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Spin defect centers with long quantum coherence times (T2) are key solid-state plat-
forms for a variety of quantum applications. Cluster correlation expansion (CCE) tech-
niques have emerged as a powerful tool to simulate the T2 of defect electron spins in
these solid-state systems with good accuracy. Here, based on CCE, we uncover an alge-
braic expression for T2 generalized for host compounds with dilute nuclear spin baths
under a magnetic field that enables a quantitative and comprehensive materials explora-
tion with a near instantaneous estimate of the coherence time. We investigated more
than 12,000 host compounds at natural isotopic abundance and found that silicon car-
bide (SiC), a prominent widegap semiconductor for quantum applications, possesses
the longest coherence times among widegap nonchalcogenides. In addition, more than
700 chalcogenides are shown to possess a longer T2 than SiC. We suggest potential
host compounds with promisingly long T2 up to 47 ms and pave the way to explore
unprecedented functional materials for quantum applications.

quantum information j spin qubits j electron spin coherence j cluster correlation expansion j
scaling laws

Defect centers have been used to demonstrate a wide range of functionalities (1–5),
including remote entanglement (6), control of large nuclear spin clusters (7), and quan-
tum sensing of local temperature (8) and magnetic (9), electric (10), and strain fields
(11). While these functionalities have been investigated in only a few solid-state sys-
tems, new defects and host materials may offer a new range of opportunities. Weber
et al. (1) consolidated the generalized criteria for the preferable properties of materials
hosting defect spin qubits (4, 12): a wide bandgap, small spin-orbit coupling, nuclear
spin free lattice, and availability of high-quality single crystals. These criteria led to the
identification of silicon carbide (SiC) as a promising host for qubits (12–21), which
broadened the field beyond the negatively charged nitrogen-vacancy (NV�) center in
diamond and uncovered a varied landscape of materials for defect spin qubits with dif-
ferent relative advantages and disadvantages (15, 20).
For most quantum applications, the key property of interest is the electron spin

coherence time, generally defined as T2 by Hahn echo measurement (i.e., after refocus-
ing of slow fluctuating noise by a single p-pulse) (14). Generally, the electron spin T2
is limited by the interaction of the spin with its surrounding electric, thermal, and
magnetic noise. However, in the absence of additional paramagnetic defects or spin
relaxation time (T1) limitations, in most quantum applications, the electron spin T2 is
well predicted by considering only the effect of nuclear spins in the host materials,
especially in high-quality, wide-bandgap crystals at cryogenic temperatures. For an S =
1/2 electron spin interacting with a few I = 1/2 nuclear spins, analytical solutions for
the electron spin echo envelope modulation have existed for half a century (22). Unfor-
tunately, a quantitative expression is absent for efficiently predicting T2 of a typical
electron spin in a solid-state defect center interacting with several thousand nuclear
spins (16, 23–26), which is highly desirable in the wide-range search of new quantum
host materials.
Cluster correlation expansion (CCE) (16, 23–25, 27–29) enables accurate calcula-

tions of the T2 of an electron spin interacting with a large number of nuclear spins by
dividing the spins into small subsets of interacting spin clusters (see Fig. 1A). In partic-
ular, the pairwise treatment of nuclear spins has been shown to provide excellent accu-
racy in simulating the decoherence of spin qubits in several dilute nuclear spin host
materials: Bi dopants in silicon (28), the NV� center in diamond (25), and the neutral
divacancy (VV0) center in SiC (16). CCE calculations, however, are still not an easy-
to-use prediction scheme, requiring derivations from first principles calculations (30,
31) and computationally expensive simulations especially for compounds with I > 1/2,
limiting their use for high-throughput searches of new qubit host materials.

Significance
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Here, we use CCE to uncover a method not only to explore
over 12,000 host materials for quantum applications and to dis-
cover candidates with a long electron spin coherence time but
more importantly to also expand viable quantum materials
options by providing an easy-to-use T2 prediction scheme. We
first investigate how materials with a dilute (<1022 cm�3)
nuclear spin bath comprising one or multiple nuclear spin spe-
cies can be decomposed into separate independent baths for
each species. We then show that the electron spin T2 of each
individual bath is scaled by its nuclear spin g-factor value, den-
sity, and quantum number regardless of the crystalline structure
of the material. This results in a single phenomenological
expression for estimating any compound’s T2 without treating
the spin Hamiltonian and the time evolution of spins exactly.
By calculating T2 for every element in the periodic table and
mining materials databases (32, 33), we categorize, calculate,
and predict many candidates with long quantum coherence
times. Even though T2 can be limited by interactions other
than those with the nuclear bath, our results set the fundamen-
tal materials limit for spin decoherence when all other sources
are eliminated, in the absence of dynamical decoupling and iso-
topic purification.

Results and Discussion

To begin, we benchmarked our CCE calculations (Materials and
Methods) on known materials. Fig. 1B shows the examples of cal-
culated Hahn echo signal (LðtfreeÞ) using CCE as a function of
the free evolution duration (tfree) in naturally abundant 4H-SiC,
diamond, and Si, as well as typical wide bandgap oxides with B =
5 T. We neglect the Fermi contact terms of the short-range hyper-
fine interaction given the localized electronic nature of deep-
level defects and a dilute nuclear spin density in the host. This

assumption is supported by the close match with previous CCE
calculations on diamond and SiC that reproduce the
experimentally obtained coherence times (16, 25). We ignore the
quadrupole interaction, whose main effect increases the central
spin’s T2 by up to several tens of percent. As such, our
calculations without quadrupolar terms represent a lower bound
on T2. The quantitative evaluation of quadrupole interaction is
discussed in SI Appendix, section 5. We also adopt the secular
approximation for the hyperfine interaction, which holds when Sz
is a good quantum number in the presence of a strong B. Within
this approximation, the Hamiltonian is reduced into bath
Hamiltonians treating only the nuclear spin bath (16), meaning
the calculation is mostly agnostic to the spin defect Hamiltonian.
This is crucial to allow for wide-scale predictions.

T2 is obtained by fitting the calculated LðtfreeÞ with a decay
function e� tfree=T2ð Þη , where η is a stretching exponent (34). The
envelope of the Hahn echo signal is critically determined by
the dipole–dipole interactions between nuclear spins. Fig. 1C
shows the LðtfreeÞ of SiO2 (α-quartz) with B = 300 mT, divid-
ing the interactions between baths of homo- and heteronuclear
spins in the simulation. Heteronuclear spin interactions do not
contribute to decoherence in this time range, supporting that
the homonuclear spin–spin interaction is the main source of
decoherence due to the decoupling of the heteronuclear spin
baths. Generally, when the heteronuclear dipole–dipole interac-
tions are much smaller than the difference of their Zeeman
energies, the heteronuclear spin baths are decoupled (26). We
find that even in a worst-case scenario, any heteronuclear spin
baths can be decoupled under reasonable experimental condi-
tions (Materials and Methods).

When heteronuclear spin baths are decoupled, one can simu-
late a compound’s Hahn echo signal by considering only the
homonuclear spin baths; LðtfreeÞ is calculated by ∏iLiðtfreeÞ
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Fig. 1. Quantum spin coherence simulation. (A) Schematic of CCE-2 of a defect electron spin in a heteronuclear compound. Arrows indicate nuclear (red
and green) and electron (skyblue) spins with finite quantum numbers. (B) Hahn echo signal LðtfreeÞ versus free evolution time tfree calculated by CCE-2 for
naturally abundant isotopic diamond, 4H-SiC, silicon, and several oxides obtained by simulation under external magnetic field B = 5 T. (C) LðtfreeÞ of SiO2

(α-quartz) with B = 300 mT. In addition to the LðtfreeÞ with dipole–dipole interactions with all baths (black), that with solely homonuclear spin bath (orange)
and heteronuclear spins (blue) are shown. Error bars indicate the sample SD of the Hahn echo signal for different instances of nuclear spin coordinates.
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simulating the Hahn echo signal (LiðtfreeÞ) of isotope i,
resulting in approximated T2 of a compound by that of isotope
i (T2,i )

T2 ≈ ∑
i
T2,i

�ηi

� �� 1
η0
, [1]

with ηi and η0 assumed to be 2 in most cases (Materials and
Methods).
The electron spin T2,i depends mainly on the spin density

(ni) of nucleus i, the crystalline structure, the nuclear spin
g-factor (gi), and the nuclear spin quantum number (Ii). We
computed T2,i with different ni , crystalline structure, and B.
The nuclear spin density and crystalline structure dependences
of T2,i for

13C are shown in Fig. 2A. For n 13C < 1022 cm�3

(cf. natural abundance in diamond: 1.9 × 1021 cm�3), T2,13C is
well fitted by the power law a 13C n 13C

�1:0, where a 13C is the
coefficient of the power law. The scaling exponent �1.0 repro-
duces previous CCE simulations for diamond and SiC (16,
35). Most importantly, at this density T2,13C is independent of
the crystal structure and is governed by interactions between
“randomly” positioned 13C nuclei. As nspin increases above 10

22

cm�3, the effect of anisotropy of the dipole–dipole interaction
(25, 28, 36) becomes relevant and T2 deviates from the power
law except in the amorphous limit.
As an estimate in the dilute limit, we can therefore scale T2,i

as ai ni�1:0, where the coefficient ai , dependent on gi and Ii , is
derived by a fit with the power law to the calculated T2,i versus
ni as shown in Fig. 2A. Fig. 2B then presents ai for all stable
isotopes computed by CCE and the corresponding T2,i at ni =
1.0 × 1020 cm�3 as a function of gi . The calculated data line
up well with different series of Ii . The lines are the power law
fits ai ¼ b gij jβ, with the coefficient b and the exponent β. Fig.
2C summarizes b versus Ii and the exponent β versus Ii . For
spin-1/2 isotopes, β has been analytically calculated to be �13/
8 ∼ �1.63 (7), which is shown as a dashed line in Fig. 2C, and
is in good agreement with numerically obtained β = �1.64 ±
0.07 within the error bar regardless of the Ii . We found that b
changes with Ii and is fitted by the power law b∝I�1:10±0:03

i as
shown by the dotted line, which indicates that T2,i can be
expressed by gi

�� ��Ii 0:66� ��1:6
. Fig. 2D shows T2,i versus

gi
�� ��Ii 0:66, where all the isotopes of all the elements collapse into
one line within the error bars. From fitting with a power law,
we determined the phenomenological expression of ai for all
isotopes as ai ¼ c gi

�� ���1:6
Ii

�1:1, with c being an isotope inde-
pendent constant = 1.5 × 1018 cm�3s. We therefore obtained
the simple expression for T2,i with scaling factors gi , Ii , and ni
(in cm�3) as

T2,i ¼ 1:5 × 1018 gi
�� ���1:6

Ii
�1:1 ni�1:0 ðsÞ: [2]

This expression, obtained by considering CCE of all stable iso-
topes, combined with Eq. 1 enables an instantaneous estimate
of the defect’s T2 within any host material without treating
defect or bath Hamiltonians exactly, valid for dilute nuclear
spin baths. This results in a comprehensive prediction of mate-
rials with long T2 without the need for any CCE simulations,
even for high I , or in complex heteronuclear systems. This
quantitatively derived scaling relation indicates that not only
ni , but also more importantly gi and Ii , have a critical effect on
the coherence time.
We have assumed defect centers with electron g-factor ge ¼ 2

and S = 1/2 above, while for S > 1/2 centers, a two-level sys-
tem (qubit) can be assigned to a given electron spin transition,
acting similarly but not equivalently to S = 1/2 under the

secular approximation (Materials and Methods). For S = 1, for
example, T2 is shown to be ∼10% longer than that for S = 1/2
through CCE calculations (16) (SI Appendix, section 10).
Using a generalized fictitious spin for the magnetic dipole tran-
sition m�

S i $ mþ
S i

���� and recalculating using CCE, we found
an expansion of Eq. 2 that modifies its constant prefactor c
with different ge for S = 1/2 to 3/2 transitions as shown in Fig.
2E. Dashed lines are the fits to power laws c∝g δe , and the expo-
nent δ is ∼ �0.39, which is in good agreement with theoreti-
cally obtained value for S = 1/2 and I = 1/2 as �3/8 ∼ �0.38
(25). Note that although ge can be anisotropic depending on
the symmetry of the crystal structure and/or the presence of
strong spin-orbit interaction, the scaling holds for the aniso-
tropic ge under the secular approximation (see Materials and
Methods). Likewise, T2 can also be anisotropic and can depend
on the direction of the external magnetic field. This is therefore
a universal coherence time holding for all transitions for elec-
tron spin centers with a dilute spinful nuclear host (SI
Appendix, sections 8 and 9). This expression also hints toward
further possible theoretical work that may unravel the physics
behind this universal scaling.

In order to prepare for a wide-scale exploration of coherence
times for host materials, we investigated the T2 of every ele-
ment in the periodic table, assuming a natural abundance of
isotopes, as shown in Fig. 3, taking the element density
(nelement) of 1.0 × 1023 cm�3 based on the scaling relationship
in Eqs. 1 and 2 and assuming an electron spin g-factor of 2.
This table provides a unique lens to explore the materials engi-
neering guidelines for synthesizing quantum-relevant materials
with tailored spin coherence properties. Among the elements
that form solid compounds, only cerium has no effect on T2
because all stable isotopes have Ii = 0. In addition, there are
seven elements with longer coherence times than carbon, which
suggests their allotropes or compounds could yield longer
coherence time than that of diamond spin centers.

Finally, we demonstrated a comprehensive prediction of T2
based on Eqs. 1 and 2. We utilized structural information from
online databases (32, 33) to automate the process, considering
12,847 stable materials with first principles–predicted bandgaps
larger than 1.0 eV (Datasets). Table 1 shows the list of the
materials with T2 > 10 ms. Here, we assumed materials have
natural isotopic abundance. In addition to T2 and bandgap,
there are naturally other material considerations to be made
when exploring new host materials. The list is screened in its
generality so as to not impose too many material restrictions to
minimize any bias to the study of the materials. Thus, for
example, we have not screened materials based on their magne-
tism, Debye temperature, and dimensionality. We attribute the
slight deviations of the values on Table 1 from a full CCE cal-
culation in Fig. 1B to the error on the exponents in Eq. 2, the
anisotropy of the dipole–dipole interaction, and the fact that η
is approximated to be 2, as discussed in Materials and Methods
and SI Appendix, section 7. However, the calculated difference
is ∼20% and does not hinder screening materials for quantum
coherence. We found that CeO2 has the largest T2 of all inves-
tigated materials at 47 ms, which is virtually the upper limit of
T2 for all naturally abundant compounds. Beyond choosing the
elements of the host crystal and reducing the dimensionality of
the host (35), isotopic purification of the material (39–41) can
further extend T2 coherence times; however, isotopic purifica-
tion of certain materials is often cost prohibitive or impossible
depending on isotopic species. While dynamical decoupling
can also increase coherence, inherent limitations from control
fidelities highlight the importance of starting with a long

PNAS 2022 Vol. 119 No. 15 e2121808119 https://doi.org/10.1073/pnas.2121808119 3 of 8

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121808119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121808119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121808119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121808119/-/DCSupplemental


coherence time before applying these techniques. Indepen-
dent of the host material, some spin defect systems are inher-
ently associated with a nuclear spin, and the local hyperfine
interaction would mix the electron and nuclear spins, which
could be beneficial to prolonging the spin coherence time
(14). However, for some cases (e.g., in dynamical decou-
pling, clock transitions, or low dimensional systems), the
extent to which magnetic noise-limited coherence may be
extended has a strong correlation with the Hahn echo coher-
ence time of the bare electron spin in a three-dimensional
system, as studied here.
Of the compounds considered, there are 27 materials with

natural isotopic abundance with coherence times longer than
10 ms, all of which are composed of oxides, sulfides, and sul-
fates. Fig. 4 shows the types of all 832 materials with T2 > 1
ms. SiC has the longest T2 among nonchalcogenides, and our

results point to the exploration of chalcogenide materials for
longer T2 times than SiC.

Conclusion

We offer a simple, high-throughput method to predict
coherence times for spin defects to screen possible quantum
host materials. This is achieved by uncovering a general scal-
ing behavior for any S , Ii , ge, gi , and ni in the dilute limit
for spin coherence in solids that depends on the effective
coherence times of a compound’s constituent isotopes. The
scaling relation here can be applied to the isotopically puri-
fied materials as well, providing a predictive tool guiding
materials growth and purity requirements. While we do not
fully account for geometric factors, such as in two-
dimensional (2D) materials (35), we have demonstrated that
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Fig. 2. Scaling of quantum coherence of decoupled spin baths. (A) Predicted quantum coherence time T2 of defects in crystals composed of carbon as a
function of 13C density ni(i =

13C) with various crystal structures. The dashed line shows the fit to a power law ainα
i , with ai being coefficient, α the exponent

�1.0. An external magnetic field of 5 T is applied along the [111] direction of the diamond structure and along [001] directions of other crystal structures.
(B) Coefficient ai and corresponding T2 with nuclear spin density ni = 1.0×1020 cm�3 as a function of the absolute value of nuclear spin g-factor gij j calculated
for all stable isotopes with the nuclear spin quantum number Ii. Lines are power law fits T2,i ¼ b gij jβ on the different half-integer–Ii spins. (C) Intercept b ver-
sus Ii with the power law fit b¼ cI�1:10±0:03

i (blue), with c being the coefficient, and the exponent β versus Ii with the theoretical value β = �13/8 for Ii = 1/2
(25, 27)) (red). (D) T2 versus gij jIi0:66. The solid line is the power law fit. All simulations are conducted under external magnetic field of 5 T. (A–D) Electron g-fac-
tor ge = 2.0 and S = 1/2 are assumed. (E) Coefficient c for the transition of electron spin states between m�

S i $ mþ
S i

���� as a function of ge. Dashed lines are
the power law fits. Error bars indicate the sample SD obtained by the simulation for different crystal coordinates for the isotopes (B, D). Error bars indicate
the SE obtained from fitting the simulated CCE data (C, E).
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in the absence of magnetic ordering, the coherence time for
bulk materials depends only on the nuclear spin g-value, its
spin quantum number, and density, regardless of crystalline
structure for these dilute nuclear spin compounds. The pre-
dictive power of this expression points to 27 materials with
coherence times longer than 10 ms and to oxides or sulfides
with Ce, Fe, Ca, and Ni as cations as promising long coher-
ence time hosts from the standpoint of nuclear spins. In
combination with data mining approaches (42), these results
present potential materials systems with promisingly long
coherence times and pave the way to explore unprecedented
and varied functional materials for quantum applications.

Materials and Methods

Spin Hamiltonian, Density Matrix, and Its Time Evolution. We consid-
ered the spin Hamiltonian H defined by

H¼ HS þ HB þ HS�B, [3]

where HS and HB are Hamiltonians for electron spin and nuclear spins, respec-
tively, and HS�B indicates electron spin–nuclear spin interaction (16, 36, 43).

HS ¼�geμBBSz, [4]
HB ¼�∑

i
giμNBIz,i þ Hn�n, [5]

HS�B ≈
μ0
4p

geμBμNS
! �∑

i
gi

I
!

i

ri3
�
3 I

!
i � ri!

� �
ri
!

ri5

2
64

3
75

≈ Sz∑
i
A
!

i � I
!

i,

[6]

where ge, gi, μB, μN, and μ0 are the g-factor of the electron, the g-factor of
nuclear spin of nucleus i, Bohr magneton, nuclear magneton, and the perme-
ability of vacuum, respectively. We set the magnetic field direction along the z
direction and the electron spin quantum number to be 1/2. ri

!
, ri, B, A

!
i, S

!
, Sz,

I
!

i, and Iz,i are the vector from electron spin to the nucleus i, ri
!
��� ���, the magnetic

field, hyperfine field vector of nucleus i, the electron spin vector operator, z com-
ponent of electron spin operator, the spin vector operator of nucleus i, and z
component of the spin operator vector of nucleus i, respectively. Hn�n is the
Hamiltonian of nuclear spin–nuclear spin interactions:

Hn�n ¼ μ0
4p

μ2N∑
i, j
gigj

I
!

i � I
!

j

r3ij
�
3 I

!
i � r! ij

� �
I
!

j � r! ij

� �
r5ij

2
64

3
75, [7]

where r
!

ij is the vector from nucleus i to nucleus j and rij ¼ r
!

ij

��� ���. Two of the
approximations in Eq. 6 are valid when 1) the Fermi contact term is negligible
with a localized electron spin center and dilute nuclear spins in the host, which is
valid in most of the intrinsic and extrinsic defects in, for example, SiC and diamond
and 2) two of the electron spin states mS = ± 1=2 are of order GHz (e.g., when
one applies, for the ge ¼ 2 defects, a magnetic field larger than 30 mT, which is a
standard measurement condition for the pseudospin model). Among all the sim-
ple substances, diamond has the largest number density (1.8 × 1023 cm�3), and
the effect of the Fermi contact terms on the spin coherence time is larger than the
dipole–dipole interaction only when 13C is enriched to over 10% (40) (1.8 × 1022
cm�3). Furthermore, the materials list we show is mainly composed of oxides, sul-
fides, and sulfates with natural nuclear spin abundance, in which the nuclear spin
number density is much smaller than 13C in the diamond enriched at 10% abun-
dance. Therefore, for deep defects like the NV in diamond, the Fermi contact term
is negligible in our calculations of dilute nuclear spin compounds.

We note that depending on the symmetry of the crystal structure and/or the
presence of strong spin-orbit interaction, ge can be anisotropic. In this case, the
coherence time can be modulated by the direction of the external magnetic
field. Under the secular approximation, Eqs. 4–7 hold for the anisotropic g-factor
of the electron spin.

Under the secular approximation, the electron spin operator with S >
1=2 can be treated as a pseudospin. When we consider a generic coher-
ence mSi : m0 � 1=2i $ m0 þ 1=2ijjj (m0: half-integer), Sz is defined as
a 2 × 2 matrix with components δl,mðm071=2Þ, where δl,m is Kronecker’s
delta. For example, for m0 ¼ 1=2 ð mSi : 0i $ 1iÞjjj , which represents a
spin with an integer electron spin quantum number, we utilized a partial

matrix of the spin operator S0z ¼ 0 0
0 1

	 

, which gives an offset

1=2 0
0 1=2

	 

in Sz and the hyperfine coupling S � I, resulting in the bias

fields to the nuclear spins.
Time evolution of the density matrix ρðtfreeÞ is calculated by

ρ tfreeð Þ ¼ U tfreeð Þρ 0ð ÞU† tfreeð Þ: [8]
We used the standard Hahn echo propagator composed of p=2ð Þx pulse, free
evolution for tfree=2, px pulse, and free evolution for tfree=2 as
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Fig. 3. Periodic table for quantum coherence. Coherence time T2 based on CCE calculations for spin qubits in hypothetical material hosts with natural
abundance of a single species with element density nelement = 1.0×1023 cm�3 obtained by Eqs. 1 and 2 at the dilute limit assuming an electron spin g-factor
of 2 and quantum number of 1/2. Hatched elements contain spinful nuclear spin density over the dilute limit ni ∼1.0×1022 cm�3 at nelement = 1.0×1023 cm�3.
Note that diamond has one of the largest number densities in compounds with nC = 1.8×1023 cm�3, and nelement of each element in compound is smaller
than 1.0×1023 cm�3. The periodic table is color coded by T2 on a log scale. Materials that are difficult to make compounds from (He, Ne, Ar) or that are with-
out stable isotopes (Tc, Pm) are excluded.
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Sx
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The initial density matrix is taken to be ρ 0ð Þ ¼ ρS 0ð Þ⊗ ρB 0ð Þ using electron
spin projected density matrix ρS 0ð Þ with z projection of the spin mS ¼�1=2
state

ρS 0ð Þ ¼ �1
2

��
� 1
2

����
����, [10]

and bath projected density matrix ρB 0ð Þ
ρB 0ð Þ ¼∑

I
PI IihI ,jj [11]

with PI being the probability of the nuclear state Iij . Hahn echo signal L tfreeð Þ
is calculated by

L tð Þ ¼ Tr ρ tfreeð ÞSþ½ �
Tr ρ 0ð ÞSþ½ � , [12]

where Sþ is raising operator of electron spin (22).

CCE Calculation. Hahn echo signal LCCE�1 obtained by first- and second-order
CCE (CCE-1 and CCE-2, respectively) calculations are defined as (23)

LCCE�1 ¼∏
i
Li, [13]

LCCE�2 ¼ LCCE�1∏
i, j

Li,j

LiLj
, [14]

where Li (Li,j) is the Hahn echo signals calculated with the central elec-
tron spin and the i-th nuclear spin (electron spin and the i-th and j-th
nuclear spins). We have confirmed that in the dilute nuclear spin bath like
the compounds in Table 1, the effect of the three or higher body spin
interaction is negligible, and the LðtfreeÞ converges with CCE-2 (SI
Appendix, section 3) as with the previous report on the naturally isotopic
diamond and 4H-SiC (16, 35). In Fig. 1 B and C and SI Appendix, Fig. S2,
Hahn echo signals are calculated for 5 to 10 different sets of nuclear spin
coordinates randomly placed on lattice sites with the natural nuclear
abundance, and their average and SD of the echo signals are shown by
the symbol and the error bar, respectively. Fig. 2 B and D and SI
Appendix, Fig. S6 show calculated T2 of hypothetical host materials com-
posed of a single element with one of the stable crystal structures (Fe, W:
bcc/Au, Cu: fcc/Be, Co: hcp/C, Si: diamond/etc.) and their reported lattice
constants. There, each nuclear spin abundance is taken to realize the
nuclear spin density ni = 1 × 1020 cm�3 considering their crystal struc-
tures and lattice constants. The average and SD of T2 with 10 different
random nuclear spin coordinations on the lattice site are shown by the
symbol and error bar, respectively.

Decoupling Field. The envelope of the Hahn echo signal is critically affected by
the dipole–dipole interactions between nuclear spins. The dipole–dipole interac-
tion between heteronuclear spins is characterized by two factors: X and δ. X
indicates the dipole–dipole interactions between nucleus i and j, which is given
by Eq. 7. δ indicates the energy splitting between two levels interacting with
Iþ,i I�,j þ I�,i Iþ,j due to the different Zeeman splitting with different nuclear
spin g-factors between nuclei in addition to the dipole–dipole interaction
between them, with I±,i being the ladder operator of spin in nucleus i given by

Table 1. Top quantum coherence time T2 materials obtained by Eqs. 1 and 2 at the dilute limit assuming an
electron spin g-factor of 2 and quantum number of 1/2

No. Material T2 (ms) Crystal system ΘDebye (K) Notes

1 CeO2 47 Cubic 448
2 FeO 36 Monoclinic 298 (37) Antiferromagnetic
3 CaO 34 Cubic 646
4 CaSO4 29 Orthorhombic —

5 Ce(SO4)2 29 Orthorhombic —

6 SO3 29 Orthorhombic — KReuss ∼5 GPa
7 FeSO4 28 Orthorhombic — Ferromagnetic
8 CaS3O10 28 Monoclinic —

9 Ca3WO6 27 Trigonal —

10 WS2O9 25 Monoclinic —

11 Ca2FeWO6 24 Monoclinic — Ferromagneticn183W = 1.2 × 1021 cm�3

12 CaS 23 Cubic 449
13 Ca2NiWO6 19 Monoclinic — Antiferromagneticn183W = 1.2 × 1021 cm�3

14 S 19 Monoclinic —

15 CaWO4 18 Tetragonal 335 (38) n183W = 1.8 × 1021 cm�3

16 CS14 18 Trigonal —

17 Fe2NiO4 18 Orthorhombic — Ferromagnetic
18 S8O 17 Orthorhombic — KReuss ∼1 GPa
19 FeWO4 16 Monoclinic 405 Ferromagneticn183W = 2.0 × 1021 cm�3

20 NiSO4 15 Orthorhombic — Antiferromagnetic
21 WO3 13 Tetragonal 529 n183W = 2.5 × 1021 cm�3

22 NiWO4 12 Monoclinic — Antiferromagneticn183W = 2.1 × 1021 cm�3

23 WS2 11 Trigonal — 2D materialKReuss ∼2 GPan183W = 2.3 × 1021 cm�3

24 Sr2Si(S2O7)4 11 Monoclinic —

25 Sr2Ge(S2O7)4 11 Monoclinic —

26 CaCO3 11 Trigonal 502

138 SiO2 2.7 Tetragonal 523
298 ZnO 1.9 Hexagonal 398
709 SiC (4H) 1.1 Hexagonal 1147
936 C (diamond) 0.89 Cubic 2217 n13C = 1.9 × 1021 cm�3

1,125 MgO 0.60 Cubic 900 n29Mg = 5.2 × 1021 cm�3

Materials with T2 > 10 ms and bandgap > 1 eV, as well as those listed in Fig. 1B, are shown. Crystal system, Debye temperature ΘDebye, and other specific material properties (e.g.,
magnetism [ferromagnet/antiferromagnet], hardness [soft materials with predicted bulk modulus (Reuss average) KReuss < 10 GPa], dimensionality, and spinful nuclei density ni
[relatively high ni > 1021 cm�3] are noted for the practical use.) See datasets (45, 46) for details.
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Eq. 5. When δ≫ X, the heteronuclear spin baths are decoupled. Considering
Iþ,i I�,j þ I�,i Iþ,j is the main source of the decoherence (16), we estimated
decoupling field Bdec as

Bdec ¼ μ0
4p

μN
1
l3

gigj
gi � gj

, [15]

with l being the distance of the nearest-neighbor nucleus i and nucleus j (SI
Appendix). For example, Bdec is 0.28 mT (0.13 mT) for SiO2 (SiC), above which
the heteronuclear spin baths decouple (34, 44).

Using CCE calculations, Seo et al. (16) have numerically shown that B < 30
mT decouples heteronuclear spin baths assuming the difference of nuclear spin
g-factor values (Δg) = 0.021 and l = 1.3 Å (8). These Δg and l values are rela-
tively small among the compounds. Also in experiments, B up to 300 mT ∼1 T
is achievable with a standard yoke magnet. In Eq. 15, the decoupling field Bdec
is proportional to 1=l3Δg, thus suggesting the heteronuclear spin baths are
decoupled in most of the compounds under standard experimental conditions.

As example systems, let us consider the oxide and sulfides. The ionic radius
of the O2� is 0.14 nm at minimum; thus, Bdec is estimated to be ∼g2O=Δg ×
0.9 mT at most by Eq. 15, with Δg being the difference of the g-factors between
17O and cation. For the worst case among all isotopes,Δg = 0.024 for 9Be gives
a maximum Bdec ∼5 mT. For sulfides, the largest Bdec is given by 189Os with Δg
= 0.011, as ∼3 mT. Note that the magnetic field > Bdec used in the exploration
of the material is typically larger than the magnetic field to operate clock transi-
tions, where df/dB (f: resonance frequency) is mainly determined by the electron
spin g-factor (14, 28).

Stretching Exponent. A compound’s T2 is defined by each isotope’s coherence
time (T2,i) by the condition∑iðT2=T2,iÞ�ηi ¼ 1, where ηi is the stretching expo-
nent for theLiðtÞ. We found this T2 is well approximated by

T2 ≈ ∑
i
T2,i�ηi

� �� 1
η0
, [16]

with ηi and η0 assumed to be 2. For example, when T2,j ¼ T2,i=10
(T2,j ¼ T2,i=3), T2 in binary compounds with nucleus i and j obtained by Eq. 1
with ηi = η0 = 2 deviates from the exact T2 by 0.44% (4.0%) at the very most
among the typical ηi and ηj values 2 to 3 (8, 16).

Materials Explorations. For T2 prediction, we used crystallographic informa-
tion framework (CIF) files available at The Materials Project (32, 33). From CIF
files, ni is derived and T2 is calculated by using Eqs. 1 and 2. Only the predicted
but realistic and stable materials (i.e., materials with zero-energy above hull) are
calculated. Most of the crystallographic data are obtained by calculation at 0 K or
are based on the experimental result measured at room temperature. The ther-
mal expansion coefficient is in the order of 10�6 to 10�5/K for many materials,
which gives the error of density of the nuclear spin and resultant T2 on the order
of only 0.1 to 1%, when the temperature changes between 0 K and 300 K,
which does not affect the screening of materials for quantum coherence.

Data Availability. CCE calculation codes, calculated datasets, and scripts used
in materials exploration have been deposited in Zenodo at https://zenodo.org/
record/6323098 (45) and Qresp (https://paperstack.uchicago.edu/paperdetails/
62302ab3057dbbfb35b05d52?server=https%3A%2F%2Fpaperstack.uchicago.edu) (46).
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