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Pharmacophore modelling-based virtual screening of compound is a ligand-based approach and is useful when the 3D structure of
target is not available but a few known active compounds are known. Pharmacophore mapping studies were undertaken for a set
of 50 N3-phenylpyrazinones possessing Corticotropin-releasing Factor 1 (CRF 1) antagonistic activity. Six point pharmacophores
with two hydrogen bond acceptors, one hydrogen bond donor, two hydrophobic regions, and one aromatic ring as pharmacophoric
features were developed. Amongst them the pharmacophore hypothesis AADHHR.47 yielded a statistically significant 3D-QSAR
model with 0.803 as R2 value and was considered to be the best pharmacophore hypothesis. The developed pharmacophore model
was externally validated by predicting the activity of test set molecules. The squared predictive correlation coefficient of 0.91 was
observed between experimental and predicted activity values of test set molecules. The geometry and features of pharmacophore
were expected to be useful for the design of selective CRF 1 receptor antagonists.

1. Introduction

Anxiety and depression are among the most common
disorders seen in medical practice. The coexistence of anxiety
and depression with medical illness is a topic of considerable
clinical and research interest [1]. Depression is a serious
mental health problem, with significant consequences in
terms of human suffering, lost productivity, and even
loss of life [2]. Corticotropin-releasing factor 1 (CRF 1)
receptor antagonists have been sought since the stress-
secreted peptide (adrenocorticotropin-releasing hypothala-
mic peptide) was isolated in 1981. Although evidence is
mixed concerning the efficacy of CRF 1 receptor antagonist
as antidepressants, CRF 1 receptor antagonist might be novel
pharmacotherapies for anxiety and addiction [3]. Two well-
characterized receptor subtypes, CRF 1 and CRF 2, have been
identified. These G-protein-coupled receptors are widely
distributed throughout the central and peripheral nervous
systems [4]. Clinical evidence supports the hypothesis that
overproduction of CRF 1 may underlie the pathology of
depression, anxiety, and stress-related disorders and suggests

that CRF 1 receptor antagonists could be useful for the
treatment of these conditions [5].

To reduce the overall cost associated with the discov-
ery and development of a new drug, the computer-aided
molecular design methods have been identified as the most
promising candidates to focus on the experimental efforts
in modern medicinal chemistry. Pharmacophore mapping
is one of the major elements of drug design in the absence
of structural data of the target receptor. With the aim of
providing useful pharmacophoric information for the future
efforts in the development of more potent molecules in the
series of phenylpyrazinones and to get insight into the struc-
tural and molecular properties, the ligand-based 3D-QSAR
study was performed using pharmacophore techniques with
PHASE module from Schrodinger, New York [6, 7].

2. Experimental

2.1. Dataset. The in vitro biological data of a series of 50
phenylpyrazinones as CRF 1 receptor antagonists were used
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Table 1: Various substituents attached to basic structure of N3-phenylpyrazinones.

Comp.
No.

Series R1 Ar X Y n IC50 pIC50 Set

1. a Cl H — 39.0 7.409 Training

2. a Cl H — 2.9 8.685 Training

3. a Cl H — 2.4 8.620 Test

4. a Cl H — 0.63 9.2 Test

5. a Cl H — 1.7 8.856 Training

6. a O Cl H — 1.3 8.98 Training

7. a O Cl H — 1.4 8.85 Training

8. a O Cl H — 12 7.921 Test

9. a O O Cl H — 16 7.796 Training
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Table 1: Continued.

Comp.
No.

Series R1 Ar X Y n IC50 pIC50 Set

10. a O
H

Cl H — 35 7.585 Training

11. a

OMe

Cl H — 76 6.041 Training

12. a

OMe

Cl H — 0.80 9.096 Test

13. a

OMe

Cl H — 0.62 8.89 Training

14. a

OMe

Cl H — 0.27 9.568 Test

15. a

OMe

Cl H — 0.42 9.376 Training

16. a O

OMe

Cl H — 0.26 9.585 Training

17. a
O

OMe

Cl H — 0.59 9.285 Training

18. a
O

OMe

Cl H — 1.7 8.88 Training
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Table 1: Continued.

Comp.
No.

Series R1 Ar X Y n IC50 pIC50 Set

19. a O O

OMe

Cl H — 2.1 8.74 Training

20. a O
H

OMe

Cl H — 10 8.77 Training

21. a O

OMe

Cl H — 0.29 9.568 Training

22. a

CN

ClCl

Cl H — 1.2 9.212 Training

23. a

CN

Cl Cl

Cl H — 2.8 8.42 Training

24. a

CN

Cl Cl

Cl H — 2.4 9.376 Training

25. a

CN

ClCl

Cl H — 6.3 8.89 Training

26. a
O

OMe

Cl H — 5.8 8.236 Test

27. a
H

Me Cl

Cl

Cl H — 0.53 9.275 Training
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Table 1: Continued.

Comp.
No.

Series R1 Ar X Y n IC50 pIC50 Set

28. a

H

H

Me Cl

Cl H — 9.3 8.032 Training

29. a

H

H

H

Cl

Cl H — 180 6.745 Training

30. a

H

H

Me

Me

Cl H — 6.6 8.181 Test

31. a

H

Me

Me

Me

Cl H — 2.4 8.62 Training

32. a
H

OMe

MeMe

Cl H — 0.52 9.284 Training

33. a O

H Me

Me

OEt

Cl H — 1.5 8.824 Test

34. a O

H

Me

Me

OBn

Cl H — 910 6.041 Training

35. a O

H Me

Me

OH

Cl H — 280 6.553 Training

36. a

H

Me

Me

Me

Cl Et — 1.5 8.824 Test
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Table 1: Continued.

Comp.
No.

Series R1 Ar X Y n IC50 pIC50 Set

37. a
H

Me Me

Me

Cl Et — 4.6 8.62 Training

38. a
H

OMe

Cl Cl

Cl H — 1.1 8.959 Training

39. a
H

OMe

Cl Cl

Cl Et — 3.4 7.469 Test

40. b Cl — CH2 — 1 0.62 9.207 Training

41. b Br — CH2 — 1 0.94 9.026 Test

42. b Br — O 2 19 7.722 Test

43. a

OMe

CF3

N H H — 150 6.824 Test

44. a

OMe

CF3

N Cl H — 1.8 8.745 Training

45. a

OMe

CF3

N Br H — 1.2 8.921 Test

46. a

OMe

CF3

N Me H — 3.8 8.44 Training

47. a

OMe

CF3

N C≡CN H — 6.7 8.25 Training

48. a

OMe

CF3

N C≡CH H — 5.6 8.46 Training
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Table 1: Continued.

Comp.
No.

Series R1 Ar X Y n IC50 pIC50 Set

49. a

OMe

CF3

N C2H5 H — 180 6.744 Test

50. a

OMe

CF3

CH2H3C H — 1200 5.921 Training

Table 2: Parameters of six featured pharmacophore hypothesis.

Serial number Hypothesis Survival score R2 F

1 AADHHR.47 2.980 0.803 138.5

2 ADHHHR.203 2.892 0.789 129.7

3 DHHHRR.611 2.863 0.7565 105.6

4 AAHHHR.19 2.700 0.7747 118.1

for the present studies [6]. The CRF 1 antagonistic activity
was expressed as IC50, that is, concentration in µm required
for 50% inhibition of enzyme activity. The dataset was
divided randomly into training set and test set by considering
the 70% of the total molecules in the training set and 30% in
the test set. The basic structures of the N3-phenylpyrazinones
are shown in Figure 1, and various substituents are listed in
Table 1. Thirty-five molecules forming the training set were
used to generate pharmacophore model and prediction of the
activity of test set (15 compounds) molecules was used as a
method to validate the proposed models.

2.2. PHASE Methodology. The 3D-QSAR studies were car-
ried out using PHASE [8–10] version 3.0 implemented in the
Maestro 8.5 molecular modeling package from Schrodinger,
Molecular Modeling Interface Inc., LLC, New York, NY USA.
Phase is a versatile product for pharmacophore perception,
structure alignment, activity prediction, and 3D database
searching. Phase provides support for lead discovery, SAR
development, lead optimization, and lead expansion. Phase
may also be used as a source of molecular alignments for
third-party 3D-QSAR programs. Phase is well suited to
drug discovery projects for which no receptor structure is
available. Phase utilizes fine-grained conformational sam-
pling and a range of scoring techniques to identify common
pharmacophore hypotheses, which convey characteristics of
3D chemical structures that are purported to be critical for
binding. A given hypothesis may be combined with known
activity data to create 3D-QSAR models that identify overall
aspects of molecular structure that govern activity. These
models may be used in conjunction with the hypothesis to
mine a 3D database for molecules that are most likely to
exhibit strong activity toward the target [11].

2.3. Preparing Ligands. LigPrep [12] was used to attach
hydrogen, converts 2D structures to 3D, generates stereoiso-
mer, and, optionally, neutralizes charged structures or deter-
mines the most probable ionization state at user-defined pH.
All the structures were ionized at neutral pH 7. Conformers
for each ligand were generated using ConfGen by applying
OPLS-2005 force field method [13, 14] with implicit GB/SA
distance-dependent dielectric solvent model at cutoff root
mean square deviation (RMSD) of 1 (MacroModel 9.6 2010)
with 1,000 iterations using water as solvent.

2.4. Pharmacophore Hypothesis Generation. PHASE can
identify the spatial arrangements of functional groups that
are common and essential for the biological activity of the
ligands under investigation [10, 15]. The most dominating
features, hydrogen bond acceptor (A), hydrogen bond donor
(D), hydrophobic group (H), and negatively charged group
(N) were defined by a set of chemical structural patterns
with the requirement that all five match. Pharmacophore-
matching tolerance was set to 1 A◦. Hypotheses were gen-
erated by a systematic variation of number of sites and the
number of matching active compounds. Common pharma-
cophore hypotheses (CPH) were considered, which indicated
at least five sites common to all molecules. Further, the best
CPH was selected depending on the survival score, until
at least one hypothesis was found and scored successfully.
The hypotheses were scored using default parameters for
site, vector, volume, selectivity, number of matches, and
energy terms. The regression analysis was performed by
constructing a series of models with an increasing number of
PLS factors. Pharmacophore-based 3D-QSAR models were
generated for the hypotheses using the 35 member training
set with three PLS factors and a grid spacing of 1 A◦. The
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Table 3: Distances between different sites of model AADHHR.47.

Site-1 Site-2 Distances (A◦) Site-1 Site-2 Distances (A◦)

A2 A4 3.572 A4 R12 3.474

A2 D6 2.520 D6 H10 5.541

A2 H10 3.291 D6 H11 6.688

A2 H11 4.947 D6 R12 3.243

A2 R12 5.054 H10 H11 5.984

A4 D6 3.850 H10 R12 8.343

A4 H10 6.431 H11 R12 7.161

A4 H11 3.802

Table 4: Angles between different sites of model AADHHR.47.

Site-1 Site-2 Site-3 Angle (◦) Site-1 Site-2 Site-3 Angle (◦)

A4 A2 D6 76.2 A2 H10 A4 21.3

A4 A2 H10 139.1 A2 H10 D6 15.3

A4 A2 H11 49.9 A2 H10 H11 55.8

A4 A2 R12 43.4 A2 H10 R12 1.5

D6 A2 H10 144.6 A4 H10 D6 36.6

D6 A2 H11 123.9 A4 H10 H11 35.4

D6 A2 R12 32.9 A4 H10 R12 22.8

H10 A2 H11 90.9 D6 H10 H11 70.8

H10 A2 R12 177.5 D6 H10 R12 13.8

H11 A2 R12 91.4 H11 H10 R12 57.2

A2 A2 D6 39.5 A2 H11 A4 45.9

A2 A4 H10 19.6 A2 H11 D6 18.2

A2 A4 H11 84.2 A2 H11 H10 33.4

A2 A4 R12 91.7 A2 H11 R12 44.9

D6 A4 H10 59.0 A4 H11 D6 29.3

D6 A4 H11 121.9 A4 H11 H10 78.7

D6 A4 R12 52.3 A4 H11 R12 9.7

H10 A4 H11 65.9 D6 H11 H10 51.5

H10 A4 R12 111.2 D6 H11 R12 26.8

H11 A4 R12 159.6 H10 H11 R12 78.2

A2 D6 A4 64.3 A2 R12 A4 44.9

A2 D6 H10 20.1 A2 R12 D6 25.0

A2 D6 H11 37.9 A2 R12 H10 1.0

A2 D6 R12 122.1 A2 R12 H11 43.7

A4 D6 H10 84.4 A4 R12 D6 69.8

A4 D6 H11 28.9 A4 R12 H10 45.9

A4 D6 R12 57.9 A4 R12 H11 10.7

H10 D6 H11 57.7 D6 R12 H10 24.0

H10 D6 R12 142.2 D6 R12 H11 68.4

H11 D6 R12 84.7 H10 R12 H11 44.6

evaluation of generated CPHs was performed by correlating
the observed and the estimated activity for the training set
of 35 molecules. PLS analyses were performed in which a
series of models were constructed with an increasing number
of PLS factors. Score hypotheses step was employed to align
the actives to the hypotheses and calculate the score for the

actives. CPHs of significant statistical values were selected for
molecular alignments.

2.5. Validation of Pharmacophore Model. For accurate and
reliable predictions of biological activities of new com-
pounds, the main target was to develop QSAR models,
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Table 5: Experimental and predicted IC50 values of training set molecules based on hypothesis AADHHR.47.

Comp. No.
Experimental
activity (IC50)

Predicted
activity
(IC50)

Fitness
score

Comp. No.
Experimental
activity (IC50)

Predicted activity
(IC50)

Fitness
score

1. 7.409 8.2 1.96 24 9.376 8.88 2.37

2. 8.685 9.02 2.14 25 8.89 9.25 1.29

5. 8.856 9.12 2.26 27 9.275 9.45 1.31

6. 8.98 9.22 1.67 28 8.032 8.32 1.46

7. 8.85 9.13 1.90 29 6.745 7.156 1.33

9. 7.796 8.14 2.01 31 8.62 8.61 1.37

10. 7.585 8.22 1.56 32 9.284 9.05 1.43

11. 6.041 7.15 1.10 34 6.041 7.44 1.31

13. 8.89 9.18 1.89 35 6.553 8.68 1.55

15. 9.376 9.22 2.48 37 8.62 9.18 2.08

16. 9.585 9.74 1.66 38 8.959 8.57 2.00

17. 9.285 9.27 1.75 40 9.207 9.56 1.92

18. 8.88 9.01 2.03 44 8.745 9.18 2.68

19. 8.74 8.82 2.01 46 8.421 8.44 2.60

20. 8.77 8.89 1.79 47 8.174 8.25 2.59

21. 9.568 9.45 1.43 48 8.252 8.46 3.00

22. 9.212 9.22 2.35 50 5.921 7.32 1.08

23. 8.42 9.16 1.25

Table 6: Experimental and predicted IC50 values of test set molecules based on hypothesis AADHHR.47.

Comp. No.
Experimental
activity (IC50)

Predicted activity
(IC50)

Fitness score Comp. no.
Experimental
activity (IC50)

Predicted activity
(IC50)

Fitness score

3. 8.620 8.68 1.99 36 8.824 9.23 1.95

4. 9.200 9.10 2.23 39 7.469 7.42 1.89

8. 7.921 8.15 2.01 41 9.026 9.07 1.81

12. 9.096 9.02 2.27 42 7.722 8.41 1.94

14. 9.568 9.19 2.23 43 6.824 7.12 2.51

26. 8.236 8.42 2.21 45 8.921 9.11 0.87

30. 8.181 8.13 1.18 49 6.744 7.14 2.61

33. 8.824 9.20 1.75
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Figure 1: Basic structures of N3-phenylpyrazinones.
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Figure 2: PHASE-generated pharmacophore model AADHHR.47
illustrating hydrogen bond acceptor (A2, A4; pink), hydrogen bond
donor (D6; blue), hydrophobic region (H10, H11; green), and
aromatic ring (R12; orange) features with distances (in Å) between
different sites of AADHHR.47.

Figure 3: Best pharmacophore model AADHHR.47 aligned with
molecule 48. Pharmacophore features are color coded: 2 hydrogen
bond acceptors (A2, A4; pink), 1 hydrogen bond donor (D6; blue), 2
hydrophobic regions (H10, H11; green), and 1 aromatic ring (R12;
orange).

which were statistically robust both internally as well as
externally. The data set was divided into a training set
and a test set as external validation is considered to be a
conclusive proof for judging predictability of a model. The
training set was used to generate pharmacophore model and
prediction of the activity of test set was used as a method to
validate the proposed models. The robustness of the devel-
oped pharmacophore hypotheses was internally validated by
statistical parameters, that is, squared correlation coefficient
(R2) and variance ratio (F). Validation is a crucial aspect
of pharmacophore design, particularly when the model is
built for the purpose of predicting activities of molecules in
external test series [16]. In the present case, the developed
pharmacophore model was externally validated by predicting
the activity of test set molecules. The correlation between the
experimental and predicted activities of the test set molecules
was determined.

3. Results and Discussion

CRF 1 receptor antagonists may offer therapeutic potential
for the treatment of diseases resulting from elevated levels
of CRF 1 such as anxiety and depression. Efforts to identify
structurally diverse CRF 1 receptor antagonists led to the

discovery of pyrazinone-based compounds and it was found
that CRF 1 receptor binding affinity was improved when the
branching point was on the carbon atom bonded directly
to the pyrazinone ring [6]. Ligand-based drug design relies
on knowledge of other molecules that bind to the biological
target of interest. These molecules may be used to derive
a pharmacophore which defines the minimum necessary
structural characteristics a molecule must possess in order
to bind to the target [7]. In other words, a model of the
biological target is built based on the knowledge of what
binds to it and this model in turn may be used to design new
molecular entities that interact with the target.

Thirty-five molecules forming the training set were used
to develop the pharmacophore models. The pharmacophoric
features selected for creating sites were hydrogen bond accep-
tor (A), hydrogen bond donor (D), hydrophobic region (H),
and aromatic ring (R). Pharmacophore models containing
four to six features were generated. The four and five featured
pharmacophore hypotheses were rejected due to low value
of survival score (less than 2.5), as they were unable to
define the complete binding space of the selected molecules.
Six featured pharmacophore hypotheses were selected and
subjected to stringent scoring function analysis.

The results of six featured pharmacophore hypotheses,
labeled AADHHR.47, ADHHHR.203, DHHHRR.611, and
AAHHHR.19, are presented in Table 2. The first hypothesis
AADHHR.47 is the best hypothesis in this study, character-
ized by highest survival score (2.980) and best regression
coefficient (0.803).

The pharmacophore hypothesis AADHHR.47 is pre-
sented in Figure 2. The features represented by this hypothe-
sis are two hydrogen bond acceptors (A), one hydrogen bond
donor (D), two hydrophobic regions (H), and one aromatic
ring (R). The distances and angles between different sites of
AADHHR.47 are given in Tables 3 and 4, respectively.

For each ligand, one aligned conformer based on the
lowest RMSE of feature atom coordinates from those of
the corresponding reference feature was superimposed on
AADHHR.47. The fitness scores for all ligands were observed
on the best scored pharmacophore model AADHHR.47. The
greater the fitness score, the greater the activity prediction of
the compound. The fit function does not only check if the
feature is mapped or not but also contains a distance term,
which measures the distance that separates the feature on the
molecule from the centroid of the hypothesis feature.

Table 5 shows the fitness score for all the molecules
of training set. Figure 3 shows the AADHHR.47 aligned
with ligand having maximum fitness score, that is, molecule
48 of the training set. Beside this survival score analysis,
another validation method to characterize the quality of
AADHHR.47 is represented by its capacity for correct activity
prediction of training set molecules.

The predicted CRF 1 antagonistic activity of training
set molecule exhibited R2 value of 0.803 (RMSD = 0.618)
with experimental CRF 1 antagonistic activity using model
AADHHR.47 (Figure 4). The validity and predictive charac-
ter of AADHHR.47 was further assessed by using the test set
prediction.
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Figure 4: Relation between experimental and predicted CRF 1 antagonistic activity values of training set (a) and test set molecules (b) using
model AADHHR.47.

(a) (b)

(c)

Figure 5: 3-D QSAR model based on molecule 48 of training set illustrating hydrogen bond donor feature (a), hydrogen bond acceptor
feature (b) and hydrophobicity feature (c).

The test set having fifteen molecules was analyzed. All the
test set molecules were built and minimized as well as used
in conformational analysis like all training set molecules.
Then the activities of test set molecules were predicted using
AADHHR.47 and compared with the actual activity. Actual
and predicted activity values of test set molecules are given in
Table 6.

The predicted CRF 1 antagonistic activity of test
molecule exhibited R2 value of 0.91 (RMSD = 0.2961)
with experimental CRF 1 antagonistic activity using model
AADHHR.47 (Figure 4). For a reliable model, the squared
predictive correlation coefficient should exceed 0.60 [17, 18].
The results of this study reveal that model AADHHR.47 can
be used for the prediction of CRF 1 antagonistic activity.
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3.1. 3D QSAR Analysis. Additional insight into the CRF 1
antagonistic activity can be gained by visualizing the 3D
QSAR model in the context of one or more ligands in the
series with varying activity. This information can then be
used to design new or more active analogues. 3D QSAR
model based on the molecules of training and test set
using various features, that is, hydrogen bond acceptor (A),
hydrogen bond donor (D), hydrophobic regions (H), and
aromatic ring (R) has been studied.

3.1.1. Hydrogen Bond Donor Field Predictions. The 3D QSAR
model based on molecule 48 of the training set using
hydrogen bond donor feature is shown in Figure 5(a). Red
region near and around the meta- and parahydrogen of
pyridine ring substituted at position 3 through NH terminal
indicates that the substitutions at these positions by groups
having more hydrogen bond donor property favor the CRF
1 antagonistic activity. Green region around the double
bond between C5 and C6 on pyridine ring, NH terminal
connecting pyrazinone and pyridine ring, methoxy group
at C4 on pyridine ring, indicates that substitutions at these
positions by groups having hydrogen bond donor property
do not favor CRF 1 antagonistic activity.

3.1.2. Hydrogen Bond Acceptor Field Predictions. The 3D
QSAR model based on molecule 48 of the training set using
hydrogen bond acceptor feature is shown in Figure 5(b). Red
region around N1, carbonyl group at C2 and in between C2

and C3, double bond between C5 and C6 (all 3 on pyrazinone
ring), indicates that the substitutions at these positions
by groups having more hydrogen bond acceptor property
favour the CRF 1 antagonistic activity. Green region around
C5 on pyrazinone ring, NH terminal and methoxy group
on pyridine ring, indicates that the substitutions at these
positions by groups having more hydrogen bond acceptor
property do not favour the CRF 1 antagonistic activity.

3.1.3. Hydrophobicity Field Prediction. The 3D QSAR model
based on molecule 48 of the training set using hydropho-
bicity feature is shown in Figure 5(c). Green region around
ethynyl group substituted at position 5, at C6 (both on
pyrazinone ring), double bond between C5 and C6, methoxy
group at C4 (both on pyridine ring), indicates that the
substitutions at these positions by groups having more
hydrophobicity favour CRF 1 antagonistic activity and sub-
stitutions at these positions by more hydrophobic groups
will result in increase in CRF 1 antagonistic activity. Blue
region around methyl substituent of N1, position 4 (both
on pyrazinone ring), methoxy group at C4 on pyridine ring,
indicates that groups having more hydrophobic property do
not favour CRF 1 antagonistic activity.

4. Conclusions

This study shows the generation of a pharmacophore model
AADHHR.47 for N3 phenylprazinones acting as CRF 1
antagonists. Pharmacophore modelling correlates activities
with the spatial arrangement of various chemical features.

The first hypothesis AADHHR.47 is the best hypothesis in
this study, characterized by the best regression coefficient
(0.803), degree of freedom (138.5), and highest survival
score (2.980). Hypothesis AADHHR.47 represents the best
pharmacophore model for determining CRF 1 antagonis-
tic activity. AADHHR.47 consists of two hydrogen bond
acceptors, one hydrogen bond donor, two hydrophobic
regions, and one aromatic ring features. AADHHR.47 model
had strong correlation between experimental and estimated
activity of the training (R2 = 0.803) and test (R2 = 0.91) set
molecules. Thus, AADHHR.47 pharmacophore model was
able to accurately predict CRF 1 antagonistic activity, and
the validation results also provide additional confidence in
the proposed pharmacophore model. The obtained results
suggested that the proposed 3D-QSAR model AADHHR.47
can be useful to rationally design new N3-phenylprazinones
molecules as CRF 1 antagonists and also to identify new
promising molecules as CRF 1 antagonists in large 3D
database of molecules.
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