped, with the width of the trapping window
set to ± 50 m/z. The source temperature was set to 50 °C; all
other ion source parameters and ion transfer parameters (dry
gas flow, ion funnel potentials, etc.) were within common
operation conditions.

The storage time within the trap prior to mass analysis was
varied systematically. A very broad signal peak appears in the
defined trapping window, which indicates that charged
droplets/droplet fragments enter the mass analyzer region
and can thus be directly detected with the ion trap instrument.
With a storage time of 40 ms, only small analyte signals are
visible (cf. Fig. 5a) and the signal peak in the trapping window
around m/z 2500 is relatively narrow. When the storage time
is increased to 600 ms, the signals of the analyte ions start to
increase and the signal peak at m/z 2500 broadens unsymmet-
rically towards smaller m/z (cf. Fig. 5b), which implies that
the droplets release bare analyte ions inside the trap caused by
collision-induced droplet evaporation. With a storage time of

Fig. 3 SCIEX Triple Quad 6500: Variation of gas pressure in the
collision cell at different collision energies. Measurement of
benzylpyridinium thermometer ions sprayed from water/acetonitrile

solution in high mass mode. Collision gas parameter (CAD) was set to
6 (left) and 12 (right). Liquid flow was set to 10 μL/min. The m/z region
filtered out in Q1 is indicated by the shaded areas
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1000 ms, the signal at m/z 2500 is broadened even further and
the bare analyte ion signals are clearly defined.

This remarkable result is even stronger evidence that drop-
lets are penetrating the mass analyzer region of an instrument
with a completely different entrance system from the SCIEX
triple-quadrupole instrument. Recall that the Bruker QIT

features an off-axis capillary inlet stage with two subsequent
focusing RF ion funnels, whereas the SCIEX instrument has
on-axis open nozzles and transfer quadrupole (Q-jet).
Furthermore, the release of the charged analytes is influenced
not only by the gas pressure and collision energy prevailing to
them, but also potentially by the time the droplets are stored,

Fig. 4 SCIEX Triple Quad 6500: Droplet scan with reserpine sprayed from isopropanol/water solution at different collision voltages. The m/z region
filtered out in Q1 is indicated by the shaded areas

Fig. 5 Spectra from benzylpyridinium in water/acetonitrile in a Bruker amaZon ETD ion trap. Measured at an ion source temperature of 50 °C for
different storage times
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as the evaporation of neutral particles from the droplets con-
tinues. The possible lifetimes of charged droplets/droplet frag-
ments in the ion trap exceed 1 ms by far.

Q-ToF data

The solution of thermometer ions in acetonitrile/water was
analyzed with the Agilent Q-ToF. As described in the
“Methods” section, acquisition-mode mass spectra with the
first mass selective quadrupole in RF-only mode could not
be recorded with the control software, but screenshots of the
measurements in tune-mode are shown in the ESM. For the
experiments, the DC applied to the quadrupole in front of the
collision cell was turned off, resulting again in high-pass mass
filter operation. The target range to be filtered out by the
quadrupole was set to m/z 2500 and the collision voltage
was ramped in three increments (0, 50, and 100 V).

With these settings, a broad signal peak appears aroundm/z
2000. The intensity of this structure in the spectrum with the
collision voltage set to 0 V is considerable compared to the
small signals of bare analytes visible (cf. ESM Fig. S3a). This
structure of peaks is evidence of droplets passing the quadru-
pole since the bare analyte is filtered out. With the collision
voltage raised to 50 V, the analyte peaks start to increase
drastically. The peak structure around m/z 2000 remains vis-
ible. The analyte signals increase even more with the collision
voltage set to 100 V (cf. ESM Fig. S3c). The peak structure at
m/z 2000 is not as defined but still discernible. The analyte
signals increase about 500% by solely ramping the collision
voltage, which indicates that the droplets are releasing the
analytes in the samemanner as in the SCIEX triple quadrupole
and the Bruker ion trap instrument.

Conclusions

The experimental observation of droplet fragments in the in-
vestigated mass spectrometric systems demonstrates that large
amounts of charged droplets are likely to be aspirated into the
instruments and penetrate deeply the different vacuum stages.
This aspiration was observed with all investigated instru-
ments. The geometries of the ion source enclosures and ESI
emitter assemblies, as well as the applied gas flows, are largely
different in the three systems (cf. ESM Fig. S1). This holds
true for the ion transfer stages to the analyzer region as well:
(i) nozzle/skimmer + transfer quadrupole (Q-Jet, SCIEX triple
quadrupole), (ii) off-axis capillary + dual ion funnel + transfer
multipoles (Bruker amaZon QIT), and (iii) on-axis capillary +
skimmer + transfer quadrupole (Agilent Q-ToF).

Therefore, significant droplet aspiration is likely a general
phenomenon occurring when “high-flow” ESI sources are op-
erated on commercial API instruments and not an edge case of
a certain ion source configuration or design. The available

experimental results from the literature unequivocally show
the existence of large and long-living charged droplets/
droplet fragments generated by ESI. This is in full accordance
with our experimental findings. In future works, we will elu-
cidate the fragmentation/evaporation process of these droplets
in response to the variation of inlet and transfer parameters.

ESI is one of the most widely used ionization techniques
and has thus high importance for analytical chemistry. The
possible consequences of droplet aspiration into mass spec-
trometers are more diverse than just chemical noise in the
resulting mass spectra: The contamination due to droplets
penetrating the inlet stages would lead to increased mainte-
nance and instrument down-time. Additionally, the dynamics
of the proposed droplets in the instruments are currently un-
known. Thus, the possible chemical and physical conse-
quences of the presence of droplets and their fragments in
MS inlet stages are also unknown. Besides possible complex
direct chemical interactions between droplets and droplet con-
stituents, secondary effects like space charge saturation could
be relevant. Such effects would be particularly problematic in
mobility pre-separation stages (DT-IMS, TWIMS, DMS,
TIMS).

These results, along with the body of literature data, also
strongly challenge the assumptions of the established quasi-
equilibrium droplet evolution models [9, 25]. The latter imply
the complete evaporation of the spray droplets and the gener-
ation of bare ions within the ion source region, which is in
stark contrast to the experimental observations. However, the
evolution models are not wrong per se; they still are highly
valuable models for the processes occurring during the final
stages of bare ion generation from charged droplets. However,
for a significant fraction of the observed total source ion cur-
rent generated, those final steps are taking place far down-
stream of the source, i.e., deep in the vacuum stages of the
instrument.

This conclusion has a number of consequences: Droplets
present in the vacuum stages of a mass spectrometer are gen-
erally exposed to completely different physical and chemical
conditions as compared to the situation in the AP-ion source
region; strong pressure and temperature drops in supersonic
expansions of the background gas with shock phenomena,
strong electric field gradients, and, due to the much lower
collision frequency, increased electric acceleration of charged
particles dominate the different vacuum stages of an API mass
spectrometer [55]. This further complicates the droplet
evaporation/fragmentation processes finally resulting in bare
molecular ions, and much more so corresponding modeling
attempts.

The comprehensive elucidation of the droplet dynamics in
API mass spectrometers thus requires an interdisciplinary re-
search program: Multiple experimental and modeling efforts
along the ion path through the instruments are required to
build a more complete picture of the ESI process. After all,
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ESI works in many, many cases beautifully well. A whole
industry builds around it since about 5 decades. So why both-
er? Because terms as “ion suppression,” “unexpected results,”
or “magic ionization” are making physical and theoretical
chemists… restless.
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