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ABSTRACT

Pancreatic cancer is a devastating disease with the worst
prognosis among all the major humanmalignancies. The
propensity to rapidly metastasize contributes signifi-
cantly to the highly aggressive feature of pancreatic
cancer. The molecular mechanisms underlying this
remain elusive, and proteins involved in the control of
pancreatic cancer cell motility are not fully characterized.
In this study, we find that histone deacetylase 6 (HDAC6),
a member of the class II HDAC family, is highly expres-
sed at both protein and mRNA levels in human pancre-
atic cancer tissues. HDAC6 does not obviously affect
pancreatic cancer cell proliferation or cell cycle pro-
gression. Instead, it significantly promotes the motility of
pancreatic cancer cells. Further studies reveal that
HDAC6 interacts with cytoplasmic linker protein 170
(CLIP-170) and that these two proteins function together
to stimulate the migration of pancreatic cancer cells.
These findings provide mechanistic insight into the
progression of pancreatic cancer and suggest HDAC6 as
a potential target for the management of this malignancy.

KEYWORDS pancreatic cancer, cell motility, cell
migration, cell proliferation, cell cycle

INTRODUCTION

Pancreatic cancer is the second leading cause of lethality in the
cancer-associated cases of the digestive system. Rapid

metastasis to lymph nodes and distant organs is a devastating
natureofpancreatic cancer, but themoleculareventsunderlying
this remainmysterious (Hezel et al., 2006;Ghaneh et al., 2008).
A central process in cancer metastasis is cell motility, which
involves drastic cell shape changes driven by cytoskeletal
remodeling (Waterman-Storer and Salmon, 1999; Olson and
Sahai, 2009; Wells et al., 2013). Both microtubules and actin
filaments have beendemonstrated to play important roles in cell
motility, and their dynamic rearrangement during cell motility is
regulated by diverse cytoskeleton-associated proteins (Water-
man-Storer and Salmon, 1999; Olson and Sahai, 2009). Cyto-
plasmic linker protein 170 (CLIP-170) is a microtubule-binding
protein that regulates cell motility by modulating microtubule
dynamics (Maekawa and Schiebel, 2004). CLIP-170 can bind
newly formed plus ends of growing microtubules and rapidly
dissociate from the old microtubule lattice (Dragestein et al.,
2008). Recently, CLIP-170 has been reported to stimulate
angiogenesis andmediatepaclitaxel sensitivity in breast cancer
(Sun et al., 2012, 2013a). It is unknown whether CLIP-170 is
involved in the pathogenesis of pancreatic cancer.

Histone deacetylase 6 (HDAC6) is a member of the class
II HDAC family and has two functional deacetylase domains
(Valenzuela-Fernandez et al., 2008). Unlike the other
HDACs, HDAC6 is localized mainly in the cytoplasm and
regulates microtubule dynamics through deacetylating one
of the microtubule subunits, α-tubulin (Hubbert et al., 2002;
Matsuyama et al., 2002; Zhang et al., 2003). HDAC6 has
been shown to participate in a wide range of cellular pro-
cesses primarily through its deacetylation of α-tubulin, the
actin-binding protein cortactin, and the molecular chaperone
heat shock protein 90 (Hubbert et al., 2002; Matsuyama
et al., 2002; Zhang et al., 2003; Kovacs et al., 2005; Zhang
et al., 2007). In addition, HDAC6 can form various com-
plexes with partner proteins to regulate physiological orDengwen Li and Xiaodong Sun contributed equally to this work.
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pathological processes (Parmigiani et al., 2008; Huo et al.,
2011; Li et al., 2011). Over the past decade, there has been
tremendous effort to develop effective and specific HDAC6
inhibitors for the treatment of human diseases including
cancer, although their mechanisms of action remain largely
elusive (Aldana-Masangkay and Sakamoto, 2011; Dallavalle
et al., 2012). In this study, our data demonstrate that HDAC6
is highly expressed in pancreatic cancer and functions
together with CLIP-170 to promote the motility of pancreatic
cancer cells, suggesting HDAC6 as a potential target for
treating this notorious disease.

RESULTS

HDAC6 is highly expressed in human pancreatic cancer

To investigate the potential role of HDAC6 in the pathogen-
esis of pancreatic cancer, we examined its expression by
immunohistochemistry in normal pancreas, pancreatic can-
cer, and adjacent tissue samples (Fig. 1A). The majority of
normal pancreas samples and nearly half of the adjacent

tissue samples showed low HDAC6 expression (Fig. 1B). In
contrast, a significant increase in HDAC6 expression was
observed in pancreatic cancer samples; 38.1% of the cancer
samples showed low expression and 61.9% had high
expression (Fig. 1B). We then analyzed HDAC6 mRNA
levels by quantitative real-time RT-PCR. We found that
HDAC6 mRNA expression was up-regulated in 15 out of 15
samples of pancreatic cancer tissues relative to normal
pancreas or adjacent tissues (Fig. 1C). The level of HDAC6
mRNA in pancreatic cancer tissues was 16.74-fold and
13.92-fold higher, respectively, than in normal pancreas and
adjacent tissues (Fig. 1C).

Knockdown of HDAC6 expression does
not significantly affect pancreatic cancer cell
proliferation or cell cycle progression

Given the high expression of HDAC6 in pancreatic cancer
tissues, we speculated that it might promote the proliferation
of pancreatic cancer cells. To test this, we inhibited HDAC6
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Figure 1. HDAC6 is highly expressed in human pancreatic cancer. (A) Immunohistochemistry of HDAC6 expression in normal

pancreas, pancreatic cancer, and adjacent tissue samples. Representative images of samples with low and high expression of

HDAC6 are shown. (B) Quantification of normal pancreas, pancreatic cancer, and adjacent tissue samples with low or high

expression of HDAC6. (C) Quantitative real-time RT-PCR analysis of HDAC6 mRNA levels in normal pancreas, pancreatic cancer,

and adjacent tissue samples.
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expression in pancreatic cancer cells by using two different
siRNAs, #1 targeting the coding region and #2 targeting the
untranslated region. Immunoblot analysis showed that both
of the two siRNAs worked effectively (Fig. 2A and 2B). Cell
proliferation was then examined by sulforhadamine B stain-
ing assay, which is widely used for cell density determination
based on the measurement of cellular protein content (Vichai
and Kirtikara, 2006). We found that siRNA-mediated
knockdown of HDAC6 expression did not obviously affect
pancreatic cancer cell proliferation (Fig. 2D). Similar results
were achieved by using MTT staining assay (Fig. 2C), which
is based on the reduction of yellow tetrazole to purple for-
mazan in living cells (Berridge et al., 2005). We also inves-
tigated the effects of HDAC6 siRNAs on the cell cycle
progression of cancer cells by flow cytometric analysis of
DNA content. As shown in Fig. 2E and 2F, knockdown of
HDAC6 expression did not have obvious effects on the
distribution of cells in G1, S, and G2/M phases. Together,
these results demonstrate that knockdown of HDAC6
expression does not affect the proliferation or cell cycle
progression of pancreatic cancer cells.

Decrease of HDAC6 expression or inhibition of its
activity impairs the motility of pancreatic cancer cells

To gain more insight into the potential functions of HDAC6 in
pancreatic cancer, we examined whether it is involved in the
motility of pancreatic cancer cells. By scratch wound assays,

we found that HDAC6 siRNAs remarkably compromised the
ability of pancreatic cancer cells to migrate into the wound
area (Fig. 3A and 3B). Transwell migration assays further
revealed that HDAC6 siRNAs dramatically reduced the
amount of cancer cells to migrate across the porous mem-
brane (Fig. 3C and 3D). To investigate whether the role of
HDAC6 in mediating pancreatic cancer cell migration
requires its catalytic activity, we treated cells with tubacin, a
potent and selective HDAC6 inhibitor (Haggarty et al., 2003),
and trichostatin A (TSA), a pan-HDAC inhibitor (Lindemann
et al., 2004). As shown in Fig. 3E and 3F, both tubacin and
TSA effectively suppressed the transwell migration ability of
pancreatic cancer cells.

HDAC6 overexpression enhances pancreatic cancer
cell motility without affecting cell proliferation

To corroborate the role of HDAC6 in the motility of pancreatic
cancer cells, we studied the effects of its overexpression.
Strikingly, both scratch wound assay and transwell migration
assay showed that overexpression of HDAC6 stimulated
pancreatic cancer cell migration (Fig. 4A–D). This effect of
HDAC6 was abrogated by overexpression of a catalytically
inactive mutant of HDAC6, which harbors H216A and H611A
mutations in the deacetylase domains (Fig. 4A–D). Collec-
tively, these data reveal that the deacetylase activity of
HDAC6 is important for its role in promoting pancreatic cancer
cell migration. We also performed MTTand SRB assays and
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Figure 2. Knockdown of HDAC6 expression does not significantly affect pancreatic cancer cell proliferation or cell cycle

progression. (A) Immunoblot analysis of HDAC6 and β-actin expression in PANC-1 cells transfected with control or two different

HDAC6 siRNAs for 48 h. (B) Experiments were performed as in (A), and HDAC6 expression levels were quantified and normalized to

the control group. (C) Cells were transfected with control or HDAC6 siRNAs, and cell proliferation was examined with the MTTassay.

(D) Cells were transfected with control or HDAC6 siRNAs and cell proliferation was examined by sulforhodamine B staining. (E) Cells

were transfected with control or HDAC6 siRNAs and cell cycle progression was examined by flow cytometry. (F) Experiments were

performed as in (E), and the percentage of cells in G1, S, and G2/M phases were analyzed.
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flow cytometry to analyze the effects of HDAC6 overexpres-
sion on pancreatic cancer cell proliferation and cell cycle
progression. As shown in Fig. 4E–G, in agreement with the
HDAC6 siRNA results, overexpression of HDAC6 or its cat-
alytically inactive mutant did not significantly affect the prolif-
eration or cell cycle progression of pancreatic cancer cells.

HDAC6 interacts with CLIP-170

We have previously found that HDAC6 associates with
microtubule end-binding proteins in endothelial cells (Li
et al., 2011). This finding prompted us to examine the
potential interaction of HDAC6 with CLIP-170, a protein
localized primarily at the ends of growing microtubules.
Immunoprecipitation assays revealed that HDAC6 interacts
with both exogenous and endogenous CLIP-170 in cells

(Fig. 5A and 5B). Treatment with TSA, but not tubacin, could
increase CLIP-170 acetylation, although both tubacin and
TSA greatly enhanced the level of α-tubulin acetylation
(Fig. 5C), indicating that CLIP-170 is not a substrate of
HDAC6. To identify the domain(s) on HDAC6 that mediates
its interaction with CLIP-170, plasmids that express various
truncated forms of HDAC6 were transfected together with
GFP-CLIP-170. By immunoprecipitation we found that the
carboxyl terminus of HDAC6 was required for its interaction
with CLIP-170, as the truncated form of HDAC6 lacking the
carboxyl terminus was unable to bind CLIP-170, while the
mutants containing this region were able to bind (Fig. 5D).
Similarly, by using truncated forms of CLIP-170, we found
that both the coiled coil domain and the zinc finger domain of
CLIP-170 were necessary for its interaction with HDAC6
(Fig. 5E).
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Figure 3. Decrease of HDAC6 expression or inhibition of its activity impairs themotility of pancreatic cancer cells. (A) PANC-1

cells transfected with control or HDAC6 siRNAs were scratched, and wound margins were imaged 0 h and 12 h later. (B) Experiments

were performed as in (A), and the extent of wound closure at 12-h point was quantified by measuring the wound area compared

with the initial wound area. (C) Cells transfected with control or HDAC6 siRNAs were plated onto the inside of the transwell insert,

and the insert was placed in a 24-well plate containing conditional media. After 18 h, cells migrated to the underside of the insert

were stained with crystal violet. (D) Experiments were performed as in (C), and the amount of migrated cells was measured and

normalized to the control group. (E) Transwell migration experiments were performed as in (C), except that cells were treated with

tubacin or TSA. (F) Experiments were performed as in (E), and the amount of migrated cells was measured and normalized to the

control group.
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HDAC6 coordinates with CLIP-170 to regulate
pancreatic cancer cell migration

We then investigated whether the interaction with CLIP-170
is involved in the function of HDAC6 in pancreatic cancer cell
migration. To test this, pancreatic cancer cells were

transfected with HDAC6 siRNA and GFP, GFP-HDAC6, or
GFP-CLIP-170. By scratch wound assays, we found that
both GFP-HDAC6 and GFP-CLIP-170 could efficiently res-
cue HDAC6 siRNA-induced cell migration defects (Fig. 6A
and 6B). In addition, the CLIP-170 mutant containing the
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Figure 4. HDAC6 overexpression enhances pancreatic cancer cell motility without affecting cell proliferation. (A) PANC-1

cells transfected with GFP, GFP-HDAC6, or GFP-HDAC6-MTwere scratched, and wound margins were imaged 0 h and 9 h later. MT,

catalytically inactive mutant. (B) Experiments were performed as in (A), and the extent of wound closure was quantified by measuring

the wound area compared with the initial wound area. (C) Cells transfected with the indicated plasmids were plated onto the inside of

the transwell insert, and the insert was placed in a 24-well plate containing conditional media. After 18 h, cells migrated to the

underside of the insert were stained with crystal violet. (D) Experiments were performed as in (C), and the amount of migrated cells

was measured. (E) PANC-1 cells were transfected with the indicated plasmids, and cell proliferation was examined with the MTT

assay. (F) Cells were transfected with the indicated plasmids, and cell proliferation was examined by sulforhodamine B staining.

(G) Cells were transfected with the indicated plasmids, and cell cycle progression was examined by flow cytometry.

RESEARCH ARTICLE Dengwen Li et al.

218 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



HDAC6-interacting domain could partially rescue the
migration defects, but the mutants lacking the HDAC6-
interacting domain were unable to rescue (Fig. 6A and 6B).
Similar results were obtained by transwell migration experi-
ments (Fig. 6C and 6D). Taken together, these results sug-
gest that HDAC6 acts in concert with CLIP-170 to promote
the motility of pancreatic cancer cells.

DISCUSSION

Cell motility is a process critical for the metastasis of pan-
creatic cancer as well as the other cancer types (Waterman-
Storer and Salmon, 1999; Olson and Sahai, 2009; Wells
et al., 2013). Understanding the regulation of cell motility
therefore might expedite the development of novel
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therapeutic approaches. Most migrating cells are polarized,
due to directed membrane trafficking and asymmetrical
redistribution of the cytoskeleton and signaling molecules
(Etienne-Manneville, 2008). While the protrusive activity of
migrating cells largely depends on actin polymerization, the
establishment and maintenance of cell polarity require
coordinated actions of actin filaments and microtubules
(Rodriguez et al., 2003). Microtubule dynamics are regulated
exquisitely in cells by a repertoire of microtubule-binding
proteins, including proteins that regulate the assembly and
organization of microtubules and motor proteins that mediate
the transport of organelles and vesicles (Amos and Schlie-
per, 2005). In this study, we demonstrate that the microtu-
bule-associated deacetylase HDAC6 interacts with the
microtubule end binding protein CLIP-170 to stimulate pan-
creatic cancer cell motility. This finding suggests that cell
motility and many other microtubule-mediated cellular pro-
cesses may depend on the coordination of various micro-
tubule-binding proteins.

As a cytoplasmic HDAC, HDAC6 has been implicated in
the regulation of many cancer-associated cellular events and
signaling pathways, making it an attractive target for cancer
chemotherapy (Aldana-Masangkay and Sakamoto, 2011;
Dallavalle et al., 2012). The present study reveals that
pancreatic cancer samples have higher HDAC6 expression,
at both protein and mRNA levels than normal pancreas and
adjacent tissues. At present, the mechanisms of how
HDAC6 expression is elevated in pancreatic cancer cells are
unclear and warrant further investigation. Our study also
reveals that HDAC6 is involved in the motility but not the
proliferation or cell cycle progression of pancreatic cancer
cells, which is in agreement with previous findings in other
cell types (Haggarty et al., 2003). Together, these results
suggest that the role of HDAC6 in pancreatic cancer may
mainly lie in its metastasis instead of tumor growth. Our
findings indicate that HDAC6 might have value in the diag-
nosis of pancreatic cancer. In addition, given that HDAC6
inhibitors are undergoing clinical studies for certain
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Figure 6. HDAC6 coordinates with CLIP-170 to regulate pancreatic cancer cell migration. (A) PANC-1 cells transfected with

HDAC6 siRNA and GFP, GFP-HDAC6, or GFP-CLIP-170 (full-length or various truncated forms) for 48 h were scratched, and wound

margins were imaged 0 h and 30 h later. (B) Experiments were performed as in (A), and the extent of wound closure was quantified.

(C) Cells were transfected as in (A), and transwell migration experiments were performed and cells migrated to the underside of the

insert were stained with crystal violet. (D) Experiments were performed as in (C), and the amount of migrated cells was quantified.
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diseases, the data shown in this study suggest an impor-
tance for investigating the effectiveness of HDAC6 inhibitors
for pancreatic cancer treatment.

The localization and functions of CLIP-170 are known to
undergo regulation by posttranslational modifications such
as phosphorylation (Yang et al., 2009; Li et al., 2010; Nakano
et al., 2010; Takashima, 2011). Our study shows that CLIP-
170 can be acetylated in cells; however, the level of CLIP-
170 acetylation is not affected by the HDAC6 inhibitor tub-
acin, although the deacetylase activity is necessary for the
role of HDAC6 in regulating pancreatic cancer cell motility.
Given that CLIP-170 could largely rescue HDAC6 siRNA-
induced cell migration defects, it is tempting to speculate that
CLIP-170 may play a scaffolding role to facilitate HDAC6
actions toward cell motility. It is also worthy of note that in
addition to tracking the plus ends of growing microtubules,
CLIP-170 has been shown to mediate the interaction
between endocytic vesicles and microtubules (Pierre et al.,
1992). It is possible that HDAC6 and CLIP-170 may function
together at the interface between endocytic vesicles and
microtubules to facilitate cell polarization and motility.

MATERIALS AND METHODS

Materials

Sulforhodamine B and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium bromide (MTT) were purchased from Sigma-Aldrich.

Antibodies against CLIP-170 and HDAC6 (Santa Cruz Biotechnol-

ogy), β-actin and HA (Sigma-Aldrich) and GFP (Roche) were

obtained from the indicated sources. Horseradish peroxidase-con-

jugated secondary antibodies were from Amersham Biosciences.

GFP-HDAC6, HA-HDAC6, and GFP-CLIP-170 expression plasmids

and various truncated forms were constructed by PCR using pEG-

FPN1 and pCMV-HA vectors as described previously (Zhou et al.,

2009; Li et al., 2011; Sun et al., 2012, 2013a). HDAC6 and luciferase

control siRNAs were synthesized by Invitrogen.

Cell culture and transfection

PANC-1 human pancreatic cancer cells were obtained from the

American Type Culture Collection and cultured in DMEM medium

supplied with 10% fetal bovine serum at 37°C in a humidified

atmosphere with 5% CO2. Plasmids were transfected to cells by

using the polyethyleneimine reagent (Sigma-Aldrich), and siRNAs

were transfected with the Lipofectamine 2000 reagent (Invitrogen).

Immunoblot analysis

Cells were lysed in a buffer containing 1% Triton X-100, 150 mmol/L

NaCl, and 50 mmol/L Tris (pH 7.5). Proteins were resolved by

sodium dodecyl sulfate-polyacrylamide gel electrophoresis and

transferred onto polyvinylidene difluoride membranes (Millipore).

The membranes were blocked in Tris-buffered saline containing

0.2% Tween 20 and 5% fat-free dry milk and incubated with primary

antibodies and horseradish peroxidase-conjugated secondary anti-

bodies, respectively. Specific proteins were visualized with

enhanced chemiluminescence detection reagent according to the

manufacturer’s instructions (Pierce Biotechnology).

Fluorescence microscopy

Cells grown on glass coverslips were fixed with 4% paraformalde-

hyde for 30 min at room temperature. Cells were blocked with 2%

bovine serum albumin in phosphate-buffered saline (PBS), and

coverslips were mounted with 90% glycerol in PBS and examined

with an Axio Observer A1 fluorescence microscope (Carl Zeiss).

Immunohistochemistry

Human pancreatic tissues were obtained from patients undergoing

surgical resection at Shanxian Dongda Hospital. Paraffin-embedded

tissue sections were cut, deparaffinized, and rehydrated with xylene

and graded alcohols. Antigen retrieval was performed in 5 mmol/L

citrate buffer. After inactivation of endogenous peroxidase with 3%

H2O2, the sections were blocked with goat serum and incubated with

primary antibody. The sections were then incubated with biotinylated

secondary antibody and streptavidin-biotin-peroxidase, and diam-

inobenzidine was used as a chromogen substrate. The sections

were counterstained with hematoxylin. Protein expression was gra-

ded based on the intensity of staining and the percentage of stained

cells as described previously (Sun et al., 2013b).

Quantitative real-time RT-PCR

Total RNA was isolated using the TRIzol reagent (Invitrogen), and

quantitative real-time RT-PCR was performed using the SYBR

Premix Ex Taq reagent (Takara) according to the manufacturer’s

instructions.

Flow cytometry

Cells were centrifuged, washed twice with ice-cold PBS, and fixed in

70% ethanol. Tubes containing the cell pellets were stored at -20°C

for at least 24 h. After this, the cells were centrifuged at 1000 g for 10

min, and the supernatant was discarded. The pellets were resus-

pended in phosphate/citrate buffer (pH 7.5) at room temperature for

30 min. Cells were then washed with PBS and incubated with pro-

pidium iodide (20 μg/mL)/RNaseA (20 μg/mL) in PBS for 30 min.

Samples were analyzed on a Coulter Elite flow cytometer (Beckman

Coulter).

Cell motility assays

To analyze cell migration by wound healing, confluent monolayers of

cells cultured in 24-well plates in serum-free medium were scratched

with a 10-mL pipette tip to generate the wound. Cells were washed

with PBS to remove the debris. Phase-contrast photographs of the

wound were taken at different time points to determine the extent of

wound closure. Transwell migration assays were performed as

described previously (Shi et al., 2012). Briefly, cells suspended in

serum-free medium were added to the inside of the transwell insert

precoated with matrigel, and the insert was then placed in a 24-well

plate containing conditioned media. After 18 h, cells on the inside of

the transwell insert were removed with a cotton swab, and cells on
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the underside of the insert were fixed with 4% paraformaldehyde and

stained with crystal violet solution.

Cell proliferation assays

For sulforhodamine B staining, cells were seeded at 1 × 104 cells per

well in 96-well tissue culture plates. Cells were fixed with 10% tri-

chloroacetic acid for 1 h in 4°C and stained with 0.4% sulforhoda-

mine B dissolved in 1% acetic acid at different time points. The cells

were then washed with 1% acetic acid to remove unbound dye. The

protein-bound dye was extracted with 10 mmol/L Tris base to

determine the optical density at 490 nm wavelength. For MTT

staining, 1 × 104 cells were plated in each well of 96-well tissue

culture plates. MTT reagent in PBS was added to each well at dif-

ferent time points, and the cultures were incubated for an additional

4 h. DMSO was added after the MTT solution was removed. The

optical density was then determined at 562 nm wavelength.
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