
Computational and Structural Biotechnology Journal 15 (2017) 403–411

j ourna l homepage: www.e lsev ie r .com/ locate /csb j

Computing Platforms for Big Biological Data Analytics: Perspectives
and Challenges

Zekun Yina, Haidong Lana, Guangming Tanb, Mian Luc, Athanasios V. Vasilakosd, Weiguo Liua,*
a Shandong University, Jinan, Shandong, China
b Institute of Computing Technology, Chinese Academy of Sciences, China
c Huawei Singapore Research Centre, Singapore
d Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Skellefteå SE-931 87, Sweden

A R T I C L E I N F O

Article history:
Received 11 March 2017
Received in revised form 30 June 2017
Accepted 28 July 2017
Available online 14 August 2017

Keywords:
Computational biology applications
Computing platforms
Big biological data
NGS
GPU
Intel MIC

A B S T R A C T

The last decade has witnessed an explosion in the amount of available biological sequence data, due to the
rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming
so great that traditional data analysis platforms and methods can no longer meet the need to rapidly per-
form data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the
challenge of gaining a profound insight into the deepest biological functions from big biological data. This
in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms
are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms.
In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the
characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of dif-
ferent biological data analysis applications and a survey of the way they have been mapped onto various
computing platforms. After that, we present a case study to compare the efficiency of different comput-
ing platforms for handling the classical biological sequence alignment problem. At last we discuss the open
issues in big biological data analytics.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Biological sequence data are growing exponentially. The rate of
growth over the last decade has also been truly astonishing, with
the total amount of sequence data produced doubling approximately
every seven months [1]. Data growth rate will continue for the
foreseeable future, since multiple concurrent genome sequencing
projects have begun, with more to come. The availability of big bio-
logical data is vital for evolutionary studies. For the first time we can
study the governing factors in the evolutional processes of whole
genomes. This is therefore an exciting era for evolutional biology.
However, as the semi-conductor lithography process approaching its
physical limits, the growth of transistors on a single chip is much
slower than the growing rate of biological sequence data. The com-
putational load is further compounded by the addition of new data
sources (many completed genomes are being reported monthly),
increase in the size and number of queries, a growing user base of

* Corresponding author.
E-mail address: weiguo.liu@sdu.edu.cn (W. Liu).

bioinformatics scientists, new algorithms and methods of analysis.
Because of the following factors, it usually takes long runtimes to
solve big biological data analysis problems:

• Sequencing technologies to produce biological data are prone
to errors. Thus high complexities will be introduced into algo-
rithms in order to handle these errors and uncertainties.

• Big biological data analysis problems have a very high compu-
tational requirements even the corresponding algorithms have
polynomial time complexities [2].

• Due to inherent algorithmic complexities, many biological
data analysis problems are both data-intensive and compute-
intensive. HPC may provide an efficient tool to solve these
problems.

This is a new area of biological sciences where computational
methods are essential for the progress of the experimental science,
and where algorithms and experimental techniques are being
developed side by side.

Traditionally, HPC platforms such as supercomputers were rare
and available for only the most critical problems. Since the mid-1990s,

http://dx.doi.org/10.1016/j.csbj.2017.07.004
2001-0370/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.csbj.2017.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2017.07.004&domain=pdf
http://www.elsevier.com/locate/csbj
http://creativecommons.org/licenses/by/4.0/
mailto:weiguo.liu@sdu.edu.cn
http://dx.doi.org/10.1016/j.csbj.2017.07.004
http://creativecommons.org/licenses/by/4.0/


404 Z. Yin et al. / Computational and Structural Biotechnology Journal 15 (2017) 403–411

however, the availability of supercomputers has changed dramati-
cally. With multi-threading support built into microprocessors and
the emergence of multiple processor cores on a single silicon die,
supercomputers are becoming ubiquitous. Now, almost all university
computer science department has their own HPC platforms. Given the
exponential growth in the size of biological sequence data, the com-
putational biology (CB) area has taken dramatic leaps forward with
the availability of computational resources. Traditional uses of HPC
platforms in scientific computing usually involve problems described
in structured grids, with well-defined regular data structures. In con-
trast, many problems in CB have irregular structures, which appears
to be significantly more challenging to parallelize. Thus, the effec-
tive use of HPC platforms will become increasingly important in CB.
This continues to remain a largely unexplored territory, and is the
principal motivation behind our survey work.

In the past few years, the fast increasing power of new generation
many-core architectures has opened up a range of new possibili-
ties to achieve HPC for a variety of applications. Graphics Processing
Units (GPUs) are one of the most widely used general-purpose many-
core architectures. These commodity chips have enhanced their
programmability to perform more general computational tasks than
the graphics processing they were originally designed for. Examples
include scientific computing [3], image processing [4], computa-
tional biology [5], electronic design automation (EDA) [6] and data
science [7], etc. The computer video game market have driven the
evolution of GPUs to yield relatively cheaper price per unit and very
rapid iteration of hardware architectures. Intel Xeon Phi is another
popular many-core architecture. It is based on the Intel’s Many
Integrated Core (MIC) architecture which integrates much more sim-
plified hardware cores compared to traditional CPUs. With the easy
programmability of x86-based Xeon Phi, these chips are now widely
used. Scientists and engineers in a variety of fields have presented
their design and implementation of parallel algorithms on Xeon Phi.
Examples include scientific computing [8], database operations [9]
and computational biology [10]. Limited by power consumption and
advances in lithography, the many-core architectures shows bet-
ter power-efficiency than the traditional multi-core CPUs. Thus, the
many-core based platforms are even more attractive for the HPC
community in the near future. However, there are still many chal-
lenges to be solved for the CB scientists to facilitate efficient usage
of many-core based HPC platforms. In this paper, a survey and tax-
onomy of HPC big biological data analysis applications on various
computing platforms are presented.

The rest of this paper is organized as follows: in Section 2 we
present the characteristics of big biological data and popular com-
puting platforms. In Section 3, we provide a taxonomy of differ-
ent biological data analysis applications and how they have been
mapped onto various computing platforms. Section 4 presents a case
study to compare the efficiency of different computing platforms
for handling the classical biological sequence alignment problem.
Then we discuss the open issues in big biological data analytics in
Section 5. Finally, Section 6 concludes this paper.

2. Big Biological Data and Computing Platforms

In this section, we first talk about the characteristics of big bio-
logical data. Then we introduce popular computing platforms used
in practice, and the corresponding programming models.

2.1. Characteristics of Big Biological Data Analytics

Over the past decades, whole genome sequencing (WGS) tech-
nologies are rapidly progressing. Nowadays, human genomes can
be sequenced around 50,000 times faster than that in 2000 [11],
but with the cost of only 1/25,000 [12]. With this exponential
growth of sequence data, rich biological data analytics applications

are developed and studied, such as sequence alignment (including
short read alignment), genome assembly, single nucleotide polymor-
phism (SNP) detection, and genome-wide association study (GWAS).
Particularly, many of such applications share a few common char-
acteristics. Understanding those characteristics thoroughly first is
helpful to identify the challenges for computational science. We
summarize three major characteristics as follows: huge volume of
data, extremely long running time and application dependency.

2.1.1. Huge Amount of Data
As the sequencing speed has been greatly improved but with sig-

nificantly reduced economic cost, huge amount of sequence data is
generated everyday in sequencing centers. For example, a modern
Illumina sequencing machine is able to generate over 1.8 terabases
of data per week [13]. As a result, in a typical sequencing center,
hundreds of TB of sequence data is produced per day. Such high
pressure of data volume not only introduces challenges to hard-
ware support, but also to computational scientists to process data
efficiently and effectively.

2.1.2. Extremely Long Running Time
A biological data analytics application may run for days or even

months because of two reasons. First, the large amount of sequence
data requires high throughput of data processing. For example, short
read sequence alignment tools are used by scientists everyday to pro-
cess sequence data. Though the algorithm has relatively low time
complexity by employing advanced indexing techniques [14,15], the
alignment task still has to take long time to process all data. Second,
some applications have extremely long running time because of large
data size as well as high computation complexity. For example, state-
of-the-art genome assembly tool SOAPdenovo2 [16], has to take a
few days with the consumption of hundreds of GB of memory to fin-
ish the construction for a single human’s genome. Other applications
such as SNP detection [17] and GWAS [18] may also take days or even
months to finish processing one dataset.

2.1.3. Application Dependency
In a sequencing center, different data analytics tools are typically

developed individually but used together in workflows as compo-
nents. In a representative workflow, sequence data is first produced
by sequencing machines, and then aligned to a reference sequence
using short read alignment tools. Then the alignment results are
sorted using an external sorting program. Next, the sorted align-
ments are fed into a SNP detection program. The result of SNP
detection may be further as input for other GWAS applications, such
as SFS estimation [18]. Because all these programs are developed
separately, both the input and output data are stored on disks. As a
result, when a workflow consisting of different data analytics tools,
it introduces significant performance overhead from disk I/O due to
data movement.

Those three major characteristics introduce corresponding chal-
lenges for efficient, scalable and productive biological data analytics.
Researchers have invested huge efforts into developing efficient and
effective biological data analytics tools.

2.2. Computing Platforms and Programming Models

For the last decades, we have witnessed abundance of com-
puting platform choices for analyzing biological data. The choices
provide a number of options to obtain efficiency gain or the capabil-
ity to implement biological data analysis algorithms. These options
include general-purpose platforms like multicore parallelism, high-
performance computing clusters and cloud computing, and acceler-
ators like GPUs (Graphics Processing Units), Intel Xeon Phi and FPGA
(Field-programmable Gate Array). Aside from the multiple platform



Z. Yin et al. / Computational and Structural Biotechnology Journal 15 (2017) 403–411 405

options, there exists a variety of programming models in which algo-
rithms can be implemented. Programming model choices tend to
be particularly diverse due the extra consideration of performance
and productivity. Currently, people have put efforts on programming
biological data analysis programs with mainstream programming
models including OpenMP, CUDA/OpenCL, message passing (MPI)
and map-reduce (Hadoop, SPARK), which are adopted to exploit the
diversity of parallelism on computing platforms. The wide range of
architectures and programming models presents both opportunities
and challenges for biological data analysis scientists and engineers.
Fully exploiting the available hardware resources requires adapting
some algorithms and redesigning others to enable their concurrent
execution.

3. Taxonomy

In this section, we preset a taxonomy of the different biologi-
cal algorithms that have been implemented on different platforms.
We categorize them into two main groups: biological algorithms
for whole sequences and biological algorithms for NGS. For each
category, we choose a series of classic algorithms to discuss their
implementations on multi-core, GPU, MIC, cluster and cloud. We
mainly focus on the optimization skills on different platforms, like
memory access pattern, computation density and I/O density, see
Table 1.

At first we list some parallel applications about parallel algorithm
design and optimization techniques, see Tables 2 and 3. Two of
listed applications are implemented on Intel MIC platforms includ-
ing XSW and LSDBS. Four are implemented utilizing NVIDIA CUDA
and FHAST is designed for FPGA heterogeneous computing. The rest
are designed for multi-core platform. We notice that all of these
applications are parallelized in coarse-grained way, and in order to
exploiting the high computing performance of GPU and MIC fine-
grained parallel strategies are usually used. SIMT and SIMD are two
most popular techniques for fine-grained parallelism. SIMT(single
instruction multiple thread) is an execution model used in GPUs, in
NVIDIA GPU threads in one warp execute concurrently using a sin-
gle instruction. SIMD(single instruction multiple data) describes the
VPUs could operate multiple data (a vector) with a single instruction.
For most algorithms with regular memory access pattern, using fine-
gained SIMT on GPUs and SIMD on multi-cores makes applications
several times faster.

3.1. Whole Genome Sequence

3.1.1. Dynamic Programming (DP) Algorithms
3.1.1.1. Smith-Waterman Algorithm. Smith-Waterman algorithm,
first proposed by Temple F. Smith and Michael S. Waterman in
1981 [48], is a classical sequence alignment algorithm. It performs
optimal local sequence alignment between two nucleotide sequences

or protein sequences. Smith-Waterman algorithm adopts the
dynamic programming strategy, hence, the algorithm guarantees to
find the optimal alignment with respect to the scoring system. How-
ever, the quadratic time and space complexity limits its efficiency
for database search problem. A linear space approach was proposed
by Miller Webb and Myers Eugene in 1988 [49], which is the very
basics of modern implementations. Efforts on accelerating Smith-
Waterman algorithms have primarily involved appeals to hardware
parallelization. For CPU approaches, SIMD instruction sets are used
to invoke data parallelism. Early approaches [50,51] focus on finding
inherent parallelism in the algorithm. The wavefront method takes
advantage of the fact that matrix cells on the same anti-diagonal are
independent. The major shortcoming is that the SIMD vectors are not
fully filled at startup and finishing stages. A pretty-fast SSE2 approach
proposed by Farrar in 2007 [24] uses a striped strategy to over-
come the dependency along the query sequence. Rognes proposed
SWIPE [25] in 2011, which is considered as the fastest SSE imple-
mentation. Unlike previous approaches, SWIPE takes inter-sequence
parallelism and the score profile strategy for efficient score fetching.
This is the first time that Smith-Waterman implementations achieve
BLAST-level performance with respect to specific score matrix. Rucci
et al. [52] propose SWIMM in 2015 to take advantage of the novel
AVX2 instruction set. Benefited from wider vector processing capa-
bilities, the authors report a performance of 354.8 GCUPS on dual
14-core Intel Xeon CPUs, outperforms the SWIPE by a factor of 1.5.

On GPUs, Liu et al. [53] first proposed a streaming approach in
2007, which is considered as the first effective GPGPU implementa-
tion. There are various implementations on Nvidia’s GPUs, of which
the best is CUDASW++ [26,27,43]. This work removed query length
limitations which is often required by mapping the problem set onto
a texture. With the 8-bit video SIMD instruction introduced in the
Kepler architecture, the 3.1 version of CUDASW++ achieves over
130 GCUPS on a single Nvidia Tesla K40c, which is at least 3× faster
than the 8-core CPUs without AVX2 support. More over, the CUD-
ASW++ 3.1 could cooperate CPUs and GPUs to work together to
fully utilize the computing power available in the system.

On Intel Xeon Phi computing platform, XSW [29] and
SWAPHI [28] are the first works to report the performance at 62
GCUPS and 70 GCUPS, respectively. The original XSW implemen-
tation is based on native model, which limited the database size.
In the follow up work LSDBS [9] proposed in 2015, the limitation
on database size is removed, and the CPUs are also involved in the
computing pipeline. LSDBD uses a dynamic distribution strategy to
balance the workload among the CPUs and Xeon Phi cards, which is
proved to be effective and scalable. SWIMM also proposed a Xeon
Phi implementation based on guided auto-vectorization with the
performance at 41 GCUPS.

3.1.1.2. ClustalW. ClustalW [54] is a famous progressive algorithm
for multiple sequence alignment. Since it first introduced in 1990s,

Table 1
Classic bioinformatics applications. C&C is short for cluster and cloud. In this table, at first we give a short description about specifications of each application. Then three major
characteristics are listed: memory access pattern, computation density and I/O density. At last we list platforms the applications have been implemented on.

Application Specification Memory access pattern Computation I/O Platform

Multi-core GPU MIC C&C

ClustalW Classic but old Regular and irregular High Low [19] [20] [21] [22]
Clustal Omega Fast and scalable Regular and irregular High Moderate [23] NA NA NA
Smith-Waterman Small database, optimal results Regular High Moderate [24,25] [26,27] [28,28,29] [25]
Blast Large DB, heuristic algorithm Irregular and regular High Low [30,31] [5,32,33] Yes NA
BLAT In memory, fast than Blast Regular and irregular High Moderate NA NA NA NA
Bowtie2 Typical short read alignment tool Irregular Moderate Moderate [34] NA NA NA
BWA Typical short read alignment tool Irregular suffix array Low High [35] NA [36] [37]
mrFast Short read, all mapper Regular filter strategy High Low [38] NA NA NA
SPADES Fast assembler, single and multi cell Irregular Low High [39] NA NA NA
BFCounter Error correction Regular High Low [40] NA [41] NA
Fiona Error correction Irregular Low High [42] NA NA NA



406 Z. Yin et al. / Computational and Structural Biotechnology Journal 15 (2017) 403–411

Table 2
Parallel algorithm design.

Application Description Data organization Coarse-grained parallel Fine-grained parallel

SWIPE [25] Multi-core Smith-Waterman database search Sequence profile Multi-thread SIMD
XSW [29] Smith-Waterman database search on Xeon Phi Pre-processing Multi-thread SIMD
CUDASW++ [43] Smith-Waterman database search on GPUs Texture filter Data SIMT
LSDBS [9] Large-scale database search on Xeon Phi Pre-processing Multi-thread SIMD
CUDA-BLASTP [5] Accelerating BLASTP utilizing CUDA DFA reorganization Data SIMT
MSA-CUDA [20] ClustalW accelerated using CUDA Sorting Data SIMT
FHAST [44] FPGA-based acceleration of BOWTIE in hardware Index Data –
BWA [45] A typical best mapper algorithm BWT & FM-index Multi-thread –
BitMapper [46] A typical all mapper algorithm Hash index Multi-thread SIMD
DecGPU [47] GPU based error correction algorithm bloom filter Data SIMT

ClustalW has been widely accepted by biologists as a fast and accu-
rate MSA tool. ClustalW has been implemented on different plat-
forms, MT-ClustalW [19] on multicore platform, streaming algorithm
on early GPGPUs [53], CUDA-MSA [20] and GPU-ClustalW [55] on
GPUs utlizing CUDA, a simple implementation on Xeon Phi [21] and
ClustalW-MPI [22] on CPU clusters. ClustalW consists of three main
stages: pairwise distance computation, guide tree construction and
profile-profile alignment along the guide tree.

Most works on HPC platforms pay much attention to stage one
for it’s the most time consuming part with the time complexity
O(N2L2). Li presents ClustalW-MPI implemented using MPI which
is targeted for clusters. But ClustalW-MPI only parallelize the first
and the third stages of ClustalW using coarse-grained parallel strate-
gies. MT-ClustalW is designed for multi-core processors but merely
parallelizes stage 2 using Pthreads library on the basis of ClustalW-
SMP [56]. MSA-CUDA is the first known ClustalW implementation on
GPU using CUDA, and it parallelize all three stages of the progressive
alignment alignment. In MSA-CUDA, Liu describe a novel algorithm
to reconstruct the guide tree in parallel. But MSA-CUDA doesn’t
supply large scale dataset (MSA-CUDA crashes when running 8000
sequences as input with average length 1000 bp). CUDA-ClustalW is
a recently presented version of ClustalW on GPU. CUDA-ClustalW fol-
lows similar strategies as MSA-CUDA but CUDA-ClustalW supports
multiGPUs which means it can handle larger dataset than MSA-
CUDA. In 2014 Borovska et al. [21] give a discussion on using Intel
Xeon Phi to accelerate ClustalW, they try to use MPI and OpenMP
hybrid programming to map ClustalW on Intel Xeon Phi. Their per-
formance estimation and the analyses show that the hybrid parallel
program implementation utilizing MPI and OpenMP of ClustalW
scales well as the number of cores increase up to 60 cores.

3.1.2. Heuristic Algorithms
3.1.2.1. Blast (Basic Local Alignment Search Tool). Blast [30] is one
of the most common used biology gene sequence database search
tools, and it can search proteins and nucleic acids gene database.
After it was proposed last century, that article has been cited over
50000 times. It is a heuristic algorithm, which is different from clas-
sical dynamic programming algorithm (Smith-Waterman). Blast is
faster but the precision of result is lower than dynamic programming

algorithm. With the development of HPC, many parallel research
about Blast has been done, such as NCBI-Blast, FSA-Blast [31], CUDA-
Blastp [57], cuBlastp [57] and Hadoop-Blast [58]. NCBI-Blast is the
most popular blast implementation, which is on multi-core platform,
and is supported by NCBI. Hadoop-Blast implements a distributed
BLASTP by combining Hadoop and multi-GPUs, and it achieves better
availability and fault tolerance.

Blast algorithm can be divided into four stages. FSA-Blast
algorithm optimize the first stage of blast. It uses a deterministic
finite automaton (DFA) model to optimize the cache hit rate. The
ordinary hit lookup table is the simple one-dimensional array. Cache
hit rate can be optimized by utilizing DFA model because it orga-
nizes the data in neighbor location that will be accessed in the near
future. This optimization has become a basic part of many other blast
algorithm.

CUDA-Blastp algorithm add a extra filter in traditional blast
algorithm to filter most apparently wrong results, and retain the
similar results. Coarse-grained parallelism is thread level data par-
allel in GPU. The fine-grained parallel uses the classical wave-front
Smith-Waterman parallel algorithm.

CuBlastp algorithm is another GPU implementation which opti-
mizes the first two stages of blast algorithm. The irregular memory
access pattern of blast algorithm is difficulty in first two stages.
To our knowledge, the cuBlastp is the first fine-grained parallel
implementation of the first two stages of blast algorithm.

3.1.3. Hidden Makrov Model (HMM) Based Algorithm
3.1.3.1. HMMER. [59] is another commonly used biological sequence
database search tool which was first introduced in 1998. It does this
by comparing a profile-HMM to database sequences. The profile-
HMM is constructed by using hmmbuild program in HMMER pack-
age. HMMER3 [60] is totally rewrite from the HMMER in order to
get better performance by using a heuristic filter to find high-scoring
un-gapped matches. HMMER3 also support multi-thread in coarse-
grained parallelism and SIMD in fine-grained parallelism. Both the
heuristic filter and the parallel scheme make HMMER3 much faster
than the old version of HMMER.

Moreover, in recent years in order to take advantages of new high
performance hardwares, several works on accelerating HMMER on

Table 3
Application optimization.

Application Data transfer Memory access Cache Load balance Heterogeneous computing

SWIPE Synchronized Score profile – Dynamic CPU
XSW Asynchronized Score profile – Dynamic Xeon Phi native
CUDASW++ Synchronized Query profile Texture Static CPU + GPU
LSDBS Asynchronized Score profile Multi-pass Dynamic CPU + Xeon Phi
CUDA-BLASTP Synchronized Memory coalescing DFA index table Static GPU
MSA-CUDA Synchronized Memory coalescing – – GPU
FHAST Synchronized – – – FPGA
BWA – Index – – –
BitMapper – – – Dynamic CPU
DecGPU Asynchronized Memory coalescing – Dynamic GPU



Z. Yin et al. / Computational and Structural Biotechnology Journal 15 (2017) 403–411 407

GPUs have been reported such as [61] in 2010 and [62] in 2012. And
Oliver et al. [63] reported their work on accelerating HMMER search-
ing using FPGAs in 2008. As far as we know, there is not HMMER
implementation on Intel MIC platform reported yet.

3.2. Next Generation Sequence (NGS)

3.2.1. Mapper
3.2.1.1. BWA. BWA is a famous algorithm for NGS read alignment. It
is introduced in recent years, and has three algorithms, BWA-aln [35]
for short reads, BWA-sw [45] for long reads, and BWA-mem [64]
which is suitable for both short reads and long reads. BWA has been
widely accepted by biologists as an accurate NGS read alignment
tool. BWA has been implemented on regular multicore platforms,
and there is also a pBWA [65] for clusters. A CUDA-based project,
CUSHAW [66] has similar functions with BWA.

BWA is one of the best-mappers, which means finding a best map-
ping position on a reference sequence of each input read. It mainly
contain the following stages:

• Build a FM-index for reference sequence.
• Search for patterns of a read in the index of reference, find some

mapping position.
• Detailed alignment and generate the alignment information.

The key data structure in the BWA algorithm is FM-index, it is one
kind of full text index based on BWT (Burrows-Wheeler transform).
Searching a pattern with length n in the FM-index of a reference has a
time complexity O(n), but this procedure comes with badly irregular
memory accesses. This procedure is one of the most time-consuming
parts of the BWA algorithm, so making full use of SIMD instructions
for fine-grained parallelization in BWA algorithm or migrating BWA
algorithm is a very hard task.

The only well-known and similar approach on heterogeneous
devices is CUSHAW, which stores the index in global cached mem-
ory of GPUs, but the pseudocode of its CUDA kernel shows it uses
an algorithm like BWA to do searching in BWT, with some discrete
global memory access in the kernel, which is not able to make full
use of the power of GPUs. And as its performance evaluation shows
it doesn’t achieve a landslide win on performance when the length
of reads grows to 100bp compared to CPU implementations.

In the coarse-grained parallelization, BWA originally uses a multi-
threading strategy in a single node, it divides tasks to blocks, and
dispatch threads for each block with static load balancing in each
block.

3.2.1.2. All Mapper. All mapper is desirable in many applications
such as ChIP-seq experiments [67] and RNA-seq transcript abun-
dance quantification [68], for it can identify all candidate locations.
To our best knowledge, all existing approaches of all mapper are
based on seed-and-extend paradigm and runs on CPU. mrFAST [38]
is one of the popular seed-and-extend based mappers. It first builds a
hash index for reference genome and then takes use of the hash index
to retrieve all candidate locations for each read to verify. Recently,
mrFAST incorporates FastHash [69] to filter clearly false mappings
before verification. mrFAST does not support multi-threading, which
means it will take a long mapping time when dataset is large.

As for coarse-grained parallelization, RazerS3 [70] has developed
a load balancing scheme. RazerS3 has implemented a pigeonhole fil-
ter, which means it takes much less time to filter less false locations.
Since time spent for verification dominates the whole running time
and the verification can be done dynamically, all threads can finish
almost simultaneously.

Hobbes [71] uses a dynamic programming algorithm to choose
k + 1 non-overlapping q-grams with lowest frequency, where q-
grams are substrings of length q. Thus, the number of candidate

locations is minimal. Hobbes 2 [72] selects k + 2 q-grams instead of
k + 1 and only verifies locations that appear at least twice to filter
more false candidates. Hobbes and Hobbes 2 also create extra two
threads which are corresponding for input reads and output results.
Therefore, memory consumption of Hobbes and Hobbes 2 will not be
affected by the number of reads or the number of mappings.

Both RazerS3 and Hobbes 2 adopt a banded Myers algorithm [73]
to verify each candidates one by one after filtration. To further inves-
tigate fine-grained parallelism, BitMapper [46] extends the banded
Myers algorithm to verify multiple candidates against a read simul-
taneously by loading several bit vectors into a machine word. More-
over, it has implemented this refined algorithm with 128-bit regis-
ters and SSE/SSE2 instruction set on CPU, which significant reduces
verification time. The 512-bit VPU of Xeon Phi coprocessor is usually
suitable to vectorized and accelerate bit-parallel algorithms such as
Wu-Manber approximate pattern matching algorithm [74].

3.2.2. Error Correction
3.2.2.1. Error Correction. The Next Generation Sequencing (NGS) pro-
duces massive amounts of reads that contains far more errors than
traditional sequencing methods. A number of methods have been
developed to prune such errors. These error-correction methods
could be categorized into three types: (i) k-spectrum based, (ii) suf-
fix tree/array-based and (iii) MSA-based methods. The k-spectrum
based methods decompose reads into a set of all the k-mer segments
that appears in them. The k-mers that belong to the same genomic
location tends to be within a small Hamming distance from each
other, which provides a method to directly align sequences by identi-
fying such a k-mer set without resorting to the time-consuming MSA.
Errors can be corrected by converting each constituent k-mer to the
consensus. The suffix tree/array based error-correction methods are
generalization of the k-mer-based approach. They handle multiple k
values and their corresponding threshold. The MSA-based methods
first use the MSA tools to generate the alignment. Corrections are
applied when the reads involved in the same alignment appears at a
moderate number, and the maximal edit distance between the con-
stituent reads and the consensus of the alignment is blow an user-
defined threshold [75]. Many techniques for error correction have
been developed in recent years. The BLESS [76] is a distributed k-mer
spectrum-based error-correction tool. It adopts a Bloom filter with
the ability to tolerate a higher false-positive rate. The CUDA-EC [77]
is a scalable parallel algorithm for correcting sequencing errors in
high-throughput short read data. It is a spectral alignment method
developed for CUDA-enabled GPUs. The DecGPU [47] presents a dis-
tributed GPU-enabled error correction method for high-throughput
short reads by combining CUDA and MPI. It features the capability to
invoke the computing power of GPU clusters.

4. Case Study

The Smith-Waterman algorithm performs exhaustive search to
find the optimal alignment between two biological sequences. The
dynamic programming scheme guarantees to find the optimal result,
but is computing demanding as well. The heuristic alternatives, such
as the BLAST and FASTA, has been among the most influential bio-
logical tools. However, the heuristic scheme trades speed with sen-
sitivity, which makes acceleration for Smith-Waterman algorithm
still meaningful. Our motivation is to compare and find the best
parallelization method with respect to hardware architectures. The
platforms involve GPU and Intel MIC.

4.1. GPU

On GPUs, Liu et al. [53] first proposed a streaming approach in
2007, which is considered as the first effective GPGPU implemen-
tation. This work adopts the wavefront method. The problem is



408 Z. Yin et al. / Computational and Structural Biotechnology Journal 15 (2017) 403–411

mapped as a graph problem to be solved by OpenGL APIs. As Nvidia
announced their CUDA computing platform, general-purpose com-
puting on GPUs becomes easy. Various implementations emerged of
which the CUDASW++ series [26,27,43] is among the bests.

The first version of CUDASW++ is implemented for the first gen-
eration of Nvidia Tesla GPUs. This study implements intra-sequence
parallelism and inter-sequence parallelism to find that the inter-
sequence parallelism achieves better performance. The speedup over
CPUs of the same generation using Farrar’s method is not significant.

The CUDASW++2.0, which is optimized for the Fermi architec-
ture, is a great success. The authors implemented the wavefront
method, Farrar’s vectorization method, and a novel SIMT method on
CUDA-enabled GPUs. The wavefront and vectorization methods take
intra-sequence parallelism, while the SIMT method adopts the inter-
sequence parallelism. Unlike SWIPE, the CUDASW++2.0 uses query
profile for efficient substitution score fetching. Texture memory is
used to accelerate access to query profile and the subject sequences.
In fact, the texture units on GPU can cover the overhead in assigning
the scores to the correct thread, which is the major bottleneck for
query profiles.

CUDASW++3.0 is considered as the state-of-art GPU implemen-
tation. It aligns CPUs together in the searching procedure. On the
GPU side, the novel video SIMD instructions are adopted with inter-
sequence parallelism. In order to further improve efficiency, the
authors proposed a variant of query profile to reduce the shifting
operations. The variant query profile achieves better performance,
but meet a cache-miss problem with long query sequence whereby
the L2-cache fails to hold the profile. The authors turns to use the
standard query profile for long queries. On the CPU side, the SWIPE
program is invoked for calculation. This study makes a static parti-
tion of the database to distribute workload to CPUs and GPUs. The
ratio is defined over core number, clock speed and a tuning constant.
There’s a load-balancing problem when the tuning constant is not
proper tuned. However, this constant is inconsistent with different
hardware configurations.

4.2. Intel MIC

The recently released Xeon Phi coprocessor is based on the Intel
Many Integrated Core (MIC) architecture. It offers many cores on a
single die. Each core is designed to be power efficient while providing
a high throughput for highly parallel workloads. A closer look reveals
that the core uses a short pipeline and is capable of supporting 4
threads in hardware. There are 32 vector processing units (VPU) on
each core. VPU is an important component of Xeon Phi and it features
a novel 512-bit SIMD instruction set. Thus, the VPU can execute 16
single-precision or 8 double-precision floating operations per cycle
in parallel. Intel has implemented a high bandwidth memory hier-
archy on Xeon Phi. In this hierarchy, each core is equipped with a
32 KB L1 instruction cache, a 32 KB L1 data cache and a 512 KB uni-
fied L2 cache. The coprocessor could work in native mode, offload
mode and symmetric mode. The native model uses the coprocessor
as a standalone subsystem. The user needs to log on to the coproces-
sor like a remote host to carry out search tasks. The offload model
works like GPUs to perform the computing-intensive tasks. The sym-
metric mode let the host CPU and the Xeon Phi coprocessor run in
parallel with Message Passing Interface (MPI). The coprocessor works
as a MPI node.

The major studies to accelerate Smith-Waterman algorithms
includes XSW [29], SWAPHI [28], LSDBS [9] and SWIMM [52],
whereby the LSDBS is a consequent work of XSW.

Features of these works are listed in Table 4. In this table GCUPS
(giga cell updates per second) is the standard performance mea-
surement of Smith-Waterman algorithm. Inspired by the success
of SWIPE on CPU platforms, all of these works use inter-sequence
parallelism and score profile to achieve peak performance. SWAPHI

Table 4
The major studies for accelerating Smith-Waterman algorithm on Xeon Phi.

Study Work mode Perf (1 Phi) CPU DB size restrict

XSW Native 70 GCUPS N/A Phi memory
SWAPHI Offload 62 GCUPS N/A System memory
SWIMM Offload 45 GCPUS Yes System memory
LSDBS Offload 72 GCUPS Yes Hard disk

also implemented intra-sequence parallelism to prove that the inter-
sequence parallelism is better. However, as the cache system is not so
abundant than that on CPUs, a cache miss problem with long query
sequence is reported by XSW and SWIMM. SWIMM proposed an vari-
ant of score profile, which is called adaptive profile to solve the cache
miss problem. The performance is not very satisfying. SWAPHI com-
putes 8 cells along the subject sequence before switching to the next
query residue, while the XSW only computes 4 cells. This method
effectively reduce memory access by trading off register usage. The
LSDBS proposed a multi-pass method to solve the problem. The
major idea is to scan the query sequence in multiple passes in order
to improve the data access locality. This method achieves the best
performance on Xeon Phi.

5. Open Issues in Big Biological Data Analytic

5.1. High Performance Computing

HPC is defined to speedup particular applications for efficiency.
HPC is a must for most biological data analytics tasks to tackle the
challenges of large amount of data and long running time. Overall,
we categorize various HPC techniques into three directions, which
are algorithm improvement, architecture-aware optimization and
workflow optimization.

5.1.1. Algorithm Improvement
This is to reduce time complexity for a specific algorithm. For

example, a short sequence alignment employing brute force search
has the complexity of exponential time. However, modern align-
ment programs usually adopt advanced indexing techniques, such
as hashing, suffix trees or even Bloom Filter, which can reduce the
complexity significantly. On the other hand, some algorithms trade
accuracy for time, such as the sequence search algorithms BLAST
and Smith-Waterman. However, there is always a limit to improve
the time complexity. On the other hard, researchers also notice that
even with the same complexity, the performance may vary greatly
on different architectures. This is because a program’s characteristics
(compute and memory access patterns) may or may not fit into a spe-
cific hardware architecture. Following this clue, a number of studies
are conducted for architecture-aware optimization.

5.1.2. Architecture Aware Optimization
This refers to performance optimization on a particular hard-

ware platform for a given application. The general idea is to opti-
mize the algorithm’s compute and memory access patterns, such as
reorganization of data layouts, to fit into the architecture features.
Note that nowadays CPUs are no longer the only available comput-
ing processors. Researchers are also interested in emerging parallel
architectures, such as GPUs, Xeon Phi coprocessors, and FPGAs.

There are two major challenges when applying architecture-
aware optimization techniques to biological data analytics algo-
rithms. First, it is usually necessary to carefully tune or even redesign
the algorithms to fit into the architecture features. For example, GPUs
are suitable for massive data parallelism, but suffer seriously from
irregular computation and memory access patterns. Unfortunately,
many biological data analytics applications employ irregular data
structures, such as the suffix tree index used by short read alignment,



Z. Yin et al. / Computational and Structural Biotechnology Journal 15 (2017) 403–411 409

the sparse matrix used in SNP detection and the graph representation
adopted in most genome assembly algorithms [78]. A lot of research
efforts are taken to investigate and optimize those algorithms to
make them suitable for the GPU architecture [5,43,53,79,80]. Another
example is Xeon Phi, which features the 512-bit vector process-
ing units (VPUs). Algorithms must be redesigned to take advantage
from VPUs using intrinsics. Researchers have been working on par-
ticular optimization for biological algorithms on Xeon Phi, such
as Smith-Waterman sequence alignment [28] and construction of
whole-genome networks [81]. Second, those co-processors usually
have their own limitations, which should be taken into account when
designing algorithms. For example, they have very limited memory
capacity, which is usually smaller than 10 GB. Typical applications,
such as genome assembly, may consume hundreds of GB of memory,
which is challenging to be implemented on such accelerators.
Additionally, most accelerators communicate with CPUs via PCIe
with the bandwidth of a few GB per second only. Therefore, data
transfer between a host and accelerator must be minimized.

5.1.3. Workflow Optimization
Besides the performance improvement and architecture aware

optimizations, there is workflow optimization because of application
dependency. The major purposes of workflow optimization are to
facilitate the deployment on a distributed environment and reduce
the overhead from data movement between individual programs.
Researchers have been working on this direction for some typical
workflows. For example, Crossbow [82] integrates sequence align-
ment (Bowtie [83]) and SNP detection (SOAPsnp [17]) into a single
cloud-based solution. It combines and optimizes the two compo-
nents in an automatic and parallel pipeline running on a single or
multiple nodes. The similar workflow is also studied to eliminate the
expensive external sorting between the sequence alignment and SNP
detection [84].

5.2. Performance Scalability

For big biological data analytics applications, a single processor or
accelerator usually cannot satisfy the performance requirement. As
a result, researchers have been exploiting to scale biological applica-
tions to a large number of compute nodes in a cluster. Note that, in
this section the scalability refers to the computing environment con-
sisting of a number of processors that are not tightly coupled on the
same chip. They may be either discrete processors within a server,
such as CPUs and GPU, or distributed computing employing multiple
compute nodes.

Some of biological data analytics applications are highly scalable
to multiple nodes using task parallelism. To take short read align-
ment as an example, each node is usually able to hold the entire
index data structure (typically around 2 GB for human genome), and
then processes the reads assigned to this node. There is no depen-
dency among different nodes. Crossbow [82] employs this solution
to scale both sequence alignment and SNP detection in a cloud with
multiple nodes.

Instead, some of biological data analytics applications are difficult
to employ task parallelism because of dependency. Fine-grained data
parallelism should be explored to scale the applications to a large
number of nodes. One of the typical applications that belongs to this
category is genome assembly [16]. Modern assembly algorithms are
based on graph data structures and algorithms, such as graph con-
struction, traversal and correction. Therefore, it suffers from most
conventional issues for distributed graph processing, such as imbal-
anced workloads and heave communication overhead. There are
many research efforts to try to address those issues on various hard-
ware platforms [85–88]. In general, better scalability can be achieved
after careful algorithm redesign and tuning.

5.3. Programming Productivity

Biological data analytics also faces the challenge of programming
productivity, which is similar to other HPC applications. Based on
state-of-the-art HPC technologies, we discuss the programming pro-
ductivity challenges from shared memory and distributed memory
systems separately.

Traditional shared-memory parallel programming models mainly
include POSIX Threads (Pthreads) and OpenMP. However, as many-
core architectures are emerging recently, those programming mod-
els are either not well supported or unsuitable because of hardware’s
unique features. For example, GPUs adopt CUDA or OpenCL for pro-
gramming. Xeon Phi can support OpenMP and Pthreads, but also
encourages developers to use Intel Cilk Plus. Additionally, Xeon Phi
has a set of 512-bit SIMD intrinsics to utilize VPUs, which essentially
is the key of high performance on Xeon Phi. The advantage of using
those programming languages that are offered by vendors is that
they are capable of taking advantage of architecture-aware optimiza-
tions to fully utilize hardware resources. However, the disadvantages
are the difficulty of programming and poor portability. Because
of this reason, both research and industry are exploiting portable
and efficient programming models for various many-core architec-
tures. Fortunately, we have witnessed that efforts such as OpenCL
and OpenACC have shed some light on heterogeneous computing.
Additionally, researchers also port the MapReduce programming
framework [89], which is originally proposed for distributed com-
puting, to many-core architectures (such as to GPUs and Xeon Phi)
to facilitate the parallel programming. However, both the portable
programming frameworks (such as OpenCL) and MapReduce models
sacrifice performance to ease the burden of parallel programming.
For example, OpenCL has very limited capability to utilize SIMD VPUs
on Xeon Phi. MapReduce is only suitable for data parallelism. There-
fore, most developers today are still using vendor-offered program-
ming languages to develop biological data analytics applications on
shared memory systems for efficiency.

On the other hand, MPI is the most widely used program-
ming model for distributed computing. Researchers utilize MPI to
develop high-performance biological data analytics tools on super-
computers [85,90]. However, due to the demanding requirements of
scalability and fault tolerance, new programming models are pro-
posed for large scale distributed computing, such as MapReduce and
Spark. Those distributed programming frameworks improve the scal-
ability as well as simplify the programming. Therefore, there are
studies to deploy biological data analytics applications in cloud based
on MapReduce [82,91,92]. However, data structures of some biological
applications, such as the graph representation in genome assembly, do
not naturally fit into the MapReduce’s data parallelism model. Future
research efforts to explore distributed graph processing frameworks
(such as Pregel [93]) for such applications are worthwhile.

6. Conclusion

We have presented a survey of computing platforms for big
biological data analytics in this paper. We identity two high-level
categories of biological data analytics problems: those for analyzing
whole sequence data and those for analyzing NGS data. We have dis-
cussed the characteristics of these two categories of problems as well
as appropriate computing platforms used to solve them. Challenges
of designing efficient big biological data analytics algorithms have
also been listed. In addition, a case study that compares the perfor-
mance of HPC Smith-Waterman algorithms on different computing
platforms has been provided. Finally, we have added a discussion of
open issues in designing HPC big biological data analytics algorithms.

Conflict of interest

The authors declare that they have no conflict of interest.



410 Z. Yin et al. / Computational and Structural Biotechnology Journal 15 (2017) 403–411

References

[1] Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ. et al. Big data:
astronomical or genomical? PLoS Biol 2015;13(7):e1002195.

[2] Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG. et al. The
sequence of the human genome. Science 2001;291(5507):1304–51.

[3] Luebke D. CUDA: Scalable parallel programming for high-performance scien-
tific computing. Biomedical imaging: from nano to macro, 2008. ISBI 2008. 5th
IEEE International Symposium on, IEEE. 2008. p. 836–8.

[4] Vogelgesang M, Chilingaryan S, Rolo TDS, Kopmann A. UFO: a scalable
GPU-based image processing framework for on-line monitoring. High perfor-
mance computing and communication & 2012 IEEE 9th International Con-
ference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th
International Conference on, IEEE. 2012. p. 824–9.

[5] Liu W, Schmidt B, Muller-Wittig W. CUDA-BLASTP: accelerating BLASTP on
CUDA-enabled graphics hardware. IEEE/ACM Trans Comput Biol Bioinform
2011;8(6):1678–84.

[6] Qian H, Deng Y, Wang B, Mu S. Towards accelerating irregular EDA applications
with GPUs. Integr VLSI J 2012;45(1):46–60.

[7] Malcolm J, Yalamanchili P, McClanahan C, Venugopalakrishnan V, Patel K,
Melonakos J. Arrayfire: a GPU acceleration platform. SPIE Defense, Security,
and Sensing. International Society for Optics and Photonics. 2012.
84030A–84030A.

[8] Heinecke A, Vaidyanathan K, Smelyanskiy M, Kobotov A, Dubtsov R, Henry G.
et al. Design and implementation of the linpack benchmark for single and
multi-node systems based on Intel® Xeon Phi coprocessor. Parallel & dis-
tributed processing (IPDPS), 2013 IEEE 27th International Symposium on,
IEEE. 2013. p. 126–37.

[9] Lan H, Liu W, Schmidt B, Wang B. Accelerating large-scale biological database
search on Xeon Phi-based neo-heterogeneous architectures. Bioinformatics
and biomedicine (BIBM), 2015 IEEE International Conference on, IEEE. 2015.
p. 503–10.

[10] Chan S-H, Cheung J, Wu E, Wang H, Liu C-M, Zhu X. et al. MICA: a fast short-read
aligner that takes full advantage of intel many integrated core architecture
(MIC).2014.arXiv preprint arXiv:14024876.

[11] Venter JC. Multiple personal genomes await. Nature 2010;464(7289):676–7.
[12] DNA Sequencing Costs, http://www.genome.gov/sequencingcosts/.
[13] An Introduction to Next-Generation Sequencing Technology, http://

www.illumina.com/content/dam/illumina-marketing/documents/products/
illumina_sequencing_introduction.pdf.

[14] Lam T, Li R, Tam A, Wong S, Wu E, Yiu S. High throughput short read alignment
via bi-directional BWT. Bioinformatics and biomedicine, 2009. BIBM ’09. IEEE
International Conference on. 2009. p. 31–6.

[15] Li Y, Terrell A, Patel JM. WHAM: a high-throughput sequence alignment
method. Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11. 2011. p. 445–56.

[16] Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J. et al. SOAPDenovo2: an empiri-
cally improved memory-efficient short-read de novo assembler. GigaScience
2012;1(1).18+.

[17] Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K. et al. SNPdetectionformassively
parallel whole-genome resequencing. Genome Res 2009;19(6):1124–32.

[18] Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J. SNP calling, geno-
type calling, and sample allele frequency estimation from new-generation
sequencing data. PLoS ONE 2012;7(7):e37558.

[19] Chaichoompu K, Kittitornkun S, Tongsima S. MT-ClustalW: multithreading
multiple sequence alignment. Parallel and distributed processing symposium,
2006. IPDPS 2006. 20th International, IEEE. 2006. 8 pp.

[20] Liu Y, Schmidt B, Maskell DL. MSA-CUDA: multiple sequence alignment on
graphics processing units with cuda. Application-specific systems, architec-
tures and processors, 2009. ASAP 2009. 20th IEEE International Conference on,
IEEE. 2009. p. 121–8.

[21] Borovska P, Gancheva V, Tsvetanov S. Optimization and scaling of multiple
sequence alignment software ClustalW on Intel Xeon Phi. Partnership for
Advanced Computing in Europe (PRACE).; 2014.

[22] Li K-B. ClustalW-MPI: Clustalw analysis using distributed and parallel comput-
ing. Bioinformatics 2003;19(12):1585–6.

[23] Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W. et al. Fast, scalable
generation of high-quality protein multiple sequence alignments using Clustal
Omega. Mol Syst Biol 2011;7(1):539.

[24] Farrar M. Striped Smith-Waterman speeds database searches six times over
other SIMD implementations. Bioinformatics 2007;23(2):156–61.

[25] Rognes T. Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation. BMC Bioinform 2011;12(1):221.

[26] Liu Y, Schmidt B, Maskell DL. CUDASW++ 2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtualized
SIMD abstractions. BMC Res Notes 2010;3(1):93.

[27] Liu Y, Wirawan A, Schmidt B. CUDASW++ 3.0: accelerating Smith-Waterman
protein database search by coupling CPU and GPU SIMD instructions. BMC
Bioinforma 2013;14(1):117.

[28] Liu Y, Schmidt B. SWAPHI: Smith-Waterman protein database search on Xeon
Phi coprocessors. Application-specific systems, architectures and processors
(ASAP), 2014 IEEE 25th International Conference on IEEE. 2014. p. 184–5.

[29] Wang L, Chan Y, Duan X, Lan H, Meng X, Liu W. XSW: accelerating biologi-
cal database search on Xeon Phi. Parallel & distributed processing symposium
workshops (IPDPSW), 2014 IEEE International, IEEE. 2014. p. 950–7.

[30] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol 1990;215(3):403–10.

[31] Cameron M, Williams HE, Cannane A. A deterministic finite automaton for
faster protein hit detection in BLAST. J Comput Biol 2006;13(4):965–78.

[32] Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics processors to accelerate
protein sequence alignment. Bioinformatics 2011;27(2):182–8.

[33] Zhang J, Wang H, Lin H, W-c Feng. CuBLASTP: fine-grained parallelization
of protein sequence search on a GPU. Parallel and distributed processing
symposium, 2014 IEEE 28th International, IEEE. 2014. p. 251–60.

[34] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods 2012;9(4):357–9.

[35] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 2009;25(14):1754–60.

[36] Cui Y, Liao X, Zhu X, Wang B, Peng S. B-MIC: an ultrafast three-level parallel
sequence aligner using MIC. Int Sci Comput Life Sci 2015;1–7.

[37] L. Ping, Speeding up large-scale next generation sequencing data analysiswith
pbwa, J Appl Bioinform Comput Biol.

[38] Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F. et al.
Personalized copy number and segmental duplication maps using next-gener-
ation sequencing. Nat Genet 2009;41(10):1061–7.

[39] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS. et al.
SPAdes: a new genome assembly algorithm and its applications to single-cell
sequencing. J Comput Biol 2012;19(5):455–77.

[40] Melsted P, Pritchard JK. Efficient counting of k-mers in DNA sequences using a
bloom filter. BMC Bioinform 2011;12(1):333.

[41] Polychroniou O, Ross KA. Vectorized bloom filters for advanced SIMD proces-
sors. Proceedings of the Tenth International Workshop on Data Management
on New Hardware, ACM. 2014. p. 6.

[42] Schulz MH, Weese D, Holtgrewe M, Dimitrova V, Niu S, Reinert K. et al. Fiona:
a parallel and automatic strategy for read error correction. Bioinformatics
2014;30(17):i356–i363.

[43] Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC
Res Notes 2009;2(1):73.

[44] Fernandez EB, Villarreal J, Lonardi S, Najjar WA. FHAST: FPGA-based accel-
eration of Bowtie in hardware. IEEE/ACM Trans Comput Biol Bioinform
2015;12(5):973–81.

[45] H Li RD. Fast and accurate long-read alignment with Burrows-Wheeler trans-
form. Bioinformatics 2010;25(14):1754.

[46] Hyyrö H. A bit-vector algorithm for computing Levenshtein and Damerau edit
distances. Nord J Comput 2003;10(1):29–39.

[47] Liu Y, Schmidt B, Maskell DL. DecGPU: distributed error correction on mas-
sively parallel graphics processing units using CUDA and MPI. BMC Bioinform
2011;12(1):85.

[48] Smith TF, Waterman MS. Identification of common molecular subsequences. J
Mol Biol 1981;147(1):195–7. http://view.ncbi.nlm.nih.gov/pubmed/7265238.

[49] Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci
1988;4(1):11–7.

[50] Wozniak A. Using video-oriented instructions to speed up sequence compari-
son. Comput Appl Biosci 1997;13(2):145–50.

[51] Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence database
searches using parallel processing on common microprocessors. Bioinformatics
2000;16(8):699–706.

[52] Rucci E, García C, Botella G, De Giusti A, Naiouf M, Prieto-Matías M. An ener-
gy-aware performance analysis of SWIMM: Smith-Waterman implementation
on Intel’s multicore and manycore architectures. Concurrency Comput Pract
Experience 2015;27(18):5517–37.

[53] Liu W, Schmidt B, Voss G, Müller-Wittig W. Streaming algorithms for
biological sequence alignment on GPUs. IEEE Trans Parallel Distrib Syst
2007;18(9):1270–81. http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.
1069. http://dx.doi.org/10.1109/TPDS.2007.1069.

[54] Thompson JD, Higgins DG, Gibson TJ. Clustal W: improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res
1994;22(22):4673–80.

[55] Hung C-L, Lin Y-S, Lin C-Y, Chung Y-C, Chung Y-F. CUDA ClustalW: an efficient
parallel algorithm for progressive multiple sequence alignment on multi-GPUs.
Comput Biol Chem 2015;58:62–8.

[56] O. Duzlevski, SMP version of ClustalW 1.82, unpublished (2002).
[57] Liu W, Schmidt B, Müller-Wittig W. CUDA-BLASTP: accelerating BLASTP on

CUDA-enabled graphics hardware. IEEE/ACM Trans Comput Biology Bioinform
2011;8(6):1678–84. http://dx.doi.org/10.1109/TCBB.2011.33.

[58] Hung C-L, Hua G-J. Local alignment tool based on hadoop framework and GPU
architecture. BioMed Res Int 2014;2014:Hindawi Publishing Corporation.

[59] Eddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England)
1998;14(9):755–63.

[60] Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011;7(10):
e1002195.

[61] Ganesan N, Chamberlain RD, Buhler J, Taufer M. Accelerating HMMER on GPUs
by implementing hybrid data and task parallelism. Proceedings of the First ACM
International Conference on Bioinformatics and Computational Biology, ACM.
2010. p. 418–21.

[62] Li X, Han W, Liu G, An H, Xu M, Zhou W. et al. A speculative HMMER search
implementation on GPU. Parallel and distributed processing symposium
workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, IEEE. 2012.
p. 735–41.

http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0005
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0010
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0015
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0020
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0025
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0030
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0035
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0035
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0040
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0045
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0050
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0050
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0055
http://www.genome.gov/sequencingcosts/
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0060
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0065
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0070
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0070
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0075
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0080
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0085
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0085
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0090
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0095
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0100
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0105
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0110
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0115
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0120
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0125
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0130
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0135
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0140
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0145
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0150
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0155
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0160
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0165
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0170
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0180
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0185
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0190
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0195
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0200
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0205
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0210
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0215
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0220
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0225
http://view.ncbi.nlm.nih.gov/pubmed/7265238
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0235
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0240
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0245
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0250
http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.1069
http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.1069
http://dx.doi.org/10.1109/TPDS.2007.1069
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0260
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0265
http://dx.doi.org/10.1109/TCBB.2011.33
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0275
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0275
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0280
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0285
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0290
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0295


Z. Yin et al. / Computational and Structural Biotechnology Journal 15 (2017) 403–411 411

[63] Oliver T, Yeow LY, Schmidt B. Integrating FPGA acceleration into HMMer.
Parallel Comput 2008;34(11):681–91.

[64] H. Li, Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM.

[65] L. Ping, Speeding up large-scale next generation sequencing data analysiswith
pbwa, J Appl Bioinform Comput Biol.

[66] Liu Y, Schmidt B, Maskell DL. CUSHAW: a CUDA compatible short read aligner
to large genomes based on the Burrows-Wheeler transform. Bioinformatics
2012;28(14):1830–7.

[67] Newkirk D, Biesinger J, Chon A, Yokomori K, Xie X. AREM: aligning short
reads from ChIP-sequencing by expectation maximization. J Comput Biol
2011;18(11):1495–505.

[68] Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of
sequencing experiments. Nat Methods 2013;10(1):71–3.

[69] Xin H, Lee D, Hormozdiari F, Yedkar S, Mutlu O, Alkan C. Accelerating read
mapping with fastHASH. BMC Genomics 2013;14(Suppl. 1):S13.

[70] Weese D, Holtgrewe M, Reinert K. Razers 3: faster, fully sensitive read mapping.
Bioinformatics 2012;28(20):2592–9.

[71] Ahmadi A, Behm A, Honnalli N, Li C, Weng L, Xie X. Hobbes: opti-
mized gram-based methods for efficient read alignment. Nucleic Acids Res
2011;40(6):e41–e41, Oxford University Press.

[72] Kim J, Li C, Xie X. Improving read mapping using additional prefix grams. BMC
Bioinform 2014;15(1):1.

[73] Myers G. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J ACM 1999;46(3):395–415.

[74] Tran TT, Schindel S, Liu Y, Schmidt B. Bit-parallel approximate pattern match-
ing on the Xeon Phi coprocessor. Computer architecture and high performance
computing (SBAC-PAD), 2014 IEEE 26th International Symposium on, IEEE.
2014. p. 81–8.

[75] X. Yang, S. P. Chockalingam, S. Aluru, A survey of error-correction methods for
next-generation sequencing, Briefings in Bioinformatics.

[76] Heo Y, Wu X-L, Chen D, Ma J, Hwu W-M. BLESS: Bloom filter-based error
correction solution for high-throughput sequencing reads. Bioinformatics
2014;30(10):1354–62.

[77] Shi H, Schmidt B, Liu W, Muller-Wittig W. Accelerating error correction in high-
-throughput short-read DNA sequencing data with CUDA. Parallel distributed
processing, 2009. IPDPS 2009. IEEE International Symposium on. 2009. p. 1–8.

[78] Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using
De Bruijn graphs. Genome Res 2008;18(5):821–9. http://dx.doi.org/10.1101/gr.
074492.107.

[79] Lu M, Zhao J, Luo Q, Wang B, Fu S, Lin Z. GSNP: A DNA single-nucleotide poly-
morphism detection system with GPU acceleration. International conference
on parallel processing, ICPP. 2011. p. 592–601.

[80] Lu M, Tan Y, Bai G, Luo Q. High-performance short sequence alignment with
GPU acceleration. Distributed Parallel Databases 2012;30(5–6):385–99.

[81] Misra S, Pamnany K, Aluru S. Parallel mutual information based construction of
whole-genome networks on the Intel (R) Xeon Phi (TM) coprocessor. Parallel
and distributed processing symposium, 2014 IEEE 28th International. 2014.
p. 241–50. http://dx.doi.org/10.1109/IPDPS.2014.35.

[82] Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL. Searching for SNPs with cloud
computing. Genome Biol 2009;10(11). R134+. http://dx.doi.org/10.1186/gb-
2009-10-11-r134.

[83] Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-effi-
cient alignment of short DNA sequences to the human genome. Genome Biol
2009;10(3).R25-10.

[84] Lu M, Tan Y, Zhao J, Bai G, Luo Q. Integrating GPU-accelerated sequence
alignment and SNP detection for genome resequencing analysis. Proceedings
of the 24th International Conference on Scientific and Statistical Database
Management. SSDBM’12. 2012. p. 124–40.

[85] Georganas E, Buluç A, Chapman J, Oliker L, Rokhsar D, Yelick K. Parallel De
Bruijn graph construction and traversal for de novo genome assembly. Pro-
ceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’14. 2014. p. 437–48.

[86] Jackson B, Regennitter M, Yang X, Schnable P, Aluru S. Parallel de novo assem-
bly of large genomes from high-throughput short reads. Parallel distributed
processing (IPDPS), 2010 IEEE International Symposium on. 2010. p. 1–10.

[87] Moretti C, Thrasher A, Yu L, Olson M, Emrich SJ, Thain D. A framework for scal-
able genome assembly on clusters, clouds, and grids. IEEE Trans Parallel Distrib
Syst 2012;23(12):2189–97.

[88] Liu Y, Schmidt B, Maskell DL. Parallelized short read assembly of large genomes
using De Bruijn graphs. BMC Bioinform 2011;12:354.

[89] Dean J, Ghemawat S. Mapreduce: Simplified data processing on large clusters.
Proceedings of the 6th Conference on Symposium on Operating Systems Design
& Implementation - Volume 6. OSDI’04. 2004.

[90] Lin H, Balaji P, Poole R, Sosa C, Ma X, W-c Feng. Massively parallel genomic
sequence search on the blue gene/p architecture. Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC ’08. 2008. p. 33:1–33:11.

[91] The genome analysis toolkit: a mapreduce framework for analyzing next-
generation DNA sequencing data. Genome Res 2010;20(9):1297–303. http://
dx.doi.org/10.1101/gr.107524.110.

[92] Chang Y-J, Chen C-C, Ho J-M, Chen C-L. De novo assembly of high-throughput
sequencing data with cloud computing and new operations on string graphs.
Cloud computing (CLOUD), 2012 IEEE 5th International Conference on. 2012.
p. 155–61.

[93] Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N. et al. Pregel: a
system for large-scale graph processing. Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’10. 2010. p. 135–46.

http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0300
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0310
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0315
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0320
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0325
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0330
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0335
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0335
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0340
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0345
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0350
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0360
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0365
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1101/gr.074492.107
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0375
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0380
http://dx.doi.org/10.1109/IPDPS.2014.35
http://dx.doi.org/10.1186/gb-2009-10-11-r134
http://dx.doi.org/10.1186/gb-2009-10-11-r134
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0395
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0395
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0400
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0405
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0410
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0415
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0420
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0425
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0430
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1101/gr.107524.110
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0440
http://refhub.elsevier.com/S2001-0370(17)30035-1/rf0445

	Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges
	1. Introduction
	2. Big Biological Data and Computing Platforms
	2.1. Characteristics of Big Biological Data Analytics
	2.1.1. Huge Amount of Data
	2.1.2. Extremely Long Running Time
	2.1.3. Application Dependency

	2.2. Computing Platforms and Programming Models

	3. Taxonomy
	3.1. Whole Genome Sequence
	3.1.1. Dynamic Programming (DP) Algorithms
	3.1.1.1. Smith-Waterman Algorithm
	3.1.1.2. ClustalW

	3.1.2. Heuristic Algorithms
	3.1.2.1. Blast (Basic Local Alignment Search Tool)

	3.1.3. Hidden Makrov Model (HMM) Based Algorithm
	3.1.3.1. HMMER


	3.2. Next Generation Sequence (NGS)
	3.2.1. Mapper
	3.2.1.1. BWA
	3.2.1.2. All Mapper

	3.2.2. Error Correction
	3.2.2.1. Error Correction



	4. Case Study
	4.1. GPU
	4.2. Intel MIC

	5. Open Issues in Big Biological Data Analytic
	5.1. High Performance Computing
	5.1.1. Algorithm Improvement
	5.1.2. Architecture Aware Optimization
	5.1.3. Workflow Optimization

	5.2. Performance Scalability
	5.3. Programming Productivity

	6. Conclusion
	 Conflict of interest
	References


