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Abstract: It is well known that stochasticity in gene expression is an important source of noise that can have profound effects
on the fate of a living cell. In the galactose genetic switch in yeast, the unbinding of a transcription repressor is induced by high
concentrations of sugar particles activating gene expression of sugar transporters. This response results in high propensity for
all reactions involving interactions with the metabolite. The reactions for gene expression, feedback loops and transport are
typically described by chemical master equations (CME). Sampling the CME using the stochastic simulation algorithm (SSA)
results in large computational costs as each reaction event is evaluated explicitly. To improve the computational efficiency of cell
simulations involving high particle number systems, the authors have implemented a hybrid stochastic–deterministic (CME–
ODE) method into the publically available, GPU-based lattice microbes (LM) software suite and its python interface pyLM. LM
and pyLM provide a convenient way to simulate complex cellular systems and interface with high-performance
RDME/CME/ODE solvers. As a test of the implementation, the authors apply the hybrid CME-ODE method to the galactose
switch in Saccharomyces cerevisiae, gaining a 10–50× speedup while yielding protein distributions and species traces similar to
the pure SSA CME.

1௑Introduction
Many processes within living cells, especially gene expression,
have characteristically low particle numbers and a high degree of
randomness that leads to stochastic effects, such as heterogeneity in
a population of cells [1–4]. The chemical master equation (CME) is
a useful formalism for describing the dynamics of stochastic events
in biological systems. It describes a chemical process as a
continuous-time Markov chain on a state space comprising particle
numbers of each chemical species; thus, capturing the discreteness
of particles and the random nature of individual chemical reactions.
The widely used stochastic simulation algorithm (SSA) of
Gillespie [5, 6] provides an effective method for obtaining
unbiased realisations of these Markov processes. However, the
SSA is limited by the fact that reaction events are accounted for
explicitly. Systems with high particle counts – those containing
metabolites in millimolar concentrations – or those with large
reaction rate constants, have a high propensity (probability per unit
time) for a reaction event to occur; thus, they evolve on fast time
scales and incur large computational cost (e.g. time to solution).

To overcome the computational expense of solving the SSA for
high concentration systems, researchers have devised hybrid
approaches that decrease time-to-solution for stochastic
simulations while faithfully capturing the results of stochasticity in
important chemical species (e.g. transcription factors). For a brief
review of methods that improve computational efficiency by
reformulating the original SSA scheme in a more economical
fashion, see Jahnke and Kreim [7]. Notably, Cao et al. [8] describe
a method by which the chemical system of interest is separated into
a set of reactions with fast rates to be simulated deterministically
and a set of slow reactions to be simulated stochastically. Alfonsi et
al. [9] present a hybrid model in which a CME Markov jump

process describing the dynamics of the species with low particle
number is coupled to ordinary differential equations (ODEs)
representing the highly abundant species. Jahnke and Kriem [7]
validated this technique through a rigorous error analysis of the
CME–ODE partitioning which was compared to a CME treatment
for a small reaction system, Pájaro and Alonso [10] examined the
applicability of approximate methods to modelling genetic circuits,
and Smith et al. [11] showed the applicability of hybrid methods to
metabolic networks. Alternative frameworks exist, for example
coupling CME with the chemical Langevin equation [12].
Algorithms to handle stochastic reaction-diffusion processes
typically partition the system into small spatial subvolumes and use
the SSA to describe the reaction events within them [1, 2, 13]. The
hybrid CME–ODE method discussed in this work will also
accelerate spatially resolved simulations of processes described by
reaction-diffusion master equations (RDME) over such
subvolumes, where reactions within each compartment are treated
by the CME.

A challenging and typical scenario arises when species
participating in slow reactions are also changed by firings of one or
more fast reactions, making the dynamics of the slow reactions
dependent on the fast reactions. While it is tempting to assume a
partial thermodynamic limit for the fast reactions involving a large
number of species and simply rescale the rate constants so the
entire system can be treated stochastically, this assumption cannot
be made for genetic switches involving nutrients. During the early
phase of sugar/inducer/metabolite uptake, the system evolves
quickly and errors in the approximation can compound leading to
incorrect switching dynamics and even incorrect switched steady
states. The study of nutrient-induced metabolic switches is of
particular importance in understanding survival fitness. As a cell
adapts to a change in the composition of its environment, genes
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that will help in the processing and efficient usage of the new
metabolite are upregulated, and genes that are no longer needed are
downregulated, in an attempt to optimise its fitness.

2௑Test system
We simulate the well-studied galactose switch in Saccharomyces
cerevisiae [14–16]. This system, composed of 37 species and 75
reactions, is summarised in Fig. 1 and provided in Appendix –
Section 10.1. The switch has four feedback loops that respond to
the presence of the sugar galactose. The transcription factor G80,
in dimer form (G80d), binds to the promoters of the genes for
several of the proteins (G1, G2, G3 and G80) involved in the
galactose switch process, and represses their expression. When
galactose binds to G3 it creates an activated complex (G3i) that can
bind to G80Cd (G80d in the cytoplasm). The G3i sequesters G80
in the cytoplasm causing the genes to be in an unrepressed, active
state. The proteins G2, which transports galactose into the cell, and
G1, which metabolises galactose within the cell, also play key roles
in the cell's response to changes in the galactose concentration in
its environment. 

The positive (G1, G2, G3) and negative (G80) feedback loops
of the system work in the following manner. When exposed to a
galactose rich environment the cell begins to take up sugar which
subsequently sequesters the transcription factor G80 in the
cytoplasm, allowing the expression of the genes for G1, G2, G3
and G80. The associated mRNAs diffuse out of the nucleus into the
cytoplasm where they can be translated into their protein products.
As G2 transporter proteins accumulate, they subsequently motivate
a flood of more galactose into the cell. As a counter-balance, more
G1 proteins are also produced to metabolise the galactose.
Increased G3 counts results in the production of more G3i which
can sequester the newly formed G80 produced via the lone
negative feedback loop of the system. A transcriptional activator
G4 is constituitively expressed and dimerises before binding to the
each of the genes (G1, G2, G3, G80) in the system to promote
transcription. The G4 dimer (G4d) is inactive when G80 is bound
at the promoter. To measure the activity of G4d in transcription the
expression of a reporter protein under the control of the G1
promoter is quantified. The reporter is a yellow fluorescent protein
(YFP) added to each yeast cell whose expression level can be
measured experimentally by fluorescence microscopy. The amount
of reporter present is used to quantify the overall switching
behaviour of the system.

Galactose can exist in up to millimolar concentrations in a yeast
cell, therefore, to test our method we examine scenarios ranging
from 0.055 to 2.0 mM galactose concentrations (∼1–50 million
particles) that mimic the experiments performed by Oudenaarden
and co-workers [14] and Ramsey et al. [15]. We model a yeast cell
with a volume of 35.7 fl and set the initial intracellular galactose
concentration to zero. These initial conditions allow us to study the
dynamics of the genetic switch, while necessitating the use of a
deterministic-stochastic hybrid method to track the millions of
sugar particles that rapidly rush into the cell to faithfully capture

stochastic gene expression. Simulations were run with a constant
concentration of extracellular galactose over the course of a
simulation.

The system reactions were treated either by the CME or the
ODE (Fig. 1). Transcription, translation and transcription factor–
promoter reactions are solved by the CME simulator. Species
involved in these reactions were present in (relatively) low copy
number throughout the course of a simulation and exhibit high
variability, motivating stochastic treatment. Reactions with high
propensities, due to highly abundant reactants or high reaction rate
constants, such as the transport, binding and metabolisation of
galactose, are evolved deterministically using an ODE solver. The
choice of this partitioning is crucial in the effectiveness of the
hybrid algorithm in capturing the stochastic behaviour seen in the
pure CME. In fact, when we began this investigation we had
defined the reaction of G3 with the inducer galactose as an ODE
reaction and had not considered the relatively low amount of G3
that is biologically present. This assignment led to increased errors
in effectively capturing CME distributions especially when the
exact SSA-ODE method (described in Section 5) where CME–
ODE communication occurs at every CME reaction event was
considered. This is a problem because hybrid simulations will
converge to this exact result as smaller timesteps are used. Since
the propensities associated with this reaction are not on the order of
those for the transport reactions it should be defined as a CME
reaction, without a significant deleterious effect on run-times. A
potential flaw that could arise from the above partitioning is that
species involved in fast reactions are described by the ODE solver
even when they are present in very small numbers (at early
simulation times). At early times these species may not have
smooth trajectories and can be poorly approximated by differential
equations. However, we did not observe these errors playing a
noticeable part in simulations of the galactose switch system, as the
trajectories of these species seemed to match those obtained from
the pure CME, although the hybrid method at times reached
steady-state values slightly sooner than the pure CME (Fig. 2c). 

We will now describe the implementation of the hybrid CME–
ODE algorithm, its fidelity to pure SSA CME simulations (which
we accept as a ground truth) and the relative increase in
computational efficiency. We study accuracy relative to the pure
CME and computational speedup as a function of sugar
concentrations seen in experimental studies of the galactose switch
system and provide insight into the differences that are observed.
We also examine the effect the choice of interval at which
information is exchanged between the CME and ODE solvers (the
communication time τ), comparing results and run-times to the
exact SSA-ODE algorithm where communication occurs between
the stochastic and deterministic simulation regimes at every CME
reaction event. This hybrid method utilises the lattice microbes
(LM) software suite [1], and is implemented using its python
interface pyLM [4]. This study showcases the hybrid
implementation as a new feature of LM that allows users to easily
define and simulate complex biochemical systems and to achieve
computational performance that was previously unavailable in LM
for systems with chemical species present in millimolar
concentrations.

3௑Hybrid CME–ODE algorithm description
The hybrid algorithm is implemented such that the states treated by
the CME and ODE are distinct and evolve independently over
certain time intervals. At intervals set by the user (e.g. the
communication timestep τ, shown by thick vertical lines) state data
is transferred between treatments. Fig. 3 illustrates the manner in
which the hybrid algorithm connects the two descriptions by
communicating species count information between them (see
pseudocode presented in Fig. 4). 

The communication timestep is the key parameter of the hybrid
algorithm. At the conclusion of each communication timestep, the
state in the deterministic regime is updated with the species counts
obtained from the end of the previous CME timestep. The ODE
solver is simulated forward by τ to evolve the high particle number
species in the deterministic regime. The LSODA solver is used to

Fig. 1௒ Schematic model of the galactose switch. The reactions depicted in
the boxed area are simulated deterministically via an ODE solver, while
those outside of this region are simulated stochastically using the SSA. A
YFP reporter is under the control of the G1 promoter (PG1), and is not
shown in the schematic
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allow for adaptive timesteps. Then, the rates of reactions in the
stochastic regime that involve species in the deterministic regime
are updated accordingly. In effect the end of the previous timestep
and the beginning of the current timestep happen simultaneously
since no simulation time elapses between these points in the
algorithm. The process then repeats itself until the total user-
defined simulation time is completed.

4௑Model modifications
The model of Ramsey et al. [15] adopted for this work contained
several Michaelis-Menten and Hill reactions. To make the model
amenable to simulation with the SSA, which is only valid for
elementary reactions [5, 6], these reactions were decomposed into
first- and second-order reactions. Transport of galactose was
originally modelled as a reversible Michaelis-Menten reaction,
which we decomposed into six bimolecular reactions describing
the underlying Michealis-Menten reaction explicitly (see Appendix
– Section 10.3.4). Gene repression in the Ramsey et al. model was
modelled using Hill functions [15]. These reactions were simplified

into four binding or unbinding reactions for each gene. These
reactions consist of: (i) binding of G4 dimer to the gene, (ii)
unbinding of G4 dimer from the gene, (iii) binding of the G80
dimer to the G4 dimer when it is bound to the gene and (iv)
unbinding of the G80 dimer:G4 dimer from the gene (see
Appendix – Section 10.3.2). These modifications allow the model
(hereafter referred to as the ‘reduced model’) to be directly
implemented in a spatially-resolved stochastic reaction-diffusion
framework (RDME) where the assumptions underlying Hill and
Michaelis-Menten reactions do not always hold [17].

Rate constants for the newly simplified reactions were fit to
recapitulate the cooperative behaviour of the more complex rate
equations. ODEs of the original and reduced model were simulated
for 750 min and used to fit the rate constants. Briefly, during the
fitting procedure the sum of squared differences between
concentrations of each species in the original and reduced solutions
was minimised. The reduced model generally reproduced the
results of the original model <5% error.

5௑Agreement with pure SSA CME
The communication times between the stochastic and deterministic
descriptions as well as the timesteps for each solver must be
evaluated to understand under which conditions the hybrid method
is appropriate. In this section, we provide insight into the effect the
choice of τ has on the behaviour of different chemical species at
varying concentrations of extracellular galactose. The hybrid
CME–ODE simulation algorithm effectively captures the stochastic
dynamics of the genetic switch process at galactose concentrations
ranging from micromolar to millimolar. At a small enough
communication timestep, both protein distributions and average
traces of key species approach pure SSA CME simulation results,
while allowing for sufficient performance enhancement to make
the method worthwhile. It is important to note, however, that even
in the limit in which the communication timestep approaches zero
the results from our hybrid implementation should not converge to
the pure CME results, but rather to an exact hybrid SSA-ODE
model, where every time a reaction fires in the CME the ODE
solver is called with updated species counts due to the CME
reaction.

Significant error arises in the protein distributions of the
unbound G2 transporter (hereafter referred to as G2) when large
communication timesteps are used (Fig. 2a). As an example,
consider a simulation with an extracellular galactose concentration
of 0.055 mM where a 5 min timestep was chosen. This results in an
overestimation of the mean and variability in the G2 count. As G2
is affected by reactions in both the CME (gene expression) and
ODE (transport), and plays a key role in bringing galactose into the
cell, error in the average or the noise in this species could give rise
to differences in the switching dynamics or steady-state copy
number distributions. This underscores the importance of choosing
an appropriate communication timestep between the simulation
regimes. As τ is decreased from 5 min to 1 s, the protein
distribution begins to closely match the pure SSA CME result, with
runtime only increasing from ∼25 to 45 min in the worst case.

The optimal communication timestep is dependent on the
concentration of the external galactose. At an extracellular
galactose concentration of 0.055 mM, a 1 min timestep seems to
closely approach the CME distribution results (Fig. 2a). However,
as demonstrated by the G2 average at 2.0 mM galactose (Fig. 2b),
the 1 min timestep is on the order of a few 1000 proteins away
from the pure CME result as opposed to hundreds of proteins when
using a 1 s timestep at an increase of simulation time from 45 min
to ∼1 h. We have observed the trend that a smaller communication
timestep is often needed to capture stochastic behaviour at higher
inducer concentrations. The exact SSA-ODE trace (small dashes in
Fig. 2b), which was calculated using 250 replicates, can be used to
determine whether moving to a smaller communication timestep
will provide an increase in accuracy since smaller timesteps will
converge to this result.

The dynamics of a chemical species can also be observed by
witnessing the times taken to reach steady-state values. At an
extracellular galactose concentration of 2 mM the CME–ODE

Fig. 2௒ Choice of communication timestep is crucial in recovering the
stochastic dynamics of the system
(a) Distributions of the unbound G2 transporter (G2) at 0.055 mM extracellular
galactose when the galactose switch system reaches a steady state at 700 min of
simulation time, (b) Average species count of G2 as a function of time, with 2 mM
extracellular galactose as an initial condition, (c) Kernel density estimate with a
histogram below of the times for G2 at 2 mM extracellular galactose to reach 80% of
its average steady-state value. CME–ODE results are given for τ = 1 s, (d) KS statistic
(showing divergence from pure CME distributions) of the protein distributions for G2
and the reporter protein at 0.05 and 2 mM extracellular galactose at 700 min
simulation time

 

Fig. 3௒ Communication scheme of the hybrid algorithm. Filled circles
represent reaction events in the CME treatment and ticks represent
(adaptively selected) timesteps for the ODE solver. Information is
exchanged at every communication timestep τ
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hybrid with τ = 1 s takes similar times to reach steady-state
concentration as the pure CME (Fig. 2c). For G2 the mean and
median times to reach 80% of the average steady-state value were
<10 min faster for the CME–ODE than the CME. While the hybrid
method did seem to evolve slightly faster than the CME for some
of the species with reactions handled by the ODE solver the
difference is relatively small (generally on the order of 5–10 min
faster and in the worst case ∼20 min faster).

As a quantitative measure of disagreement between the hybrid
method and the pure CME, the Kolmogorov–Smirnov (KS)
statistic for protein distributions from each method was computed.
The KS test calculates the maximum difference in cumulative
probability between empirical cumulative distribution functions of

two samples (i.e. pure CME and hybrid CME–ODE protein
distributions). Therefore, identical distributions give a KS statistic
of 0.00 and completely non-intersecting distributions would give a
value of 1.00. The formula for KS statistic is

KS = sup
x

F(x)CME − F(x)Hybrid (1)

where supx is the supremum of the set of distances, F(x)CME is the
pure CME protein empirical cumulative distribution function and
F(x)Hybrid is the hybrid CME–ODE protein empirical cumulative
distribution function.

For species with reactions in the deterministic regime (i.e. G2) a
decrease in communication timestep coincides with a decrease in
KS statistic (increase in agreement between protein distributions)
although the observed decrease is larger at the higher external
galactose concentration of 2 mM as opposed to 0.055 mM
(Fig. 2d). The p-values associated with the KS test also decrease
from 2 × 10−3 to 5 × 10−7 as timestep is decreased from 1 min to 1 
s, showing greater agreement at smaller timesteps. However, for
species that participate only in reactions in the stochastic regime
such as the reporter protein, KS statistic is relatively constant with
respect to communication timestep.

6௑Computational performance
Having established the fidelity of the hybrid method we now
demonstrate the dramatic increase in simulation efficiency it
provides. Wall-time required to simulate 750 min of the galactose
switch using the hybrid method, exact SSA–ODE and the pure
SSA CME are shown in Table 1 along with the relative speedup. 

While the pure SSA CME Gillespie direct method takes ∼2
days to simulate a cell introduced to 2 mM external galactose, the
hybrid method using τ = 1 s runs in <2 h. Even at the lowest
concentration, 0.055 mM external galactose, simulations are
executed in 25–45 min instead of 120–130 min. This speedup
provides researchers with much higher throughput and can assist
informing the design of more complex investigations.

The differences in the simulation times achieved when using a
1 min communication timestep versus a 1 s timestep at 2 mM
external galactose demonstrate that at times the user must make a
choice between accuracy (see Fig. 2a and d) and simulation
speedup. While at the lower galactose concentration a 1 min
communication interval appears sufficient, the G2 traces and KS
statistic at 2 mM galactose (Fig. 2b and d) show that a 1 s timestep
is more appropriate to capture the dynamics of the transporter
species. For those considering even coarser timesteps, the run-time
for a simulation using a 5 min communication timestep is ∼50 min
compared to ∼110 min for a 1 s timestep at 2 mM external
galactose. By choosing a larger timestep the user may lose
accuracy in describing the stochastic behaviours in the cell while
not gaining a worthwhile decrease in simulation time.

While the exact SSA-ODE method is an effective tool to
determine the accuracy of hybrid methods and the appropriate
communication timestep to use, it is much less computationally
efficient than comparable fixed timestep runs taking ∼2 days to run
at 2 mM external galactose compared to <2 h for τ = 1 s. At the
lower concentration of 0.055 mM galactose the exact method is
still 5–10 times slower than when using 10–1 s timesteps. The
increase in simulation time for the exact method is due to the fact
that makes orders of magnitude more computationally costly calls
to Python to run the ODE Solver than what is made with a fixed
timestep. The exact method calls the ODE Solver at every CME
reaction and we have observed the time between CME reactions to
be on the order of micro to nano seconds at 2 mM external
galactose (much smaller than a typical τ = 1 s).

7௑Conclusion
The hybrid CME–ODE algorithm implementation described in this
study, now compatible with LM/pyLM, provides an effective
method for the simulation of a genetic switch system containing 37
species, 75 reactions, 4 feedback loops and millions of metabolite

Fig. 4௒ Algorithm 1: hybrid CME–ODE algorithm
 

Table 1 Hybrid algorithm using a 10 and 1 s communication
interval can give 10–50× speedup, respectively, versus a
pure CME SSA implementation. The time given is the wall-
time required to simulate 1000 replicates (250 for exact SSA-
ODE) of the system using 1 node per replicate. Simulations
were performed on a Cray XE machine (NCSA Blue Waters)
containing AMD 6276 ‘Interlagos’ processors

Galactose, mM
Model 0.055 2.0
CME 2.1 47.4
exact SSA-ODE 4.7a 47.9

(0.45)b (0.99)

hybrid (τ = 10 s) 0.4 1.1
(5.2) (43.1)

hybrid (τ = 1 s) 0.8 1.8
(2.6) (26.3)

aTimes are presented in the number of hours required to simulate 750 min of cell
growth.
bValues in parenthesis indicate the speedup relative to pure CME.
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particles within a eukaryotic cell. The 10–50-fold computational
performance increase relative to a pure SSA CME simulation for
sugar concentrations ranging from micromolar to millimolar makes
this simulation method an intriguing option for researchers in the
field of computational biology. However, the user must determine a
suitable communication timestep between the stochastic and
deterministic regimes to ensure that data is passed with enough
frequency to maintain the protein distributions and stochastic
effects that are observed when using a pure SSA CME
implementation. The results gained from these efficient hybrid
CME–ODE simulations can be used to inform simulation setup
conditions (communication timestep etc.) for hybrid simulations of
much more computationally expensive, spatially resolved whole
cell RDME studies. Hybrid simulations can utilise LM features
developed for RDME simulations, such as multiple-GPU
computation [2] and optimised propensity calculation [18], without
any further work on the user's part. LM provides the fastest method
for RDME simulations to date and with the addition of this hybrid
stochastic–deterministic method, simulations of systems with
chemical species present in millimolar concentrations (such as
those found in nutrient based genetic switches) are now
computationally accessible.
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10௑Appendix
௑
10.1 Galactose switch model

The Python PyLM model for the galactose switch system as well as
the code for using the hybrid algorithm through the
‘hookSimulation’ feature of LM is available at http://
www.scs.illinois.edu/schulten/software/ODE_CME.tar.gz.

The reaction model is included below for completeness. All
rates are stochastic rates (i.e. the volume of the cell has been
factored into reaction rate) and are presented in min

−1 and
molecules

−1 min
−1

10.2 Species

DG1 gene encoding Gal1 with nothing bound
DG1_G4d gene encoding Gal1 bound to G4 dimer
DG1_G4d_G80d gene encoding Gal1 bound to the Gal4 dimer

and Gal80 dimer
DG2 gene encoding Gal2 with nothing bound
DG2_G4d gene encoding Gal2 bound to G4 dimer
DG2_G4d_G80d gene encoding Gal1 bound to the Gal4 dimer

and Gal80 dimer
DG3 gene encoding Gal3 with nothing bound
DG3_G4d gene encoding Gal3 bound to G4 dimer
DG3_G4d_G80d gene encoding Gal4 bound to the Gal4 dimer

and Gal80 dimer
DG80 gene encoding Gal80 with nothing bound
DG80_G4d gene encoding Gal80 bound to G4 dimer
DG80_G4d_G80d gene encoding Gal80 bound to the Gal4

dimer and Gal80 dimer
DGrep gene encoding the reporter protein (YFP)

with nothing bound
DGrep_G4d gene encoding reporter protein bound to G4

dimer
DGrep_G4d_G80d gene encoding reporter bound to the Gal4

dimer and Gal80 dimer

R1 mRNA for Gal1
R2 mRNA for Gal2
R3 mRNA for Gal3
R4 mRNA for Gal4
R80 mRNA for Gal80
reporter_rna mRNA for the reporter gene

G1 Gal1; galactokinase that metabolises galactose
G2 Gal2; galactose transporter
G3 Gal3; galactose sensing transcription factor
G3i Gal3 bound to a galactose molecule
G4 Gal4; a monomer of the Gal4 transcriptional repressor
G4d Gal4 dimer; the transcriptional repressor dimer in the

nucleus
G80 Gal80; nuclear; the monomer of the transcriptional

repressor
G80C Gal80; cytoplasmic; the monomer of the transcriptional

repressor in the cytoplasm
G80d Gal80 dimer; nuclear; a dimer of the transcriptional

repressor
G80Cd Gal80 dimer; cytoplasmic; a dimer of the transcriptional

repressor in the cytoplasm
G80G3i Gal80 dimer bound to Gal3i; the transcriptional

repressor sequestered in the cytoplasm
GAI intracellular galactose
GAE extracellular galactose
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G2GAI galactose bound to the Gal2 transporter on the
intracellular side

G2GAE galactose bound to the Gal2 transporter on the
extracellular side

G1GAI galactose bound to the Gal2 transporter on the
extracellular side

reporter a yellow fluorescence reporter protein (YFP)

10.3 Reaction model

10.3.1 Transcription: 

DG1_G4d ⟶
k1 = 0.7379

R1 + DG1_G4d

R1 ⟶
k2 = 0.02236

∅

DG2_G4d ⟶
k3 = 2.54154

R2 + DG2_G4d

R2 ⟶
k4 = 0.077016

∅

DG3_G4d ⟶
k5 = 0.426572

R3 + DG3_G4d

R3 ⟶
k6 = 0.02666

∅

∅ ⟶
k7 = 0.009902

R4

R4 ⟶
k8 = 0.0247552

∅

DGrep_G4d ⟶
k9 = 1.1437

reporter_rna + DGrep_G4d

reporter_rna ⟶
k10 = 0.03466

∅

DG80_G4d ⟶
k11 = 0.6065

R80 + DG80_G4d

R80 ⟶
k12 = 0.028881

∅

10.3.2 DNA regulation: 

DG1 + G4d ⟶
k1 = 0.1

DG1_G4d

DG1_G4d ⟶
k2 = 0.384615

DG1 + G4d

DG1_G4d + G80d ⟶
k3 = 0.1

DG1_G4d_G80d

DG1_G4d_G80d ⟶
k4 = 0.085317

DG1_G4d + G80d

DG2 + G4d ⟶
k5 = 0.1

DG2_G4d

DG2_G4d ⟶
k6 = 10.101

DG2 + G4d

DG2_G4d + G80d ⟶
k7 = 0.1

DG2_G4d_G80d

DG2_G4d_G80d ⟶
k8 = 0.134989

DG2_G4d + G80d

DG3 + G4d ⟶
k9 = 0.1

DG3_G4d

DG3_G4d ⟶
k10 = 4.03226

DG3 + G4d

DG3_G4d + G80d ⟶
k11 = 0.1

DG3_G4d_G80d

DG3_G4d_G80d ⟶
k12 = 0.530504

DG3_G4d + G80d

DGrep + G4d ⟶
k13 = 0.1

DGrep_G4d

DGrep_G4d ⟶
k14 = 0.384615

DGrep + G4d

DGrep_G4d + G80d ⟶
k15 = 0.1

DGrep_G4d_G80d

DGrep_G4d_G80d ⟶
k16 = 0.085317

DGrep_G4d + G80d

DG80 + G4d ⟶
k17 = 0.1

DG80_G4d

DG80_G4d ⟶
k18 = 4.03226

DG80 + G4d

DG80_G4d + G80d ⟶
k19 = 0.1

DG80_G4d_G80d

DG80_G4d_G80d ⟶
k20 = 0.530504

DG80_G4d + G80d

10.3.3 Translation: 

R1 ⟶
k1 = 1.92541

G1 + R1

G1 ⟶
k2 = 0.003851

∅

R2 ⟶
k3 = 13.4779

G2 + R2

G2 ⟶
k4 = 0.003851

∅

R3 ⟶
k5 = 55.4518

G3 + R3

G3 ⟶
k6 = 0.01155

∅

R4 ⟶
k7 = 10.7091

G4 + R4

G4 ⟶
k8 = 0.0069315

∅

reporter_rna ⟶
k9 = 5.7762

reporter + reporter_rna

reporter ⟶
k10 = 0.01155

∅

R80 ⟶
k11 = 3.67368

G80 + R80

G80 ⟶
k12 = 0.0069315

∅

10.3.4 Transport and enzymatic: 

G2GAI ⟶
k1 = 4350

G2GAE

G2GAE ⟶
k2 = 4350

G2GAI

G2GAE ⟶
k3 = 2392.5

G2

G2 ⟶
k4 = 0.00031353 ∗ GAE

G2GAE

G2GAE ⟶
k5 = 0.003851

∅

G2 + GAI ⟶
k6 = 0.00031353

G2GAI

G2GAI ⟶
k7 = 2392.5

G2 + GAI

G2GAI ⟶
k8 = 0.003851

GAI
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G1 + GAI ⟶
k9 = 0.000402426

G1GAI

G1GAI ⟶
k10 = 1842.5

G1 + GAI

G1GAI ⟶
k11 = 3350

G1

G1GAI ⟶
k12 = 0.003851

GAI

10.3.5 Transcription factor: 

G3 + GAI ⟶
k1 = 7.45 × 10

−7

G3i

G3i ⟶
k2 = 890

G3 + GAI

G3i ⟶
k3 = 0.01155

GAI

G80G3i ⟶
k4 = 0.0159616

G3i + G80Cd

G3i + G80Cd ⟶
k5 = 0.025716

G80G3i

G80G3i ⟶
k6 = 0.005775

∅

G4 + G4 ⟶
k7 = 100

G4d

G4d ⟶
k8 = 0.001

G4 + G4

G4d ⟶
k9 = 0.0069315

∅

G80 + G80 ⟶
k10 = 100

G80d

G80d ⟶
k11 = 0.001

G80 + G80

G80d ⟶
k12 = 0.0069315

∅

G80C + G80C ⟶
k13 = 100

G80Cd

G80Cd ⟶
k14 = 0.001

G80C + G80C

G80Cd ⟶
k15 = 0.0069315

∅

G80Cd ⟶
k16 = 50

G80d

G80d ⟶
k17 = 50

G80Cd

G80C ⟶
k18 = 50

G80

G80 ⟶
k19 = 50

G80C
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