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Abstract: We propose a convolutional neural network (CNN) based method, namely phase diversity
convolutional neural network (PD-CNN) for the speed acceleration of phase-diversity wavefront
sensing. The PD-CNN has achieved a state-of-the-art result, with the inference speed about 0.5 ms,
while fusing the information of the focal and defocused intensity images. When compared to the
traditional phase diversity (PD) algorithms, the PD-CNN is a light-weight model without complicated
iterative transformation and optimization process. Experiments have been done to demonstrate the
accuracy and speed of the proposed approach.
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1. Introduction

Adaptive optics (AO) is widely used in large astronomical telescopes for turbulence induced
wavefront distortion compensation [1]. Wavefront sensing is the key technology of AO, and researchers
have done extensive research on wavefront sensing technologies. Traditional wavefront sensing
technologies [2–5] include Shearing Interferometers (SI), Shack-Hartmann Wavefront Sensors (SHWFS),
the curvature WFS, etc. SI has high measurement accuracy, but low light energy utilization and
complicated optical path. SHWFS is widely used in AO systems, but limited by low spatial resolution
due to its pupil segmentation mechanism. When compared to SHWFS and SI, the phase diversity (PD)
method proposed in [6] has a simpler optical path and no non-common optical path aberration [7,8].
However, due to high computational complexity, the PD method is mainly applied in the field of
post-processing of blurred image and areas with lower real-time requirements [9,10].

Recently, with its rapid development, artificial intelligence has become a very powerful tool in
various fields. Machine learning, including deep learning, has also become a hot topic in the field of
optics and photonics [11]. As early as 1994, Kendrick et al. [12,13] used neural network technology
in the PD method, but there was no consideration of the real-time performance of the algorithm.
Georges III et al. [14] proposed a proof-of-concept phase-diversity wavefront sensing and control
testbed that displayed 5/1000 wave Root Mean Square accuracy, operated at an estimation rate of
100 Hz. Dolne et al. [10] proposed an approach for real-time wavefront sensing and image enhancement
that could process PD images at 50 to 200 Hz. Miyamura et al. [15] also used a neural network to solve
the complicated inverse problem of the PD method. Principal component analysis (PCA) is used for the
preprocessing of the neural network to compress the information to reduce computation cost. In the
last two years, machine learning has been increasingly applied to phase retrieval. Paine et al. [16] used
machine learning operating on a point-spread function in order to determine a good initial estimate
of wavefront. The convolutional neural network (CNN) outputted a prediction in 0.2 s, while the
nonlinear optimization took 16 seconds on average with a desktop computer. Ju et al. [17] proposed
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a novel phase retrieval mechanism using machine learning that estimated aberration coefficients
from Tchebichef moment features. This method is more robust, but still less accurate than traditional
iterative phase recovery algorithms. Guo et al. [18] proposed a phase-based sensing approach using
machine learning, which can directly estimate the phase map from the point spread functions. With
the same accuracy, the stochastic parallel gradient descent algorithm (SPGD) took 448 ms, while the
phase-based sensing approach took 11 ms. Nishizak et al. [19] experimentally demonstrated a variety
of image-based wavefront sensing architectures that can directly estimate aberration coefficients from
a single intensity image by using Xception network [20]. This method still has a large aberration
measurement error, and the estimation time was 9.2 ms for a single image. Andersen et al. [21] used
InceptionV3 to analyze both a focal image and a slightly defocused image. However, no experimental
data were used to demonstrate the effectiveness in practical situations. Ma et al. [22] proposed a novel
wavefront compensation method based CNN that only require two intensity images detecting for each
distorted wavefront compensation. However, there is also a degree of discrepancy between simulation
and experiment. The average prediction time for the CNN after training was 0.16 s. Xin et al. [23]
proposed an image-based wavefront sensing approach while using the deep long short-term memory
(LSTM), which is applicable to both point source and any extended scenes.

So far, these studies have tended to explore the possibility that deep neural network algorithm
can partially or completely replace traditional phase iterative algorithms in terms of accuracy.
The calculation time of algorithms ranges from about 10 ms to several seconds due to differences in
networks or hardware conditions, which cannot meet the correction speed requirements of modern
astronomical adaptive optics systems on the time scale of millisecond or even sub-millisecond [24].
Our work here focuses on both accuracy and the real-time performance of the algorithm.

We propose a novel real-time non-iterative phase-diversity wavefront sensing that successfully
establishes the nonlinear mapping between intensity images and the corresponding aberration
coefficients by using phase diversity convolutional neural network (PD-CNN). We improve the
real-time performance of the algorithm using TensorRT and reduce the aberration measurement error
by fusing focal and defocused intensity images. After optimization, the PD-CNN proposed only
needs about 0.5 ms for the phase retrieval procedure. Experiments have been done to demonstrate the
accuracy and speed of the proposed approach.

2. Experimental Setup

The experimental optical system used to generate the data sets consists of three main parts:
a source (S), a distortion wavefront simulator (DWFS) and a phase-diversity wavefront sensor (PDWFS),
as shown in Figure 1. The S is composed of a laser (658 nm), a collimator (C), and a linear polarizer
plate (P). The DWFS is mainly used to generate aberration and it consists of a beam splitter (BS), and the
spatial light modulator (SLM, pixel pitch: 15 µm × 15 µm, pixel format: 512 × 512, Model: PCle 8-bit).
The PDWFS mainly includes lenses, Camera (Basler acA780-75gm GigE, pixel pitch: 8.3 µm × 8.3 µm,
pixel format: 782 × 582, Model: 8-bit), and PD-CNN. In the part of S, the P is used to make the
polarization direction of light conform to the requirements of the SLM, and the SLM is used to distort
wavefront. Finally, the real PSF images are detected by the Camera, which are the inputs of PD-CNN
for predicting corresponding Zernike coefficients.
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Figure 1. The experimental optical system for generating data sets.

For simulating atmospherically distorted wavefronts, firstly, the independent random
Karhunen–Loeve coefficients with the atmospheric conditions D/r0 = 10 can be computed, then be
converted to Zernike coefficients according to the Karhunen–Loeve Zernike expansion [25]. Each set
of Zernike coefficients can be used to generate the corresponding phase pattern via the Zernike
polynomial, which are loaded on the SLM to distort the wavefront. The first and second Zernike
coefficients are both set to zero to exclude the tip-tilt. The Camera is displaced at the focal plane of L
to detect the focal intensity images. For detecting defocused intensity images, we add an additional
defocused aberration whose peak to valley (PV) value is equal to one wavelength. In this paper,
there are a total of 6000 pairs of samples in the training data sets, 1000 pairs of samples in the validation
data sets, and 3000 pairs of samples in the test data sets. Each pair consists of a group of Zernike
coefficients as the label and the corresponding focal and defocused images as the input. Two examples
of data sets are shown in Figure 2.

The example of data set. (a) and (b) the example of two pairs of the focal and defocused images and 
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Figure 2. The example of data set. (a,b) the example of two pairs of the focal and defocused images
and their corresponding phase map obtained by the Zernike coefficients. The pixel value of the focal
and defocused images have been normalized to 0–1 before inputting to the neural network and the size
of images is 128 × 128. The unit of phase map is λ.
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3. Method

3.1. The Phase Retrieval Approach Using PD-CNN Models

LeNet-5 [26] is a CNN originally used for handwritten digit recognition. In this paper, we have
improved the LeNet-5 network for phase retrieval, named PD-CNN, and the architecture of it is shown
in Figure 3, including three convolution layers, three max-pooling layers, and two full connection
layers. The configuration parameters of it are shown in Table 1. The activation function of all hidden
layers are the rectified linear unit (ReLU) function [27]. The images that are acquired by the camera
are cropped to 128 × 128 as inputs. The outputs of the last max pooling are reshaped and sent to the
fully connected layers. The last fully connected layer outputs 13 parameters that refer to the predicted
Zernike coefficients.

Output: 13

Input:128×128

32×32×64

16×16×64

Feature vector：512

Max-pooling 2×2Convolution 5×5 Full Connection

…

Convolution 3×3

128×128×32

64×64×32

Full ConnectionMax-pooling 2×2

Figure 3. The architecture of the phase diversity-convolutional neural network (PD-CNN) network.

Table 1. The configuration parameters of the PD-CNN network.

Layer Number Type Input Size Filter Size Stride Pad Number Kernels

1 Input 128 × 128 × 2 - - - -
2 Convolution 128 × 128 × 2 5 × 5 1 2 32
3 ReLU 128 × 128 × 32 - - - -
4 Pooling 128 × 128 × 32 2 × 2 2 - -
5 Convolution 64 × 64 × 32 3 × 3 1 1 32
6 ReLU 64 × 64 × 32 - - - -
7 Pooling 64 × 64 × 32 2 × 2 2 - -
8 Convolution 32 × 32 × 32 3 × 3 1 - 64
9 ReLU 32 × 32 × 64 - - - -

10 Pooling 32 × 32 × 64 2 × 2 2 - -
11 Full Connected 16 × 16 × 64 - - - -
12 Full Connected 512 × 1 - - - -

The parameters of the convolutional kernels are updated during network training process to
obtain accurate feature information. The pooling layer can compress feature information extracted
from the previous layers, removing redundant information, and reducing the complexity of the
network. The max-pooling layers are not only used to reduce the computational cost of next layer,
but also prevent overfitting [28]. Each node of the fully connected layer is connected to all nodes of the
previous layer, which can synthesize the previously extracted features. The cost function used in the
PD-CNN is Mean Square Error (MSE), which is used to estimate the degree of inconsistency between
the outputs and the target values. In this paper, MSE means the difference between the predicted
Zernike coefficients and the target Zernike coefficients. Compared to the deep neural networks
(i.e., Xception, InceptionV3), used for phase recovery, the PD-CNN models are smaller with fewer
parameters and easier to achieve inference acceleration. Therefore, it has considerable advantages in
real-time phase retrieval.
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3.2. The Inference Acceleration of PD-CNN Model

The application of deep learning has always been a problem in real time, so the inference
acceleration for deep learning has also become a hot topic of current research. At present,
methods [29–31] for inference acceleration include Pruning, Quantification, Distillation,
and optimization of network structures. In this paper, we use TensorRT 5.0 to accelerate the inference
of the best PD-CNN model saved during the whole training process. There are three steps, importing
the Keras model, building an optimized TensorRT engine and performing inference. The core of
NVIDIA TensorRT is a C++ library that facilitates high-performance inference on NVIDIA graphics
units (GPUs). It focuses specifically on running an already-trained network quickly and efficiently on
a GPU for the purpose of generating a result.

4. Result

The experiment in this paper consists of two parts, training and testing neural networks and
inference acceleration, as (a) and (b) shown in Figure 4. The purpose of part (a) is to obtain a
trained optimal model for phase retrieval. The purpose of part (b) is to explore the advantages of
the trained optimal model in real time. In part (a), the difference of training and testing neural
network is that testing does not need to adjust weights. In the process of training, the neural network,
the weights are adjusted by comparing predicted Zernike coefficients ŷi and target Zernike coefficients
yi. Once the neural network is well trained, we can save the weights of the network then do the
inference. For comparison, we use PD-CNN and Xception to restore wavefront. For each network,
three sets of contrast experiments are set as follows, inputting the focal and defocused intensity images
separately, and inputting the focal and defocused intensity images at the same time. Finally, we explore
inference acceleration of PD-CNN models on embedded platforms Jetson AGX Xavier and 1080Ti.
Part (b) shows the workflow of TensorRT5.0 used in this paper. There are three steps, as described in
Section 3.2. The input is a trained optimal model of PD-CNN.

Trained PD-CNN

Import Model

(b) Inference acceleration  

Build Engine Perform inference

PD-CNN or Xception

Predicted Zernike

coefficientsෝ𝒚𝒊

(a) Training and testing   

Compare 𝒚𝒊 and ෝ𝒚𝒊

Target Zernike

coefficients𝒚𝒊

Adjust weights

Figure 4. The experiments in this paper. (a) the part of training and testing neural network. (b) the
part of inference acceleration.

4.1. The Experimental Results of Training and Testing Neural Networks

Firstly, we set up the PD-CNN network by Keras framework based on Python 3.6.8 to perform
regression analysis. The training and testing data sets are generated, as described in Section 2. During
the training, we use a learning algorithm, called adaptive moment estimation (Adam), to optimize it
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with an initial learning ratio of 0.0001, a batch size of 32, and the number of epochs is 100. There are
three contrast experiments of PD-CNN, as described in the part (a). The trained optimal models
are respectively named Focal model with focal intensity images as inputs, Defocused model with
defocuses intensity images as inputs, and PD model with focal and defocused intensity images at the
same time as inputs. Secondly, we train the Xception network used in [19] with the same data sets,
and the parameters of network are also the same. In addition, the three contrast experiments are also
same as PD-CNN. The codes execute on a computer with an Intel Xeno CPU E5-2609 v4 CPU running
at 1.7 GHz, with 64 GB of RAM, and an NVIDIA GeForce GTX 1080Ti with 11 GB of RAM.

Figure 5 shows the training process of PD-CNN and Xception network, where the three sets of
contrast experiments of them are successfully converged. As the results shown in the Table 2, the loss
(MSE) of the three sets of contrast experiments of PD-CNN are 0.0372, 0.0279, and 0.0109, respectively.
The PD model has the minimal MSE. Figure 6 displays the feature maps after each convolution layers
of one example in a trained PD model of PD-CNN. As shown in Table 3, the average inference time of
the three PD-CNN models on 1080Ti is close, about 2.2495 ms, 2.2989 ms, and 2.5591 ms, respectively.
The loss (MSE) of the three Xception models are 0.0357, 0.0295, and 0.0139. The results of PD-CNN
and Xception both prove the improvement of accuracy by fusing focal and defocused intensity images.
Compared with PD-CNN, Xception models need more time for inference and the time are 10.4690 ms,
10.1108 ms, and 10.4690 ms, under the same condition. The inference speeds of the three Xception
models are also very close. The accuracies of PD-CNN models and the corresponding Xception models
are close, while PD-CNN has an advantage in inference speed.

Table 2. The Loss (MSE) of test data set in PD-CNN and Xception.

Network Focal Model Defocused Model PD Model

PD-CNN 0.0372 0.0279 0.0109
Xception 0.0357 0.0295 0.0139

Table 3. The inference time(ms) of PD-CNN and Xception on 1080Ti.

Network Focal Model (ms) Defocused Model (ms) PD Model (ms)

PD-CNN 2.2495 2.2989 2.5591
Xception 10.469 10.1108 10.469

(a) (b)

Figure 5. (a) The training curves of PD-CNN. (b) The training curves of Xception.
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(c)(b) (d)

Focal

Defocused

(a)

Figure 6. The output feature maps from (b) convolution layer 1, which are 32 images of 128 × 128
pixels, (c) convolution layer 2, which are 32 images of 64 × 64 pixels, and (d) convolution layer 3, which
are 64 images of 32 × 32 pixels, when the input a pair of focal and defocused images of test data set
shown in (a) to the trained PD-CNN.

Figure 7 shows the accuracies of each Zernike coefficient estimated by PD-CNN. Apparently, the
restoration accuracies of each order Zernike coefficients is still consistent with the PD model being
optimal, followed by the Defocused model, and the Focal model has the worst conclusion. The results
of PD-CNN models in test data set are shown in Table 4. The Original RMSE (Root Mean Square
Error) and the standard error of test data set is 0.3398 ± 0.0940λ. The Relative RMSE is equal to the
ratio of Estimated RMSE to Original RMSE. The PD model has the smallest Estimated RMSE and
the best robustness. Figure 8 shows a sample of test data set. The RMSE and PV of it are 0.026λ and
1.188λ. Figures 9–11 show the results of the PD-CNN models with this sample as input. Figure 12
shows the residual wavefront of the three models. The residual wavefront is equal to the estimated
wavefront minus the original wavefront. It can be intuitively seen that the PD model has the smallest
measurement error.
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Figure 7. The accuracies (RMSEs:λ) of each Zernike coefficient estimated by PD-CNN across
3000 samples.
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Table 4. Summary of accuracies (Root Mean Square Error (RMSE) and standard error: λ of Zernike
coefficients estimated by PD-CNN across 3000 samples.

Model Original RMSE (λ) Estimated RMSE (λ) Relative RMSE (λ)

Focal model 0.3398 ± 0940 0.1004 ± 0.0469 0.3016 ± 0.1220

Defocused model 0.3398 ± 0.0940 0.0823 ± 0.0492 0.2434 ± 0.1107

PD model 0.3398 ± 0.0940 0.0529 ± 0.0286 0.1574 ± 0.0721

(a) (b)

PV=1.188 𝝀 RMS=0.226 𝝀
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Figure 8. A sample of test data set. (a) The original wavefront and (b) the original Zernike coefficients.
The unit of original wavefront is λ. The unit of original Zernike coefficients is rad.
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Figure 9. The result of the Focal model of PD-CNN. (a) The residual wavefront and (b) the comparison
of the Figure 8b and the estimated Zernike coefficients. The unit of residual wavefront is λ. The unit of
estimated Zernike coefficients is rad.
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Figure 10. The result of the Defocused model of PD-CNN. (a) The residual wavefront and (b) the
comparison of the Figure 8b and the estimated Zernike coefficients. The unit of residual wavefront is λ.
The unit of estimated Zernike coefficients is rad.
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Figure 11. The result of the PD model of PD-CNN. (a) The residual wavefront and (b) the comparison
of the Figure 8b and the estimated Zernike coefficients. The unit of residual wavefro nt is λ. The unit of
estimated Zernike coefficients is rad.

3 4 5 6 7 8 9 10 11 12 13 14 15

-0.12

-0.06

0.00

0.06

0.12

0.18

0.24

0.30

R
es

id
u

a
l 

 (
ra

d
)

Zernike Models 

 

 

 Focal

 Defocused

 PD

Zernike Modes

Figure 12. The residual wavefronts of the three models of PD-CNN, when the input the images of the
sample shown in Figure 8. The unit of residual wavefront is rad.
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4.2. The Experimental Results of Inference Acceleration

When compared with Xception, the PD-CNN network has an advantage in reference speed, so we
further explore inference acceleration of PD-CNN. Firstly, we use TensorRT5.0 to optimize the PD-CNN
models by combining layers and optimizing kernel selection for improving latency, throughput, power
efficiency, and memory consumption, which are the critical factors that are used to measure the
performance of software for inference of trained network. As the inference time of PD-CNN models
shown in Table 5, the inference time of Focal model, Defocused model, and PD model on 1080Ti are as
follows: 2.2495 ms, 2.2989 ms, and 2.5591 ms. After acceleration with TensorRT5.0, the inference time
of them are 0.4678 ms, 0.4406 ms, and 0.4909 ms. As shown in Figure 13a, the inference speeds of the
three models are very close, and PD model has the largest acceleration ratio.

In addition, we also explored the inference speed of the three PD-CNN models on the embedded
platform, Jetson AGX Xavier of NVIDIA with TensorRT5.0, which can process data at the data source
port with limited resource. As the results that are shown in Table 6, the inference time of the three
models of PD-CNN on Xavier are as follows: 3.3312 ms, 3.4183 ms, and 3.4854 ms. After acceleration,
the inference time of them are 1.0228 ms, 1.2654 ms and 1.2642 ms. As shown in Figure 13b, the inference
speeds of the three models are also very close, and the Focal model has the largest acceleration ratio.
Although the inference time on the Jetson AGX Xavier platform are larger than 1080Ti, the inference
acceleration on the embedded platform has more application value.

Table 5. The average inference time of PD-CNN models for 3000 samples on 1080Ti.

Model Before Acceleration (ms) After Acceleration (ms) Acceleration Ratio (ms)

Focal model 2.2495 0.4678 4.8091
Defocused model 2.2989 0.4406 5.2178

PD model 2.5591 0.4909 5.2135

Table 6. The average inference time of PD-CNN models for 3000 samples on Jetson AGX Xavier.

Model Before Acceleration (ms) After Acceleration (ms) Acceleration Ratio (ms)

Focal model 3.3312 1.0228 3.2569
Defocused model 3.4183 1.2654 2.7014

PD model 3.4854 1.2642 2.7571

(a) 1080Ti (b) Jetson AGX Xavier

Figure 13. (a) The average inference time of PD-CNN models for 3000 samples on 1080Ti. (b) The
average inference time of PD-CNN models for 3000 samples on Jetson AGX Xavier.

Finally, we try a lightweight network ShuffleNet to restore phase, which is optimized for network
structures, but the experimental results are not converged. Although we only optimize the model
structure and computing resource allocation with TensorRT5.0, and do not reduce the accuracy of
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the model parameters, the accuracy of the three models are both lost, as shown in Table 7, compared
between Table 4 and Table 7, the losses are within acceptable limits. Nevertheless, PD model still has
the smallest RMSE and standard error after acceleration.

Table 7. Summary accuracies (RMSE and standard error: λ of Zernike coefficients estimated by
PD-CNN after acceleration across 3000 samples.

Model Original RMSE (λ) Estimated RMSE (λ) Relative RMSE (λ)

Focal model 0.3398 ± 0.0940 0.1142 ± 0.1119 0.3455 ± 0.3607
Defocused model 0.3398 ± 0.0940 0.0974 ± 0.1137 0.2910 ± 0.3606

PD model 0.3398 ± 0.0940 0.0696 ± 0.1092 0.2058 ± 0.3247

5. Conclusions and Discussion

In this paper, we propose a novel real-time non-iterative phase-diversity wavefront sensing,
which successfully establish the nonlinear mapping between intensity images and the corresponding
aberration coefficients by using PD-CNN. There is no need for time-consuming iterative transformation
or optimization process when compared with conventional phase retrieval approaches. The PD-CNN
is a light-weight model and easy to achieve inference acceleration when compared to current phase
retrieval using CNNs (i.e., Xception,De-VGG). The optimization of PD-CNN by using TensorRT has
two main aspects. One is to analyze the network structure and combine similar calculations to reduce
data computation time. The other is to optimize the parameter allocation of NVIDIA GPU resources.
After optimization, the inference time of PD-CNN can meet the correction speed requirements of
modern astronomical adaptive optics systems on the time scale of millisecond or even sub-millisecond.
Experiments have been done to demonstrate the accuracy and speed of the proposed approach.

The experiment in this paper consists of two parts. We use different types of CNNs for
experiments, and each CNN has done three sets of contrast experiment, as shown in Section 4.1.
Among them, the results of Xception and PD-CNN are the best of inputting the focal and defocused
intensity images at the same time. To a certain degree, the accuracy of phase recovery is improved
by fusing focal and defocused intensity images. From the perspective of inference acceleration of
deep learning algorithms, we explored the application prospects of PD-CNN in real-time wavefront
restoration system, as shown in Section 4.2. After the three steps of optimization with TensorRT5.0,
the reference time on 1080Ti only needs about 0.5 ms, achieving a state-of-the-art result.

This work presents a simple and effective method to improve the accuracy and real-time
performance of phase-diversity wavefront sensing. We accurately recover the first 15 order Zernike
coefficients (first and second coefficients are constant at zero). In future work, we will upgrade the
experimental system to use 16-bit SLM and camera, and optimize PD-CNN to accurately recover
the first 65 Zernike modes. The accuracy loss analysis after acceleration is also the focus of the next
research work. In addition, we will explore the CNN based phase-diversity wavefront sensing for
extended sources.
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