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Hypoxia-inducible factor-2α (HIF-2α) plays an important role in tumor progression 
and metastasis. A number of studies have evaluated the correlation between HIF-2α 
overexpression and clinical outcome in cancer patients but yielded inconsistent results. 
To comprehensively and quantitatively summarize the evidence on the capability of 
HIF-2α to predict the prognosis of cancer patients with solid tumors, a meta-analysis 
was carried out. Renal cell carcinoma (CC-RCC) was separately analyzed due to an 
alternative mechanism of regulation. Systematic literature searches were performed in 
PubMed and Embase databases for relevant original articles until February 2018. Forty-
nine studies with 6,052 patients were included in this study. The pooled hazard ratios 
(HRs) with corresponding confidence intervals were calculated to assess the prognostic 
value of HIF-2α protein expression in tumor cells. The meta-analysis revealed strong 
significant negative associations between HIF-2α expression and five endpoints: overall 
survival [HR = 1.69, 95% confidence interval (95% CI) 1.39–2.06], disease-free survival 
(HR = 1.87, 95% CI 1.2–2.92), disease-specific survival (HR = 1.57, 95% CI 1.06–2.34), 
metastasis-free survival (HR = 2.67, 95% CI 1.32–5.38), and progression-free survival 
(HR = 2.18, 95% CI 1.25–3.78). Subgroup analyses revealed similar associations in the 
majority of tumor sites. Overall, these data demonstrate a negative prognostic role of 
HIF-2α in patients suffering from different types of solid tumors.

Keywords: cancer, hypoxia-inducible factor-2, meta-analysis, prognosis, endothelial PaS domain protein-1

iNtRODUctiON

Hypoxia is a common feature of most of solid tumors resulting from an imbalance between oxygen 
supply and consumption by tumor cells. Hypoxic tumor areas are characterized by a disrupted 
vasculature causing inefficient oxygen and nutrient supply to neighboring cells (1). Hypoxia is one 
of the key factors in inducing the development of resistant cells with an aggressive phenotype (2), 
which leads to poor prognosis in patients and decreases the efficacy of chemoradiotherapy (3, 4). 
Accurate measurement of tumor hypoxia in patients together with the design of novel anti-hypoxia 
treatments has largely been a major goal in cancer research (5–8).

Hypoxia triggers important cellular stress responses allowing tumor cells to survive under 
extreme conditions, including the stabilization of the hypoxia-inducible factor (HIF) proteins 
(9, 10). Under normoxic conditions, prolyl-hydroxylation promotes HIF-α degradation via the 
von Hippel–Lindau (VHL) ubiquitin/proteasome pathway. Under hypoxia, this regulation is 
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table 1 | Summary of results of subgroup meta-analyses of different organ sites.

Organ site Overall survival Disease-free survival Disease-specific 
survival

locoregional control metastasis-free 
survival

Progression-free 
survival

Bladder 0.51 (0.33–0.77)a

Brain 3.78 (1.64–8.75)a

Breast 1.18 (0.95–1.47) 2.3 (1.3–4.1)a 1.6 (1–2.4)a

Cartilage 4.13 (1.47–11.58)a

Cervix 1.53 (1.14–2.03)a

Colorectal 1.46 (0.7–3.04) 1.86 (0.89–3.92)a 0.8 (0.61–1.05)a 0.54 (0.25–1.17)a

Endometrium 5.72 (1.51–21.6)a

Head and neck 1.55 (1.24–1.92) 1.41 (0.99–2) 1.45 (0.8–2.64) 1.94 (1.43–2.63)
Kidney 0.61 (0.27–1.35) 1.21 (0.57–2.6) 0.54 (0.11–2.57) 0.08 (0.03–0.27)a 0.75 (0.32–1.73)
Liver 1.06 (0.43–2.61) 1.52 (0.82–2.84)a 1.22 (0.87–1.83)a

Lung 2.15 (1.65–2.81) 8.47 (3.26–22.06)a

Ovarium 2.72 (1.27–5.83)a

Pancreas 2.11 (1.38–3.24) 1.67 (1.26–2.21)a

Prostate 2.44 (1.07–5.57)a 2.94 (1.99–4.36)a

Salivary glands 4.52 (1.06–19.3)a 3.64 (0.72–18.42)a 3.36 (0.89–12.66)a

Skin 3.21 (1.15–8.97)a 3.81 (1.66–8.78)a

Soft tissues 1.53 (1.03–2.28)a

Stomach 1.7 (1.25–2.32) 1.6 (1–2.4)a

The hazard ratio (HR) with 95% confidence interval is shown. Highlighted numbers indicate statistically significant association between hypoxia-inducible factor-2α expression and 
prognosis (p < 0.05).
aWhen HR was available from only one paper, the values were adopted from that single paper (21–69).
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suppressed, leading to the stabilization of three independent 
HIF-α subunits (HIF-1α, HIF-2α, and HIF-3α) that dimer-
ize with the constitutively expressed HIF-1β and activate the 
transcription of genes via hypoxia responsive elements in their 
promoter region. The HIF-2α protein, also named endothelial 
PAS domain protein-1, is equally oxygen regulated as its coun-
terpart HIF-1α, and both present over 50% similarity in their 
amino acid sequence identity (11). In physiologic conditions, 
HIF-1α has a broad activity in several tissues which contain 
hypoxic regions, while HIF-2α is more restricted to specific cell 
types, e.g., kidney, lung, and heart (12). HIF proteins distinctly 
contribute to the upregulation of genes involved in prolifera-
tion, glucose metabolism, and angiogenesis and genes involved 
in invasion and metastasis in different types of cancer (13). HIF 
isoforms also differ in their ability to promote treatment resist-
ance in cancer by playing highly divergent or even opposite roles, 
leading to distinct clinicopathologic features and prognosis (14). 
Specific activity of HIF-2α differently contributes to total HIF 
target gene expression among many types of cancers, which may 
influence the characteristics of these tumors and the outcome 
of patients (15). To date, much effort has been made to better 
understand the roles of HIF-2α in cancer and the consequences 
for patients suffering from high-HIF-2α expressing tumors. So 
far, there is clear evidence suggesting that HIF-2α is a crucial 
protein for the development and progression of many types of 
cancer. Indeed, HIF-2α seems to be crucial in regulating mul-
tiple aspects in cancer, including cell proliferation, apoptosis, 
epithelial-to-mesenchymal transition, cell metabolism, angio-
genesis, and resistance to therapy (16, 17). Hypoxia-induced 
HIF-2α expression and its subsequent chain of events make this 
protein a relevant marker of tumor hypoxia and a promising 
target for anticancer therapies with novel inhibitors.

Several clinical studies describe the prognostic value of HIF-
1α in cancer, including the elaboration of many meta-analyses 

for several kinds of cancer and different HIF-1α polymorphisms 
(18–20). For some of the clinical studies included in these 
meta-analyses, prognostic data on HIF-2α can be found which 
often differed from HIF-1α data (21). In addition, other studies 
specifically looked at the role of HIF-2α independently of HIF-
1α expression. Nonetheless, many discrepancies are seen among 
the investigations that were performed during the last years, in 
which HIF-2α has been reported to be either a positive or nega-
tive prognostic factor in cancer. The purpose of this meta-analysis 
was to provide an updated comprehensive analysis regarding the 
prognostic value of HIF-2α expression in solid tumors.

mateRialS aND metHODS

literature Search
The research question of this meta-analysis was defined as fol-
lows: “what is the prognostic value of tumoral HIF-2α expression 
in patients with solid tumors?” Meta-analysis included patients 
with solid tumors of different types (Table 1) independent of stage 
and/or grade or treatment modality. Various treatment outcomes 
(see below) were compared between patients with high and low 
tumoral HIF-2α expression. PubMed and Embase were used to 
identify studies that investigated the prognostic significance of 
HIF-2α in solid tumors to be included in this meta-analysis. The 
search for literature was performed including papers published 
until February 1, 2018. Three main key words were identified 
to address the research question of this meta-analysis, i.e., prog-
nosis, cancer, and HIF2. Several combinations of the selected 
keywords (in any of the formulations or truncations) were tested 
as free text searches to identify potential articles to be included 
in this meta-analysis (Supplementary File S1 in Supplementary 
Material). A total of 636 papers were identified from both data-
bases (Figure 1).
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FigURe 1 | Flowchart of selecting articles describing the association between tumoral hypoxia-inducible factor-2α expression and prognosis.
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Screening of Papers
Three independent reviewers assessed the eligibility of the stud-
ies. The first round of screening was based on the title and abstract 
(Eloy Moreno Roig and Arjan J. Groot). 99 review articles without 
original data, conference records, commentaries, meta-analyses, 
editorials, or book chapters were excluded, as were 10 overlapping 
or non-English papers. The total number of papers for further 
screening was thereby reduced to 527 (Figure  1). The second 
round consisted of a detailed evaluation of the full-text (Eloy 
Moreno Roig and Ala Yaromina).

In order to be included in the meta-analysis, a study had to 
fulfill predetermined inclusion/exclusion criteria: (1) only solid 
primary tumors of various types were included, (2) all endpoints 
were included with the minimal median follow-up of 1 year, (3) 
all treatments were included, (4) none of the patient populations 
were excluded by distinctive diagnosis, tumor grade, or tumor 
stage, and (5) pre-treatment protein expression by immunohisto-
chemistry was the only technique for HIF-2α detection included. 
Discrepancies between the included papers by both reviewers 
were discussed and consensus was reached on all. A total of 49 
papers were included in the meta-analysis (Figure 1) (21–69).

Data extraction
Reported parameters were extracted from each paper, i.e., the 
number and origin of patients, treatment modalities, tumor 

organ, tumor stage, tumor type, group dichotomization, antibody 
supplier, expression pattern, cellular localization, positivity in 
macrophages, and outcome variables (see below). The univariate 
hazard ratio (HR) and 95% confidence interval (95% CI) were 
directly obtained from the information available in the text. If 
not reported, the method from Tierney et al. was used to calculate 
HR and thereby assess prognostic value of HIF-2α expression 
(70). Multivariate HR was only considered when the univariate 
HR could not be estimated. Authors were contacted to obtain 
additional data when not all the information was reported for 
estimating HR.

Kidney cancer was excluded from the main analysis because 
the loss of the VHL gene, a common mutation in CC-RCC, 
results in the stabilization of HIFs independent of oxygen, i.e., 
an alternative mechanism of HIF-2α activation in cancer absent 
in the majority of other solid tumors (71). Therefore, prognostic 
value of HIF-2α in this tumor type has been analyzed separately.

Quality assessment
The methodological quality of the included papers was evaluated 
with an adjusted version of the Newcastle–Ottawa scale (NOS) to 
better suit the study design of the included papers (Supplementary 
File S2 in Supplementary Material) (72). The NOS was proposed 
in the 2011 version of the Cochrane Collaboration handbook 
being an easy method to evaluate the methodological quality of 
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FigURe 2 | Summary of the overall hazard ratios (HRs) for different 
endpoints. Symbols represent the HR and horizontal bars the 95% 
confidence interval (95%CI) (21–69).
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cohort studies (available at http://www.ohri.ca/programs/clini-
cal_epidemiology/oxford.asp).

Statistical analysis and Sensitivity 
analysis
Distribution and frequencies of the extracted data parameters 
were analyzed using SPSS (version 22). Meta-analysis was per-
formed using R statistical software with the Metafor Library (ver-
sion 2.0-0) (73). Fixed-effect modeling was performed when no 
statistical significant heterogeneity between studies was observed. 
When the heterogeneity between studies was statistically signifi-
cant (p < 0.05), random-effects modeling was applied based on 
the DerSimonian and Laird method (74). The inverse variance 
of each study was used to assign an independent weight value. 
Six different endpoints were considered for the analysis: overall 
survival (OS), disease-free survival (DFS), locoregional control 
(LC), disease-specific survival (DSS), metastasis-free survival 
(MFS), and progression-free survival (PFS). Sensitivity analysis 
was performed by analyzing subgroups of studies based on organ 
site. We assessed the possibility of publication bias and heteroge-
neity among studies by generating and visually analyzing funnel 
plots. Asymmetric funnel plots and studies outside the pyramid 
suggest heterogeneity between them.

ReSUltS

This meta-analysis includes a total number of 6,052 patients 
across 49 independent studies (21–69). The median follow-up 
time ranged between 27 and 391 months and mostly included 
only a small number of patients (median 90, range 21–695). 
Selected papers were published between 2001 and 2017 of 
which 56% were published after 2010. Depending on the study, 
patients followed different treatment schedules. In most of the 
selected studies, patients were treated with surgery alone (56%), 
in combination with either chemotherapy (8%) or standard 
radiotherapy (10%), or a combination of all three modalities 
(14%). Other treatment alternatives such as hormonal therapy 
and tyrosine-kinase inhibitors were used in 8% of the studies. 
Overall, the majority of the patients (61%) were treated with 
surgery alone. Most studies report on head and neck and kidney 
cancer patients (both 18%) followed by colon, liver, pancreas, 
and lung cancer patients (all of them 8%). By contrast, cancers 
of the bladder, cartilage, cervix, endometrium, ovarian, and 
salivary glands were only described once.

Immunohistochemical staining of HIF-2α was most com-
monly performed using the EP190b Ab (38%) from Novus 
Biologicals. Other studies used anti-HIF2α antibodies obtained 
from other suppliers. Cytoplasmic expression of HIF-2α was 
described in 14% of the studies and 18% were positive in the 
nucleus. A combination of both positive cytoplasmic and nuclear 
staining was reported in 46% of the studies. HIF-2α expression 
was quantified using different methods and patient stratification 
into groups with low and high tumoral HIF-2α expression was 
performed using different thresholds. Taken together, 45% of the 
total tumors were classified as expressing high levels of HIF-2α. 
Also, 26% of these studies stated positive staining in macrophages.

Overall, patients suffering from tumors with high HIF-2α 
expression had a worse treatment outcome (Figure 2). This asso-
ciation was significant for OS (p < 0.0001), DFS (p = 0.0057), DSS 
(p = 0.0249), MFS (p = 0.0061), and PFS (p = 0.0058). No associa-
tion was found between HIF-2α expression and LC (p = 0.1281). 
Subgroup analyses based on tumor type and treatment option 
were not performed due to the low number of studies. Studies on 
renal cell cancer were eliminated from the overall HR estimation 
as HIF-2α plays a different role in this cancer type (71). Funnel 
plots demonstrated systematic heterogeneity for almost all the 
endpoints. This can be due to publication bias, variation across the 
reports, or small number of studies (Figure S1 in Supplementary 
Material).

Overall Survival
A total of 38 from the selected 49 studies investigated the associa-
tion between HIF-2α and OS. All the necessary information to 
estimate the HR could not be obtained from two papers and were 
therefore not included in the analysis (Table S1 in Supplementary 
Material) (21, 23, 24, 26–31, 33–35, 37–39, 41–43, 45, 46, 48, 
49, 51, 52, 54–57, 59, 60, 62–69). Based on these studies, high 
HIF-2α expression was statistically significantly associated with 
a decreased OS (HR  =  1.69, 95% CI 1.39–2.06, p  <  0.0001, 
Figure 3). Subgroup analysis based on the different organ sites 
indicated a similar negative association between tumoral HIF-2α 
expression and OS: head and neck (HR = 1.55, 95% CI 1.24–1.92, 
p <  0.0001), lung (HR =  2.15, 95% CI 1.65–2.81, p <  0.0001), 
stomach (HR = 1.71, 95% CI 1.25–2.32, p = 0.0007), and pan-
creas (HR = 2.11, 95% CI 1.38–3.24, p = 0.0006). By contrast, 
no association between tumoral HIF-2α expression and OS was 
observed for breast (HR = 1.18, 95% CI 0.95–1.47, p = 0.1225), 
colon (HR = 1.46, 95% CI 0.7–3.07, p = 3121), liver (HR = 1.06, 
95% CI 0.43–2.61, p  =  0.89), and kidney (HR  =  0.61, 95% CI 
0.27–1.35, p = 0.2239) cancer (Table 1).

Disease-Free Survival
Effect of pre-treatment expression of HIF-2α on DFS could be 
evaluated in six studies (36, 37, 54, 66, 67, 69). Overall, high HIF-
2α expression was significantly associated with a decreased DFS 
(HR = 1.87, 95% CI 1.2–2.92, p = 0.0057, Figure 4). Subgroup 
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FigURe 3 | Forest plot of hazard ratios (HRs) with 95% confidence interval (95% CI) (horizontal bars) for the association of hypoxia-inducible factor-2α expression 
and overall survival (OS). Symbol size represents the assigned weight of the study (21, 24, 26, 28, 30, 31, 33–35, 37, 38, 41–43, 45, 46, 48, 49, 52, 54–57, 59, 60, 
62–64, 66–69).

FigURe 4 | Forest plot of hazard ratios (HRs) with 95% confidence interval (95% CI) (horizontal bars) for the association between hypoxia-inducible factor-2α 
expression and disease-free survival (DFS). Symbol size represents the assigned weight of the study (36, 37, 54, 66, 67, 69).
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analysis indicated that elevated HIF-2α levels were margin-
ally significantly associated with DFS in head and neck cancer 
(HR = 1.41, 95% CI 0.99–2, p = 0.0577) (Table 1).

Disease-Specific Survival
A total of 12 studies evaluated the association of HIF-2α expres-
sion with DSS, of which 2 studies provided incomplete data to 
estimate the HR (Table S1 in Supplementary Material) and 3 were 
excluded for being CC-RCC. In the remaining seven studies, 
patients suffering from tumors with high HIF-2α had significantly 
shorter DSS (HR = 1.57, 95% CI 1.06–2.34, p = 0.0249, Figure 5) 
(24, 25, 32, 34, 35, 47, 49, 50, 53, 58, 61, 66). Subgroup analysis by 

organ site revealed not association between high HIF-2α expres-
sion and worse DSS in tumors of the head and neck (HR = 1.45, 
95% CI 0.8–2.64, p = 0.2219) and kidney (HR = 1.21, 95% CI 
0.57–2.6, p = 0.6138) cancer (Table 1).

locoregional control
Ten studies were included to analyze the association of HIF-2α 
expression with risk of LC. High tumoral HIF-2α expression 
was not associated with a higher risk of locoregional recur-
rences compared with patients with low expression of HIF-2α 
in tumors (HR = 1.31, 95% CI 0.92–1.86, p = 0.1281, Figure 6) 
(35, 40, 44–46, 52, 56–59). However, subgroup analysis for the 
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FigURe 7 | Forest plot of hazard ratios (HRs) with 95% confidence interval (95% CI) (horizontal bars) for the association between hypoxia-inducible factor-2α 
expression and metastasis-free survival (MFS). Symbol size represents the assigned weight of the study (53, 57).

FigURe 6 | Forest plot of hazard ratios (HRs) with 95% confidence interval (95% CI) (horizontal bars) for the association between hypoxia-inducible factor-2α 
expression and locoregional control (LC). Symbol size represents the assigned weight of the study (35, 40, 44–46, 52, 56–59).

FigURe 5 | Forest plot of hazard ratios (HRs) with 95% confidence interval (95% CI) (horizontal bars) for the association between hypoxia-inducible factor-2α 
expression and disease-specific survival (DSS). Symbol size represents the assigned weight of the study (24, 32, 34, 35, 58, 61, 66).
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association between high HIF-2α expression in tumors and worse 
LC was significant in head and neck tumors (HR = 1.94, 95% CI 
1.43–2.63, p < 0.0001). No significant association was observed 
in kidney tumors (HR  =  0.54, 95% CI 0.11–2.57, p  =  0.4409) 
(Table 1).

metastasis-Free Survival
Based on the available data reported in two studies, we analyzed 
the relationship of HIF-2α expression with MFS (53, 57). We 
found that the pooled HR for MFS was 2.67 (95% CI 1.32–5.38, 
p = 0.0061), indicating that HIF2α expression is a negative prog-
nostic factor for MFS in patients with prostate and salivary gland 

cancer (Figure 7). In kidney cancer, one paper reported an inverse 
correlation between HIF-2α positivity and MFS (HR = 0.08, 95% 
CI 0.03–0.27, p < 0.001) (23).

Progression-Free Survival
Progression-free survival was reported in 5 of 49 included 
studies, of which 1 study provided incomplete data (Table S1 in 
Supplementary Material) and 2 described patients with renal cell 
cancer (29, 39, 48, 51, 53). Similar to the other endpoints, PFS was 
significantly shorter (HR = 2.18, 95% CI 1.25–3.78, p = 0.0058) in 
patients with tumors expressing high levels of HIF-2α (Figure 8). 
In kidney cancers, these data showed no association between 
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FigURe 8 | Forest plot of hazard ratios (HRs) with 95% confidence interval (95% CI) (horizontal bars) for the association between hypoxia-inducible factor-2α 
expression and progression-free survival (PFS). Symbol size represents the assigned weight of the study (48, 53).
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HIF-2α expression and PFS (HR  =  0.75, 95% CI 0.32–1.72, 
p = 0.498) (Table 1).

High-Quality Papers
This meta-analysis used an adjusted version of the NOS to evaluate 
the quality of a study. The scores of this quality assessment ranged 
between 1 and 7 stars, i.e., the maximum, awarded per study. 
Approximately 78% of these studies were considered as high-
quality studies, i.e., with a number of stars greater or equal to 5.

DiScUSSiON

There is growing evidence that overexpression of HIF-2α in 
cancer can contribute to differences in treatment outcome 
between patients. Although HIF-2α oncogenic activity has been 
proven, there is significant variability in its value as a biomarker 
for patient’s prognosis. In view of its role in regulating oncogenic 
processes triggered by hypoxia, the evaluation of its prognostic 
value in cancer is of great clinical importance, which may lead to 
a more accurate patient prognosis and the generation of targeted 
therapies in the future. This meta-analysis is the first complete 
overview to summarize all reported clinical studies investigating 
the impact of HIF-2α expression on treatment outcome in solid 
tumors.

Here, we show that high HIF-2α levels in cancer are correlated 
with worse prognosis for OS, DFS, DSS, MFS, and PFS. No asso-
ciation between HIF-2α expression and LC was found. These data 
suggest that HIF-2α might not be involved in treatment resist-
ance directly but is indicative of more malignant phenotype with 
greater metastatic potential. Subgroup analyses were performed 
to explore the source of heterogeneity based on different organ 
sites. We found that this variable did not alter the prognostic value 
of HIF-2α for most of the endpoints assessed.

We excluded CC-RCCs from the main analysis due to a differ-
ent regulatory mechanism of HIF-2α, which might affect the final 
outcome. A common mutation in CC-RCC is the loss of the VHL 
gene, which results in the stabilization of HIFs upon normoxia. 
This oncogenic process is specific for CC-RCC with an abundance 
of 80% in patients, resulting in an alternative mechanism of HIF-
2α activation in cancer (71). However, the negative prognostic 
value of HIF-2α does not change when CC-RCC is included 
in the overall meta-analysis (data not shown). In CC-RCC, we 
found that HIF-2α is a positive prognostic biomarker for MFS 
only (Table  1). Subcellular localization might also affect the 

prognostic significance of HIF-2α in CC-RCC as previously 
noted (75). Their data show that high cytoplasmic expression 
of HIF-2α was significantly associated with poor DSS which is 
consistent with our findings. By contrast, high nuclear expression 
of HIF-2α is associated with better DSS in patients (Table S2 in 
Supplementary Material). Therefore, it might be that subcellular 
localization of HIF-2α is crucial in determining the prognostic 
value in CC-RCC patients, which requires further investigation. 
Another study demonstrated that HIF-2α can be used as a pre-
dictive biomarker related to drug selection for CC-RCC patients 
treated with sunitinib and sorafenib (51). Therefore, assessment 
of subgroup categories is necessary to better evaluate the prog-
nostic and predictive value of HIF-2α in CC-RCC.

Previous studies have shown that increased infiltration of 
tumor-associated macrophages (TAMs) in cancer patients is 
associated with worse OS (76). In comparison with normal 
macrophages, TAMs express high levels of HIF-2α, which seems 
to be an indicator of poor prognosis in cancer patients (77). Using 
in  vivo models of acute inflammation, it has been shown that 
HIF-2α expression in macrophages is essential for inflammatory 
responses by regulating proinflammatory cytokine expression 
(78). Together, these studies show that HIF-2α tightly regulates 
macrophage functions, which in turn may impact the patient 
prognosis. We excluded studies in which only macrophage data 
were reported, since the main goal of this meta-analysis is to 
determine the prognostic role of HIF-2α expression in tumor 
cells. To note, 26% of the studies included in this meta-analysis 
stated HIF-2α reactivity in macrophages together with tumor 
cells.

The papers included in this meta-analysis were all published 
between 2001 and 2018, which is likely attributed to the fact 
that HIF-2α was first identified by independent groups a few 
years earlier (79, 80). First studies showed the importance of 
HIF-2α on the transcription of hypoxia-regulated genes such 
as VEGF in endothelial cells, fibroblasts, and epithelial cells. 
In addition, researchers described the novel role of HIF-2α in 
comparison with the already studied HIF-1α, its counteractive 
protein, in hypoxia and tissue homeostasis (80–83). The discovery 
of this new hypoxia-activated transcription factor encouraged 
research to further evaluate the role of HIF-2α in  vivo and 
during development in mice. Their data show that HIF-2α 
displays a specific pattern of developmental expression at dif-
ferent embryonic stages (84). HIF-2α was thereby defined as a 
novel bHLH-PAS protein involved in the response to hypoxia 
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showing overlapping but also independent roles with HIF-1α. 
Basic HLH (helix–loop–helix)–PER–ARNT–SIM (bHLH-PAS) 
proteins are a family of transcription factors, which respond to 
environmental signals such as low oxygen levels. This family of 
proteins is involved in dimerization, DNA binding, and signal 
transduction (85). Future studies demonstrated that HIF-2α was 
expressed in a much larger number of cell types (86). Apart from 
its regulatory role in normal tissue homeostasis, HIF-2α was seen 
to be commonly upregulated in a broad range of cancers and to 
contribute to multiple aspects of tumorigenesis such as altered 
metabolism, angiogenesis, epithelial–mesenchymal transition, 
and metastasis. This is supported by data showing that HIF-2α 
is involved in promoting resistance of tumor cells to several 
treatment modalities and increased patient mortality (87). The 
important role of HIF-2α in cancer prognosis is also supported by 
the results of this meta-analysis, which shows that patients with 
high HIF-2α expression have shorter OS. HIF-1α protein, in turn, 
has been shown to induce more aggressive phenotype in tumors 
cells by regulating similar cellular mechanisms (88). Therefore, 
assessment of oxygen-sensing proteins in tumors prior and/or 
during therapy may represent a powerful prognostic and predic-
tive biomarker as well as important targets for new anticancer 
treatments, which warrants further investigations.

Importantly, there is also the risk of encountering publication 
bias since positive results are more likely to be published than 
negative ones. This meta-analysis identified a total of 49 studies 
of which 4 could not be included in final analysis because the HR 
could not be estimated due to incomplete reporting. Three of four 
studies stated non-significant association between HIF-2α and 
outcome (Table S1 in Supplementary Material). Including these 
four papers in the analysis might therefore decrease the magni-
tude of the prognostic value of HIF-2α expression reported here. 
Nevertheless, since the prognostic value of HIF-2α expression is 
highly statistically significant and the number of excluded studies 
is very low, we believe that the possible effect of publication bias 
on this association is negligible.

There are also other limitations in this meta-analysis. The 
approach of extrapolating the HRs could potentially introduce 
the source of bias. First, when it was not possible to extract HR 
directly from the article, survival curves were used to extract 
data to estimate HR following the method of Tierney et  al. 
(70). Second, significant heterogeneity was found for most of 
the endpoints tested, which might confirm the high variability 

among studies. Reduced variability could be achieved by better 
stratifying tumors into high and low expressing. Third, the use of 
different antibodies with varying dilutions to detect HIF-2α, dif-
ferent staining protocols, different scoring methods, subcellular 
localization, and cutoff values may contribute to heterogene-
ity. Finally, due to the lack of papers referring to each specific 
endpoint, treatment modality, and/or organ site, it is difficult to 
set a robust outcome and achieve significant data for different 
subgroups. Therefore, more high-quality, large-sample, prospec-
tively designed studies are needed to strengthen the prognostic 
and predictive relevance of HIF-2α in solid cancers.

The results presented here clearly indicate that HIF-2α expres-
sion is associated with worse prognosis in a global patient population 
and in some tumor sites. Altogether, the results of this meta-
analysis support the development of a clinical test to determine 
patient prognosis and/or predict treatment outcome based on 
HIF-2α expression, although standardized protocols remains to 
be developed and validated. While potent inhibitors targeting 
HIF-2α are being translated into clinical trials for renal cancer 
(89) such predictive tests would be crucial in advancing anti-
HIF2 inhibitors not only in renal cancer but also in other solid  
cancers.
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