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Purpose: The purpose of this study was to explore the use of fluorescein angiography
(FA) images in a convolutional neural network (CNN) in themanagement of retinopathy
of prematurity (ROP).

Methods: The dataset involved a total of 835 FA images of 149 eyes (90 patients),
where each eye was associated with a binary outcome (57 “untreated” eyes and
92 “treated”; 308 “untreated” images, 527 “treated”). The resolution of the images was
1600 and 1200 px in 20% of cases, whereas the remaining 80% had a resolution of
640 and 480 px. All the images were resized to 640 and 480 px before training and
no other preprocessing was applied. A CNN with four convolutional layers was trained
on 90% of the images (n = 752) randomly chosen. The accuracy of the prediction was
assessed on the remaining 10% of images (n= 83). Keras version 2.2.0 for R with Tensor-
flow backend version 1.11.0 was used for the analysis.

Results: The validation accuracy after 100 epochs was 0.88, whereas training accuracy
was 0.97. The receiver operating characteristic (ROC) presented an area under the curve
(AUC) of 0.91.

Conclusions:Our study showed,webelieve for thefirst time, the applicability of artificial
intelligence (CNN) technology in the ROPmanagement driven by FA. Further studies are
needed to exploit different fields of applications of this technology.

Translational Relevance: This algorithm is the basis for a system that could be applied
to both ROP as well as experimental oxygen induced retinopathy.

Introduction

Inter-expert and even intra-expert agreement are
two of the major problems in the management of all
clinical activities related to retinopathy of prematu-
rity (ROP). Chiang et al. and Wallace et al. in 2007
and 2008 showed high level of inconsistency even
among experts in ROP diagnosis.1,2 Variability in the
features considered during the cognitive process for

diagnosis is one of the major causes of disagree-
ment. Bolón-Canedo et al. in 2015 demonstrated
that an automated diagnosis system based on the
machine learning technique could improve diagnos-
tic accuracy for ROP and especially standardization
among clinicians.3 More recently, Brown et al. devel-
oped and trained a computer-based image analysis to
classify 5511 fundus images of prematurely born babies
(preemies) and compared them to reference standard
diagnosis (RSD), achieving a diagnostic performance
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similar or better than human ROP experts.4 All afore-
mentioned systems were based on regular color fundus
images.

The aim of this study was to demonstrate the appli-
cability of fluorescein angiography (FA) for the first
time in a convolutional neural network (CNN) for the
management of ROP.

Methods

This study was approved by the institutional review
boards at all participating centers and was conducted
in accordance with the tenets of the Declaration of
Helsinki. Informed consent was obtained from the
parents or guardians for all enrolled patients.

Since 2005, we started to collect FA images of babies
undergoing screening for ROP from our institution
as well as in other 5 institutions in Italy all parts of
the FA team of the Italian ROP Study Group. The
image dataset involved a total of 835 de-identified
FA images of 149 eyes (90 patients) from 5 centers
collected between January 2005 and December 2017.
During this time, all infants screened for ROP present-
ing with retinal vasculature limited in zone I or poste-
rior zone II starting from 31 weeks of postmenstrual
age (PMA) underwent FA examination. All images
were obtained using Retcam II/III (Natus Medical
Incorporated, Pleasanton, CA) with a 130-degree lens
following a bolus of 10% fluorescein solution injected
intravenously at a dose of 0.1 mL/kg. Only the latest
examination sessions performed before 35 weeks of
PMA that included at least one image of the poste-
rior pole and one of the periphery with discernible
retinal vessels were included in this dataset. In case
of treated eyes, we excluded FAs done after treat-
ment. Each eye was associated with a binary outcome:
57 “untreated” eyes and 92 “treated,” with a total of
308 “untreated” and 527 “treated” images. The resolu-
tion of the images was 640 and 480 px in 80% of
cases (Retcam II), whereas the other 20% had a resolu-
tion of 1600 and1200 px (Retcam III). The latter ones
were resized to 640 and 480 px before training and no
other preprocessing was applied to the entire dataset.
A CNN with 4 convolutional layers was trained on a
randomly chosen 90% of the images (752 images of
133 eyes). The training and validation sets were split
at the patient level to ensure no information leakage
from the training. An eye-level classifier was used by
the model. Convolutional layers 1 and 2 had 32 filters,
whereas convolutional layers 3 and 4 had 64 filters.
Every filter in every convolutional layer had a kernel
size of 5 × 5 and was applied with a 2 px stride. A

dropout layer of 0.25 was applied after every convo-
lutional layer and after the final dense layer. Activation
functions were rectified linear units for convolutional
layers and dense layer after flattening, and SoftMax
Pro Software for the last dense layer. The network
was trained for 10 epochs with 25 batch size and the
Adam Optimizer (learning rate: 10−4, decay: 10−6)
with categorical cross-entropy as loss function. The
accuracy of the prediction was assessed on the remain-
ing 10% of images (83 images of 16 eyes). Details of the
network are shown in Figure 1. Keras version 2.2.0 for
R with Tensorflow backend version 1.11.0 was used for
the analysis. Source code is available at (https://github.
com/kbolab/ROP). Additionally, we run the CNN on
the same validation set split into “periphery” images
and “posterior pole” images. Because zone 1 and poste-
rior zone II were two of the inclusion criteria, it was
impossible to isolate the periphery without cropping
the images, especially for the zone 1 eyes. Therefore,
the “periphery” set included images of the periphery
and partial posterior pole, whereas in the “posterior
pole” set there were only images of the posterior pole.
To get an estimate of the out-of-sample performance
of the model, 10-fold cross-validation was performed.
The data were partitioned into 10 equally sized folds,
and at each iteration the CNN model was trained on
9-folds and tested on the remaining fold on which the
receiver operating characteristic (ROC) area under the
curve (AUC) value was computed. These 10 values were
then averaged to get the mean ROC AUC of the cross-
validation and the 95% confidence interval (CIs) were
computed as the SD of these 10 values multiplied by
the usual 1.96 factor assuming a normal distribution.

Results

Among the 149 eyes used to train and assess the
CNN, 92 underwent treatment and 57 did not develop
treatment requiring ROP. The group that developed
treatment requiring ROP were born with a lower gesta-
tional age (GA) and body weight (BW; P < 0.001) but
the PMA at the moment of the FA examination as
well as the number of images were comparable (respec-
tively, P = 0.249 and P = 0.452; Table 1). The number
of eyes and corresponding number of images grouped
by outcome value (treated / untreated) in training and
validation set are reported in Table 2. Graphs of the
training and validation set accuracy and loss function
for 50 epochs of training are reported in Figure 2. After
the model was trained, predictions were made on the
validation set images to compute performance metrics
other than accuracy. Figure 3 shows the probability
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Figure 1. Schematic representation of the convolutional neural network. Different layers from left to right: input layer, four convolutional
layers, fully connected layer, and output binary classification layer.

Table 1. Demographic Data

Treated (n = 92) Untreated (n = 57) P Value

Gestational age, weeks mean ± SD 25.3 ± 1.3 26.8 ± 1.2 <0.001
Birth weight, g mean ± SD 679.2 ± 129.7 833.4 ± 184.3 <0.001
Postmenstrual age at the examination, weeks mean ± SD 32.6 ± 1.2 32.9 ± 1.4 0.249
N of images, mean ± SD 5.7 ± 2.5 5.4 ± 2.7 0.452

Table 2. Number of Eyes and Corresponding
Number of Images Grouped by Outcome Value
(Treated/Untreated) in Training and Testing Set

Training Set N Eyes N Images

Untreated (0) 51 278
Treated (1) 82 474
Total 133 752
Testing set N Eyes N Images
Untreated (0) 6 30
Treated (1) 10 53
Total 16 83

that the model assigns to each validation set image of
belonging to class 1 (treated): the higher a point is in
the graph, the higher the probability of belonging to
class 1 according to the model. The blue points, which
are the images that actually belong to class 1, generally
show a higher probability than the red ones. Indeed, to
each blue point is assigned a class-1-probability higher
than 50%: a fact that is reflected in the 0.5 thresholded
confusion matrix zero false positives rate. In other
words, a prediction of “treatment” is always correct on
this validation set (Table 3 and Table 4). The AUC of
the ROC reached 0.91 (Fig. 4). Our FA-based CNN

activates both at the periphery and at the posterior pole
in different nodes (Fig. 5). Figure 6 shows the four false
positive eyes predicted by the CNN.When we analyzed
the dataset separately into “periphery” and “posterior
pole”sets, the former yielded a better diagnostic perfor-
mance with an accuracy of 0.93 compared to 0.75 in
the latter one. Ten-fold cross-validation yielded a mean
AUC of 0.89 (95% CI = 0.83, 0.95).

Discussion

The early treatment for the ROP study set Plus
disease as the predominant factor in the indication for
treatment, diverting the focus to the posterior pole of
the retina. Over the years, massive effort has been put
to standardize Plus disease by many groups around the
world. The work done by the Imaging and Informat-
ics in Retinopathy of Prematurity (i-ROP) Research
Consortium has been particularly valuable.4–6 Apart
from the large number of retinal images collected,
their studies were mainly focused on Plus disease: inter
alia they introduced the concept of Plus disease as a
continuum spectrum of progression from normal to
unequivocally pathologic.7 This was the premise to the
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Figure 2. Loss function (A) and accuracy (B) for training set (green) and validation set (blue) across 100 epochs.

Figure 3. Predicted probability on validation set of belonging to class 1-treated (y-axis). The x-axis represents the single images of the
validation set. Colors represent actual class (blue for class 1 treated and red for class 0 untreated). The graph shows two clusters of data.
None of the class 1 treated were predicted as belonging to class 0 untreated, whereas 10 images of 4 eyes of the class 0 untreated were
misclassified as class 1 treated.
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Table 3. Confusion Matrix on Testing Set at the Eye Level and Image Level

True Negatives True Positives

Eye level Predicted negatives 4 0
Predicted positives 2 10

Image level Predicted negatives 20 0
Predicted positives 10 53

Table 4. Confusion Matrix Statistics on Testing Set at the Eye Level and Image Level

Accuracy Kappa Sensitivity Specificity PPV NPV

Eye level 0.88 0.71 1.00 0.67 0.83 1.00
Image level 0.88 0.72 1.00 0.67 0.84 1.00

PPV, positive predictive value; NPV, negative predictive value.

Figure 4. ROC curve and AUC on validation set. ROC, receiver
operating characteristic; AUC, area under the curve.

introduction of deep learning (DL) into the ROP
management. The results of the application of this
technology are absolutely encouraging.4,8 In contrast
to iROP, our study tries to shift the attention to the
whole retina, in contrast to the posterior pole alone,
just having in mind that ROP is a vascular disease that
occurs at the edge of the vascularized retina, thus in
the periphery. When we tested our CNN on the split
datasets we yielded a higher diagnostic performance
with the “periphery” set. This reflects the additional
(not substitutive) value of the periphery that should
not be overlooked. To show themodification of periph-
eral retinal circulation, color fundus photographs are
often insufficient to capture details of the pathologic
process, whereas FA seems to be more efficient for this

purpose. FA in the evaluation of ROP was introduced
in the 1970s byFlynn andKushner9,10 andCantolino et
al.,11 recognizing that ROP is a mainly vascular disease
from the start. There are some caveats about the use
of FA in the management of ROP, especially for the
indication to treat. There is no exact correspondence
in ROP diagnosis defined by the International Classi-
fication of ROP (ICROP)12 and FA findings. Further-
more, all the major randomized controlled trials that
defined the guidelines for treatment did not include
FA.13 Although no adverse event related to the proce-
dure has been reported for years at our centers, FA has
to be considered invasive for such delicate babies. For
the same reason, large scale validation per se will be
difficult.

In 2015, Klufas et al. showed an improvement of
the inter-expert agreement on ROP diagnosis using
FA, probably related to better visualization of vessel
shape and contour as well as amount of peripheral dye
leakage.14 Recently, Mansukhani et al. described the
differences on FA between eyes treated with intravit-
real injection of bevacizumab and eyes that regressed
without treatment and interestingly found frequent
abnormal vascular patterns in both groups.15 This
and many other reports showed that the use of FA
might play a paramount role in the long-term follow-
up management of babies treated with antivascular
endothelial growth factor (VEGF) agents.15–18

Furthermore, it is putative that information
obtained using FA may provide greater understanding
of subtleties of acute-phase ROP.14,19,20

We hypothesized that FA images could be a poten-
tial dataset to train aDL algorithm to detect ROP cases
requiring treatment. We applied DL to nonprocessed
whole retina FA images in order to demonstrate the
feasibility of this analysis to this imaging technique
for the first time. With our study, we demonstrated
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Figure 5. Heatmap of the CNN of three sample images. Activation of the algorithm (green) occurs both at the retinal periphery (A and B)
and at the posterior pole (C).

Figure 6. False positive eyes. Angiograms of the four eyes
predicted by the algorithm as class 1 treated but actual class 0
untreated.

that even a minimal number of FA images of the
premature babies’ retinas can train a CNN with good
ROC as well as accuracy. Because 20% of the FA
images had a resolution of 1600 and 1200 px, whereas
the remaining 80% had a resolution of 640 and 480 px,
we decided to design and build the network with the
input layer dimension equal to 640 and 480. Thus,
we resized the high-resolution images before they were
fed into the network. This allowed to keep the vast
majority of images to their original resolution, and
at the same time to reduce the number of param-
eters compared to a network with a bigger size of
input, and consequently to reduce the training time and
processing unit requirements. Moreover, we decided
to train the network from scratch on an architec-
ture that we customized from the basic blocks of the
CNNs settings. We tested whether a simple architec-
ture CNNwith no transfer-learning involved could still
reach acceptable or good performance for this kind of
classification task. As to the performances, we have to

stress that one of the problems with machine learn-
ing models, including DL, is overfitting. This can occur
when the trained model does not generalize well to
unseen cases, but fits the training data well, especially
when the training sample size is small. The CNN in
this study used dropout regularization strategies to help
overcome this issue. Moreover, the shape of the train-
ing curve (see Fig. 2) can be used to assess the occur-
rence of overfitting. From the curve, we can see that
the loss function is similar in trend and values for
both validation and training datasets, which indicates
well-fit curves. The term “prediction” in the field of
machine learning does not always refer to forecasting
a future outcome. Rather, it alludes to the output of
a model after it has been trained on a dataset and
applied to a different dataset. We included in our study
both FAs done before the development of ROP requir-
ing treatment and those performed when eyes were
deemed treatment-requiring, right before intervention.
To develop an algorithm that was able to predict, in
the common sense of the word, a future outcome, we
would need to include the former category only. We
were not able to do that because of the limited sample
size. Future work will compare these results in terms
of performances and methodology with another state-
of-the-art network architecture, as well as validation of
the model output on new FA images. Further studies
are also needed to exploit different fields of applica-
tions, such as analysis of retinal vasculature images
from humans and even from animal models of ROP
with other imaging devices.
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