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Abstract 

Genome-wide association studies (GWAS) across thousands of traits have revealed the 

pervasive pleiotropy of trait-associated genetic variants. While methods have been proposed to 

characterize pleiotropic components across groups of phenotypes, scaling these approaches to 

ultra large-scale biobanks has been challenging. Here, we propose FactorGo, a scalable 

variational factor analysis model to identify and characterize pleiotropic components using 

biobank GWAS summary data. In extensive simulations, we observe that FactorGo outperforms 

the state-of-the-art (model-free) approach tSVD in capturing latent pleiotropic factors across 

phenotypes, while maintaining a similar computational cost. We apply FactorGo to estimate 100 

latent pleiotropic factors from GWAS summary data of 2,483 phenotypes measured in European-

ancestry Pan-UK BioBank individuals (N=420,531). Next, we find that factors from FactorGo are 

more enriched with relevant tissue-specific annotations than those identified by tSVD (P=2.58E-

10), and validate our approach by recapitulating brain-specific enrichment for BMI and the height-

related connection between reproductive system and muscular-skeletal growth. Finally, our 

analyses suggest novel shared etiologies between rheumatoid arthritis and periodontal condition, 

in addition to alkaline phosphatase as a candidate prognostic biomarker for prostate cancer. 

Overall, FactorGo improves our biological understanding of shared etiologies across thousands 

of GWAS. 
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Introduction 

Genome-wide association studies (GWAS) have identified thousands of genetic variants that 

associate with complex traits and diseases affecting multiple traits1–3. Investigating this pervasive 

pleiotropy has enabled elucidating broader biological mechanisms, identifying comorbidity due to 

genetic susceptibility, and discovering or repurposing of therapeutic targets4–6.  

Previous works have proposed methods to identify pleiotropic components under two related, but 

distinct camps of approaches. The first camp is to apply matrix factorization techniques (e.g., 

truncated singular value decomposition; tSVD) on a matrix of GWAS summary data7–9. While 

matrix factorization provides a computationally efficient means of capturing apparent pleiotropic 

components, its model-free approach leaves unclear what parameters are inferred from noisy 

observations (in this case effect-size estimates). The second camp of approaches are based on 

statistical models for genetic effects, but are limited to the analysis of a small number of traits due 

to computational demands10–12. As more GWAS summary data become available in large 

biobanks13–15, it is important to develop a scalable model-based approach that allows exploring 

the phenome-wide shared genetic architecture, either known or unknown to be genetically related 

a priori. Classical factor analysis provides an analogous approach towards summarizing shared 

latent factors in data, however inference in high-dimensional biobank settings is computationally 

demanding, thus limiting the scope of applied analysis.  

Here, to identify latent pleiotropic components across thousands of phenotypes we present 

FactorGo, a Factor analysis model on Genetic associations using GWAS summary data. 

FactorGo models the uncertainty in genetic effect estimates and leverages an automatic 

relevance determination (ARD) prior to prune uninformative factors using a scalable variational 

Bayesian framework. Under extensive simulations, we find that FactorGo outperforms tSVD in 

reconstructing trait factor scores and is robust to model misspecifications. By analyzing thousands 

of phenotypes in Pan-UK Biobank, we identify alkaline phosphatase as a candidate prognostic 

biomarker for prostate cancer. Moreover, we recapitulate previously reported brain-specific 

enrichment for BMI and reproductive system and muscular-skeletal enrichment for height. For 

disease traits, we learn the shared bacterial etiology between rheumatoid arthritis and periodontal 

condition. Taken together, our results demonstrate that FactorGo prioritizes biologically 

meaningful latent pleiotropic factors which reflect shared biological mechanisms across traits. 

 

Material and Methods 

FactorGo model 

Here, we briefly describe the FactorGo generative model of observed GWAS summary data 

assuming correlations in effects arise due to pleiotropy. For a full account please see details in 

Supplemental Text 1. In principle, FactorGo assumes the true genetic effect can be decomposed 

into latent pleiotropic factors (see Figure 1). Briefly, we model test statistics at 𝑝 independent 

variants from the 𝑖th GWAS 𝑍𝑖 ≈ √𝑁𝑖 𝛽𝑖 ̂ as a linear combination of 𝑘 shared latent variant loadings 

𝐿 ∈  𝑅𝑝×𝑘  with trait-specific factor scores 𝑓𝑖 ∈ 𝑅𝑘×1 as 

𝑍𝑖 = √𝑁𝑖 𝛽𝑖 +  𝜖𝑖 = √𝑁𝑖 (𝐿𝑓𝑖  + 𝜇)  + 𝜖𝑖 , 
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where 𝑁𝑖  is the sample size for the 𝑖th GWAS, 𝜇 is the intercept and 𝜖𝑖 ∼ 𝑁(0, 𝜏−1𝐼𝑝) reflects 

residual heterogeneity in statistical power across studies with precision scalar 𝜏. Given 𝑍 =

{𝑍𝑖 }
𝑛 

𝑖=1
, and model parameters  𝐿, 𝐹, 𝜇, 𝜏, we can compute the likelihood as 

 ℒ(𝐿, 𝐹, 𝜇, 𝜏|𝑍) =  ∏ 𝑁(𝑍𝑖 |√𝑁𝑖 (𝐿𝑓𝑖  + 𝜇), 𝜏−1𝐼𝑝)𝑛
𝑖=1  . 

To model our uncertainty in 𝐿, 𝐹, 𝜇 , we take a full Bayesian approach in the lower dimension latent 

space similar to a Bayesian PCA model16 as, 

𝐿 | 𝛼 ∼ ∏ 𝑁(𝑙𝑗  | 0, 𝑑𝑖𝑎𝑔(𝛼−1))
𝑝
𝑗=1 , 

𝐹 ∼ ∏ 𝑁(𝑓𝑖  | 0, 𝐼𝑘)𝑛
𝑖=1 , 

𝜇 ∼ 𝑁(0, 𝜙−1𝐼𝑝), 

where 𝛼 ∈ 𝑅𝑘×1
>0 (𝜙 >  0) controls the prior precision for variant loadings (intercept). To avoid 

overfitting, and “shut off” uninformative factors when 𝑘 is misspecified, we use automatic 

relevance determination (ARD)16 and place a prior over 𝛼 as 

α ∼ ∏ 𝐺(𝑎𝑘 , 𝑏𝑘)𝑘 . 

Lastly, we place a prior over the shared residual variance across GWAS studies as 𝜏 ∼ 𝐺(𝑎𝜏 , 𝑏𝜏). 

We impose broad priors by setting hyperparameters 𝜙 =  𝑎𝑘  =  𝑏𝑘 =  𝑎𝜏  = 𝑏𝜏  =  10−5. 

 

Variational inference 

Given our FactorGo model and observed Z-scores summary data, we would like to infer the 

posterior distribution of parameters 𝐿, 𝐹, 𝜇, 𝛼, 𝜏. Unfortunately, there is no closed form expression 

for learning the posterior exactly, thus, we leverage variational inference to infer an approximate 

posterior distribution16,17. Let 𝐷 be the observed Z-scores and respective GWAS sample sizes. In 

brief, the true posterior distribution 𝑃(𝐿, 𝐹, 𝜇, 𝛼, 𝜏 | 𝐷) is approximated by a factorized tractable 

distribution from the conjugate families  

𝑃(𝐿, 𝐹, 𝜇, 𝛼, 𝜏 | 𝐷)  ≈   𝑄𝐿(𝐿 | 𝐷)  𝑄𝐹(𝐹 | 𝐷) 𝑄𝜇(𝜇 | 𝐷) 𝑄𝛼(𝛼 | 𝐷) 𝑄𝜏(𝜏 | 𝐷), 

where 𝑄⋅(⋅) reflects a surrogate approximating posterior for individual model parameters. The 

optimal functional forms for each 𝑄 and respective variational parameters are identified by 

maximizing the evidence lower bound on the marginal likelihood (i.e., ELBO). During inference, 

variational parameters are updated iteratively until convergence. To further improve the scalability 

of our approach, we apply a parameter expansion design that converges more rapidly18.  Namely, 

after each iteration step, the latent space 𝐹 is centered using a weighted mean and 𝐿 is 

orthogonalized to reduce coupling effects of latent parameters (see Supplemental Text 1). We 

implemented FactorGo in Python using Just-In-time (JIT) compilation through the JAX package 

(see Web Resources), which generates and compiles heavily optimized C++ code in real time 

and operates seamlessly on CPU, GPU or TPU (see Code Availability). 

 

Simulations 
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To evaluate the performance of FactorGo and tSVD, we performed simulations under a polygenic 

additive model. Specifically for 𝑖𝑡ℎ study, we generated a 𝑝-vector of true SNP effects 𝛽𝑖 as linear 

combination of 𝑘 latent factors  𝛽𝑖 = 𝐿𝑓𝑖 , where the values of 𝐿, 𝑓𝑖  were generated from 𝐿𝑗𝑘  ∼

 𝑁(0,
ℎ2

𝑔

𝑝⋅𝑘⋅2𝑠𝑗(1−𝑠𝑗)
) and  𝑓𝑖𝑘 ∼ 𝑁(0, 1), where 𝑗 ∈ [𝑝]. The minor allele frequency was sampled 

from 𝑠𝑗 ∼ 𝑈(0.01, 0.5).  For simplicity we fixed the intercept 𝜇 to zeros. Given SNP heritability ℎ2
𝑔, 

the total simulated variance in outcome 𝑌 was 𝑉𝑎𝑟(𝑌𝑖) = 1/ℎ2
𝑔 ∗ ∑ (𝛽𝑖𝑗  ∗ 2𝑠𝑗(1 − 𝑠𝑗)) 2𝑗  . Then 

residuals of each SNP effect in each study became 𝜎2
𝑖𝑗 = 𝑉𝑎𝑟(𝑌𝑖) − (𝛽𝑖𝑗 ∗ 2𝑠𝑗(1 − 𝑠𝑗))2. 

Assuming the genotype was centered but not standardized, then the standard errors were 𝑆𝐸𝑖𝑗
2̂  =

𝜎2
𝑖𝑗/{𝑁𝑖 ∗ (2𝑠𝑗(1 − 𝑠𝑗)   + (2𝑠𝑗)2)} on the per-allele unit, where GWAS sample size 𝑁𝑖  was 

sampled empirically from 2,483 Pan-UK BioBank studies in real data analysis (see Figure S4). 

Finally, we added Gaussian noise to generate observed SNP effects 𝛽𝑖̂  ∼ 𝑀𝑉𝑁𝑝(𝐿𝑓𝑖 , 𝛴𝑖̂) for 𝑖 ∈

[𝑛], where the diagonal values of 𝛴𝑖̂ were 𝑆𝐸𝑖𝑗
2̂. Observed Z-score summary statistics were 

calculated as 𝛽̂𝑖𝑗  / 𝑆𝐸𝑖𝑗
̂ .  

For each simulated dataset, we applied tSVD and FactorGo on standardized observed Z-score 

matrices with size 𝑛 × 𝑝 to compare their reconstruction error on true latent parameters. 

Standardization was applied to columns such that each SNP vector had zero mean and unit 

variance. Assuming the true model was consistent with FactorGo model and the true number of 

latent factors 𝑘 was known, we explored extensive scenarios by varying 4 different parameters: 

1) number of traits 𝑛 ; 2) number of independent causal SNPs 𝑝 ; 3) number of true latent factors 

𝑘 ; 4) additive SNP heritability ℎ2
𝑔 . Each simulated scenario has 30 replications. Next, we 

examined the influence of model misspecification under four conditions: 1) mis-specified number 

of latent factors; 2) correlated standard errors due to GWAS sample overlap; 3) no latent factors 

(i.e., no pleiotropy) and only correlated standard errors; 4) correlated test statistics due to 

moderate linkage disequilibrium (LD) after LD pruning. Lastly, we examined the robustness of 

FactorGo across a grid of 5 hyperparameters regarding prior distributions. 

 

Metrics for simulation 

We evaluated the accuracy of FactorGo and tSVD across several metrics. First, to evaluate the 

accuracy in reconstructed SNP effects matrices 𝐵 = 𝐿𝐹, we calculated the Frobenius norm 

between estimates and ground truth, i.e., ‖𝐵 − 𝐿̂ 𝐹̂‖
𝐹
. For tSVD decomposition 𝑈𝑆𝑉𝑇, we defined 

𝐹̂ = 𝑈𝑆 and 𝐿̂ = 𝑉𝑆. Second, we evaluated the accuracy in estimating variant loadings 𝐿 and factor 

scores 𝐹. To account for rotation and scaling in inferred parameters, i.e., ( 𝐿̂𝑅)(𝑅−1 𝐹̂) can give 

the same data likelihood where 𝑅𝑅−1 =  𝐼, we performed procrustes analysis to align the 

parameters with their ground truth. Briefly, given matrices 𝐴 and 𝐵, procrustes analysis19,20 aims 

to find a rotation matrix 𝑅 and scaling 𝑠 term such that 𝑚𝑖𝑛𝑅  ||𝐴 − 𝑠𝑅𝐵||2
𝐹   subject to 𝑅𝑅−1 = 𝐼. 

Here, we applied procrustes analysis on the inferred loading matrix  𝐿̂ to learn an optimal rotation 

𝑅 and scaling factor 𝑠 then computed 𝐿̃ =  𝐿̂𝑅𝑠, and calculated a final reconstruction error as 

‖𝐿 −  𝐿̃‖
𝐹
. Using the same rotation matrix 𝑅 and scaling factor 𝑠, we computed 𝐹̃ = (𝑠𝑅)−1  𝐹̂ and 

calculated reconstruction error as ‖𝐹 − 𝐹̃‖
𝐹
. 
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When no latent factors exist and test statistics correlate across studies due to residual 

confounding, we applied Levene’s test to compare the variance of inferred parameters. The 

motivation is that if non-zero error correlation induces false discovery of latent structures, then we 

expect the variance of 1/𝐸(𝛼) (or eigenvalues) to deviate from the null of constant variance 

simulated residual correlations, i.e. 𝜎2
𝜌2=0  =  𝜎2

𝜌2=0.1 = . . . = 𝜎2
𝜌2=1.  

 

Contribution score and squared cosine score  

To assess the relative importance of a trait or variant for a given factor, we calculated contribution 

scores7 for FactorGo and tSVD results. Briefly, a contribution score for trait and variant is defined 

as: 

𝑐𝑛𝑡𝑟𝑘,𝑖
𝑝ℎ𝑒 = 𝐹𝑘,𝑖

2/ ∑ 𝐹𝑘,𝑖′
2

𝑖′
 

𝑐𝑛𝑡𝑟𝑘,𝑖
𝑣𝑎𝑟  = 𝐿𝑝,𝑘

2/ ∑ 𝐿𝑝′,𝑘
2

𝑝′
 

To account for the uncertainty around inferred factors in FactorGo, we first standardized factor 

scores and variant loadings by their posterior variance before contribution score calculation, i.e.  

𝐹𝑘,𝑖/√𝑉𝑎𝑟(𝐹𝑘,𝑖) and 𝐿𝑗,𝑘/√𝑉𝑎𝑟(𝐿𝑗,𝑘) . In each pleiotropic factor, we ranked and identified the 

leading traits or variants based on contribution score (see Figure 1). To quantify the relative 

importance of each factor to a given trait, we calculated squared cosine scores7 , which are 

defined as 𝑐𝑜𝑠𝑘,𝑖
2 𝑝ℎ𝑒  = 𝐹𝑘,𝑖

2
/ ∑ 𝐹𝑘′,𝑖

2
𝑘′ , where 𝐹 is standardized for FactorGo.  

 

Quality control on traits from Pan-UK Biobank 

Out of the total 7,200 traits from up to 420,531 European individuals in the Pan-UK Biobank 

(version 04/11/22; see Web Resources), we selected traits with number of cases > 1000 for 

binary traits and total sample size > 1000 for quantitative traits. Pan-UK Biobank ran GWAS using 

SAIGE to obtain accurate P values for studies with a highly imbalanced ratio of cases to control21. 

For continuous traits, we chose GWAS results under inverse rank normal transformation to correct 

for outcome distribution. For categorical traits, we selected disease outcomes (see Table S1). As 

a result, the final list consisted of 1,677 binary and 806 quantitative traits (see manifest file in 

Table S6), spanning a wide spectrum of trait domains including diseases, medications, 

environmental exposures, physical and biomarkers measures, etc. We categorized all 2,483 traits 

into 9 distinct groups based on the description of UKB field ID (see Table S1). We observed 

marked differences in total sample size across traits, with mean 403,306 for binary traits and 

183,577 for quantitative traits (see Figure S4).  

 

Quality control on genetic variants from Pan-UK Biobank 

We filtered ~28 million autosomal variants by INFO score > 0.9, minor allele frequency > 1%, high 

quality (PASS variant in gnomAD) and high confidence variants (not extremely rare variants) 

defined by Pan-UK Biobank (see Figure S5). Then we excluded the HLA region (Chr6: 25-34Mb 
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on build hg19), indels, and multi-allelic variants. To ensure pleiotropic components across 

variants, we included SNP variants associated with at least 2 traits using P value threshold 5E-

08. Lastly, we applied LD pruning through Hail software using the in-sample LD correlation matrix 

with window size 250 kb and 𝑟2 < 0.3 (see Web Resources). These QC steps led to a Z-score 

data matrix of 51,399 variants by 2,483 traits. 0.002% missing values in Z-scores were imputed 

using SNP means. For subsequent functional interpretation, we focused only on variants included 

in the 1000 Genomes Project with functional annotation data22 (see Web Resources). 

 

Analyses of Z-score summary data 

We implemented both FactorGo and tSVD to learn 𝑘 = 100 latent factors and compare their 

findings. For FactorGo, we used broad priors by setting all hyperparameters to be 1E-05. For 

tSVD, we applied the TruncatedSVD function from sklearn python package with 20 iterations of 

randomized states (see Web resources)23. The columns of Z-score data matrix in size 𝑛 × 𝑝 were 

centered and standardized. The inferred factors were ordered by variance explained in observed 

data for FactorGo (i.e., 𝑅2) and by singular values for tSVD (see Supplemental Text 1). To show 

robustness of inferred factors subject to choice of 𝑘, we performed additional analysis using 𝑘 =

90, 110 respectively and compared the top two factors and three leading factors for focal traits in 

case studies. 

 

Case studies 

To validate results and discover biological insights, we highlighted four traits: BMI and standing 

height as characteristic polygenic traits, rheumatoid arthritis (RA) as a representative autoimmune 

disease (a family of diseases known to have substantial shared genetic basis), and prostate 

cancer (PCa) as the second common cancer for men worldwide with under-explored shared 

architecture with other traits. For each trait, we characterized the three respective leading 

pleiotropic factors, and compared results between FactorGo and tSVD. 

 

Enrichment analysis on variant loadings 

To interpret shared biology characterized by inferred factors at the tissue or cell type resolution, 

we downloaded 205 LDSC-SEG annotations for variants in 1000 Genomes Project22 (see Web 

Resources). The annotations are genes specifically expressed in 205 tissue or cell types (e.g., 

brain vs. non-brain cell types). To leverage the machinery of stratified LD score regression2,24 (S-

LDSC; see Web Resources) for identifying enriched annotation in variant factor loadings, we first 

transformed the loadings to Z-score scale. To achieve this, we defined a pseudo sample size for 

each factor as a weighted sum of GWAS sample sizes 𝑁𝑘
𝑝𝑠𝑒𝑢𝑑𝑜 = ∑ 𝑐𝑜𝑠𝑘,𝑖

2 𝑝ℎ𝑒  ⋅  𝑁𝑖𝑖 . Then we 

created pseudo Z-score by multiplying 𝑁𝑘
𝑝𝑠𝑒𝑢𝑑𝑜 ⋅  𝐿𝑗,𝑘 as the Z-score input for S-LDSC software. 

The LD scores were calculated using n=489 European ancestry individuals from 1000 Genomes 

with window size 1 cM. Additionally, the LD scores for regression SNPs were calculated 

separately as the weight for S-LDSC.  
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We ran S-LDSC on loading-based Z-scores against each annotation to identify enriched tissue or 

cell type (see Figure 1), conditioning on baseline annotations described elsewhere25. We used 

flag --n-blocks 4000 to obtain a more accurate standard error with 4000 jackknife blocks instead 

of default 200 since analyzed SNPs were LD-pruned. We calculated q value to control factor-wise 

FDR < 0.05 using the qvalue R package by fixing 𝜆 = 0, which is equivalent as Benjamini 

Hochberg adjusted p value26. Note that the null distribution of P values from S-LDSC is not uniform 

because it is a one-sided test for positive coefficient, thus it is not appropriate to estimate the 

proportion of null hypothesis using the q value method27. To demonstrate that our S-LDSC 

approach is well calibrated, we created 10 non-overlapping annotations for randomly selected 

gene sets from ~20,000 genes and computed the enrichment of these annotations over all factors 

at FDR < 5%. To compute the specificity of enriched tissue or cell types between inferred factors, 

we calculated all pairwise Jaccard indexes. Briefly, the Jaccard index measures the similarity 

between two sets 𝐴, 𝐵 by 𝐽(𝐴, 𝐵)  =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 , which is the ratio of the number of shared elements 

over the total number of unique elements.  

 

Results 

Method evaluation in simulations under model assumptions 

We assessed the performance of FactorGo in learning latent parameters across different 

simulated genetic architectures and compared results with tSVD as a baseline.  

First, we found that FactorGo outperformed tSVD exhibiting lower reconstruction error in trait 

factor scores 𝐹 across all simulated scenarios (Wilcoxon P=3.64E-109; Figure 2A and Figure 

S1). Moreover, we observed the FactorGo error in trait factor scores 𝐹 decreased with the 

increasing number of traits (P=2.09E-24; Figure S1A) and number of true latent factors (P=7.30E-

26; Figure S1C). Error in 𝐹 remained roughly constant across varying numbers of causal SNPs 

(P=0.99; Figure S2B) and average SNP heritability (P=0.36; Figure S1D). 

Second, although error of variant loading 𝐿 was not significantly different between FactorGo and 

tSVD (P=0.29; Figure 2B), we found FactorGo error decreased with increasing number of traits 

(P=5.22E-15; Figure S1A), number of true latent factors (P=1.40E-23; Figure S1C) and average 

SNP heritability (P=0.071; Figure S1D). The error in loadings increased with increasing causal 

SNPs (P=8.40E-06; Figure S1B). The accuracy in genetic effect  𝐵 estimation was not statistically 

different between FactorGo and tSVD (P=0.10; Figure 2C). 

Overall, our simulations demonstrate FactorGo provides similar estimates of model parameters 

as tSVD, with a significant improvement of trait factor scores.  

 

Method evaluation in simulations under model misspecification 

Next, we sought to assess the performance of FactorGo under various settings reflecting model 

misspecification. First, when the specified 𝑘 differs from the true number of latent factors. When 

the true number of latent factors 𝑘 = 10, FactorGo performed similarly as tSVD in estimating trait 

factor scores 𝐹 across varying 𝑘 from 2 to 20 (P=0.21; Figure 3A). However, FactorGo provided 
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more accurate estimates in trait factor scores 𝐹 than tSVD (P=0.027) when 𝑘 is underspecified 

(𝑘 < 10), compared to when 𝑘 overspecified (𝑘 > 10; Figure 3A). For variant loading 𝐿, the error 

was not significantly different between FactorGo and tSVD (P=0.25; Figure 3B). Interestingly, the 

estimates for genetic effects 𝐵 was more accurate in FactorGo (P=0.047) across different 𝑘, 

especially when 𝑘 was overestimated (P=2.48E-17; Figure 3C). 

Second, when standard errors and test statistics are correlated due to non-zero LD between 

SNPs, we observed FactorGo consistently outperformed tSVD in reconstructing trait factor scores 

(P=2.30E-78; Figure S2A-C). FactorGo was especially robust across varying magnitudes of 

correlated standard errors in estimating trait factor scores (P=1.00) and variant loadings (P=0.90; 

Figure S2A). Third, when no latent factors exist and correlated standard errors across traits due 

to unmeasured confounding (i.e., shared environment), we found little evidence of latent factor 

signals in 1/𝐸(𝛼) from FactorGo (P=1.00) or eigenvalues from tSVD (P=1.00; Figure S2D), 

suggesting both approaches are robust to this confounding.  

Lastly, we evaluated the sensitivity of FactorGo to choices of 5 hyperparameters involved with 𝛼 

(i.e., prior loading variance), 𝜇 (i.e., average SNP effect), and 𝜏 (i.e., residual heterogeneity). For 

each of the scenarios, we found FactorGo was robust to varying choices of these values in 

estimating true effects (P=0.96), trait factor scores (P=0.93) and variant loadings (P=0.90; Figure 

S3).  

Overall, our simulation results demonstrate that FactorGo accurately identifies latent 

representation of traits when 𝑘 is underestimated, when test statistics across SNPs are correlated 

due to LD, and when standard errors are correlated across traits due to unmeasured confounding 

(i.e., shared environment).  

 

FactorGo improves interpretation of the pleiotropic components of 2,483 UK Biobank traits 

Having demonstrated the performance of FactorGo in simulations, we next characterized 100 

pleiotropic factors of 2,483 real traits from the Pan UK Biobank (mean N=331,980; see Web 

Resources). We selected traits by their case or total sample size > 1000. Initial screening on ~28 

million variants by INFO > 0.9 and minor allele frequency > 1% resulted in 8,449,689 high quality 

common variants. We retained 7,624,608 bi-allelic non-HLA SNP variants and found 1,037,929 

of them associated with at least 2 traits at P value < 5E-08. Next, we subsetted to 1,023,655 

variants with LDSC-SEG annotation data followed by LD pruning with window size 250 kb and 𝑟2 

< 0.3. Finally, we constructed a matrix of GWAS z-scores at 51,399 non-HLA LD-pruned SNP 

variants across each of the 2,483 traits (see Methods). On average each GWAS trait has 109 

(SD=541) significant variants. We applied FactorGo and tSVD to the QC’d Z-score matrices to 

learn 100 pleiotropic factors. Both methods required approximately the same amount of runtime 

(~10 minutes for FactorGo on 2 GPUs; Figure S6) and explained similar amounts of variance in 

observed data (38.07% vs. 37.76%). For each method, we ranked factors by the proportion of 

variance explained. 

First, we reported the projection of all traits over the top two FactorGo pleiotropic factors in Figure 

4. Factor 1 was driven by body weight and basal metabolic rate, and factor 2 was driven by human 

standing height. We obtained similar patterns for tSVD factors (Figure S7). Interestingly, only 
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FactorGo implied the shared comorbidity of COVID-19 with BMI-related traits28 in factor 1. 

Characterization of factors 1 and 2 are given in the section “Characterizing shared biology in 

FactorGo pleiotropic factors” below.  Reminder leading factors were primarily driven by traits with 

higher heritability compared with factors that explained less z-score variance (P=1.99E-17 and 

2.99E-18, respectively; Figure S8), which is consistent with heritability reflecting variation in allelic 

effect sizes.   

Second, by quantifying and ranking the relative importance of pleiotropic factors related to a trait 

using squared cosine scores (see Methods), we observed that the cumulative squared cosine 

score for each trait was higher in FactorGo than in tSVD at each rank of pleiotropic factor 

(P<0.05/99; Figure S9). To evaluate the sufficiency of these 100 factors in explaining genetic 

associations from observed data, we found the variance explained by each factor leveled off 

quickly for both FactorGo and tSVD (Figure S10A). The posterior mean of prior precision 

parameter 𝛼 tracked closely with the variance explained by each factor, suggesting that FactorGo 

successfully shrunk less informative factors (Figure S10B). Finally, to show robustness of 

FactorGo results with respect to choice of 𝑘, we performed additional analysis using 𝑘=90 and 

110. The top two latent factors were highly consistent in 20 leading traits and 10 leading variants 

across 𝑘=90,100, and 110 results (Figure S21).  

Third, we evaluated the ability of FactorGo and tSVD to identify relevant shared biology 

demonstrated by computing tissue-specific enrichment of factor-specific loadings using S-LDSC 

(see Methods; we note that this method was well calibrated under FDR < 5%; Figure S11). 

Overall, we found that the S-LDSC coefficient Z statistics were higher in FactorGo compared with 

those from tSVD (mean 0.051 vs. -0.042, P=2.58E-10; Figure S12). Of the 100 FactorGo factors, 

we observed 69 were enriched with at least one tissue or cell type at factor-wise FDR < 5%, in 

contrast to only 40 when using tSVD. FactorGo factors were enriched with 7 tissue or cell types 

on average and spanned 191/205 tissue or cell types, compared with 130/205 from tSVD 

(P=6.59E-13). To show specificity of enriched tissue or cell types between inferred factors, we 

calculated all pairwise Jaccard indexes and found the mean similarity for FactorGo is 0.030, which 

is lower than 0.045 in tSVD (P=9.37E-04).  

Altogether, our results demonstrate that FactorGo identifies biologically meaningful pleiotropic 

components at the tissue and cell type resolution. 

 

Characterizing shared biology in FactorGo pleiotropic factors 

To characterize the pleiotropic factors identified by FactorGo, we analyzed the leading factors of 

four representative traits: BMI, height, rheumatoid arthritis (RA), and prostate cancer (PCa). For 

each trait, we identified its most relevant factor using squared cosine scores, identified the other 

traits leading this factor using contribution scores, identified the genetic variants leading this factor 

using contribution scores, and characterized the biology of this factor using S-LDSC on 205 tissue 

and cell-type-specific annotations (see Methods). We assessed that our results were overall 

consistent across 𝑘=90,100,110 (Figure S22-25). 

 

BMI is characterized by Factor 1, associated to brain cell-types 
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The leading factor for BMI was factor 1 (squared cosine score: 58.85%), which was characterized 

by body weight (contribution score: 2.32%), basal metabolic rate (2.08%) and body fat masses 

(cumulative 17.74% across 13 traits; Figure 5A, Table S2). The leading variants were proximal 

to genes such as WRN associated with Werner Syndrome (and thus short stature and abnormal 

fat distribution29; rs2553268:G>T: 0.026%) and TMEM18 associated with obesity 

(rs13029479:G>A: 0.024%; rs74676797:G>A: 0.024%)30. Out of the 33 tissues and cell types 

significantly enriched in factor 1, 31 were brain cell types including the limbic system and 

hippocampus (Figure 5A), which is consistent with previous findings of brain-specific enrichments 

in BMI genetic data2,25. The next two leading factors for BMI (factor 4 and 7) identified its shared 

biology with pharynx and digestive tissues respectively (Supplemental Text 2; Figure S13). We 

performed the same analysis using results from tSVD and found no enrichment of cell types in 

the leading factor for BMI, despite similarly characterized body fat traits (Figure S17). 

 

Standing height is characterized by Factor 2, associated with musculoskeletal tissues 

As the leading factor for standing height, factor 2 (squared cosine score: 38.67%) characterized 

leading traits as standing height (7.36%), sitting height (5.41%), and body fat masses (1.39%; 

Table S2). These associations were driven primarily by an intron variant in height-associated 

gene HMGA2 (rs343086:T>C: 0.04%)31,32. As expected, factor 2 exhibited enrichment for 

musculoskeletal tissues such as cartilage and chondrocytes (Figure 5B). Additionally, we 

replicated enrichment for reproductive organs such as uterus and cervix25,33. This result is also 

consistent with prior work demonstrating that overexpression of HMGA2 alters production of 

growth hormone in mice34, in addition to reproductive tissue development35. The next two leading 

factors for height suggested a shared biology with cardiovascular and immunity, respectively 

(Supplemental Text 2; Figure S14). For tSVD, we found its leading factor similarly characterized 

height traits, but did not exhibit evidence of cell-type enrichment (Figure S18). 

 

Rheumatoid arthritis (RA) leading factor is driven by inflammatory mechanisms 

For RA, factor 86 (squared cosine score: 7.17%) was explained primarily by inflammation-related 

traits (Figure 5C), such as blood albumin level (1.57%), blood calcium level (1.40%), 

methotrexate (a common treatment for RA; 1.39%), osteoporosis conditions (cumulative 5.52% 

across 5 traits; Table S3), and other autoimmune diseases such as inflammatory bowel disease 

(0.96%)36–38. We found these signals were driven by variants proximal to genes MFAP4 

(rs139356332:G>C: 0.036%) and IP6K2 (rs28867111:G>A: 0.033%), both of which are involved 

with inflammatory mechanisms39,40. Interestingly, we observed  factor 86 exhibited enrichment in 

periodontium and mouth (Figure 5C), which is supported by prior epidemiological evidence of 

common periodontal conditions in individuals with RA due to autoantibodies and arthritis triggered 

by oral pathogens41. The next two leading factors for RA (factor 75 and 76) suggested a shared 

biology with kidney, liver and central nervous system (Supplemental Text 2; Figure S15). 

Different from FactorGo, the leading factor for RA from tSVD characterized IGF-1 measure and 

cardiac disorders, but not enriched with any cell types (Figure S19). 
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Prostate cancer leading factor identifies ALP as a PCa candidate biomarker  

For prostate cancer (PCa), the leading factor was factor 55 (squared cosine score: 17.94%), 

characterized by diseases in prostates, including hyperplasia of prostates (1.13%) and 

inflammatory diseases in prostates (1.63%) (Figure 5D). The leading trait was alkaline 

phosphatase (ALP) level in blood (10.47%), associated to the leading missense variant in the 

ALPL gene that encodes ALP proteins (rs149344982: G>A: 0.061%). Since ALP is an enzyme 

mostly produced by the liver and bone, this factor was indeed enriched with genes specifically 

expressed in the liver. Previous work found higher serum ALP was associated with poor overall 

survival rate of patients with PCa, which likely reflects bone metastatic tumor load42. The next two 

leading factors for PCa (factor 1 and 58) suggested shared comorbidities of PCa involved with 

BMI and hormonal disorders (Supplemental Text 2; Figure S16), which is consistent with 

previous works investigating dietary risk factors43 as well as the well-documented role of hormonal 

dependency due to expression of androgen receptor (AR) 44. Different from FactorGo, the leading 

factor for PCa from tSVD prioritized corneal resistance factors, geographic home locations and 

heel bones measures (Figure S20). Additionally, tSVD results displayed enrichment for genes 

expressed specifically in colon, suggesting alternative shared biological mechanisms compared 

with FactorGo. 

 

Discussion 

In this work, we presented FactorGo to identify and characterize pleiotropic components across 

thousands of human complex traits and diseases using Z-score summary statistics. Our method 

enables investigating the phenome-wide shared genetic components while appropriately 

modeling uncertainty in variant effect estimates. When applied to 2,483 phenotypes from the UK 

BioBank individuals, we found that FactorGo factors explained more variance on average and 

were more powerful in identifying shared biology compared with tSVD factors. We validated brain-

specific enrichment for BMI factors, muscular skeletal and reproduction enrichment for height 

factors. For disease traits, FactorGo suggests a shared etiology between rheumatoid arthritis and 

periodontal conditions. Moreover, we found alkaline phosphatase as a candidate but less 

established biomarker for prostate cancer, which provided evidence for further experimental 

validation.  

FactorGo has several advantages compared to the scalable but model-free approach tSVD. First, 

FactorGo learns pleiotropic factors at similar computational cost by leveraging state-of-art 

variational inference and fast python implementation. Second, we showed using simulations that 

FactorGo outperformed tSVD in estimating trait factor score under model assumption and model 

misspecification such as correlated standard errors due to GWAS sample size. Third, in real data 

analyses, we found more enrichment of tissue or cell types in FactorGo factors than in tSVD 

factors.  

Our tool has several implications for downstream analyses. First, we demonstrated that analyzing 

phenome wide GWAS summary statistics from biobanks can not only recapitulate known shared 

biology for traits such as BMI, height and RA, but also nominate candidate biomarkers in diseases 

for further clinical evaluation such as ALP for prostate cancer. This testifies the benefit of enabling 

scalability of model-based statistical approaches jointly analyzing thousands of GWAS summary 
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data from large biobanks. Second, leveraging factor loadings within enrichment analysis using 

differentially expressed gene annotations allowed us to interpret the biology of a given factor at 

tissue or cell type level. Our implementation of S-LDSC readily allows analyzing other functional 

annotations such as chromatin accessibility and transcriptional factors.  

Although FactorGo has provided robustness in simulations and rich insights in the analyses of 

UK Biobank phenotypes, it has some limitations. First, our method focused on learning pleiotropic 

factors from linear genetic effects and ignored non-linear or epistatic effects. While many lines of 

evidence pointed to linear models capturing the bulk of trait heritability45,46, our results also 

illustrated rich meaningful biological insight that could be obtained from linear effects alone. 

Second, our model assumes independence of residual errors, which was unlikely to be true given 

overlapped samples in large biobank GWAS studies. However, we showed in simulation that the 

estimation of latent parameters was robust to error correlation. Third, FactorGo didn’t outcompete 

tSVD in estimating variant loadings in our simulations. However, we provided a probabilistic model 

to account for heterogeneity in summary statistics across GWAS studies without adding extra run-

time cost. Fourth, while our method requires to predefine the number of latent factors k, our 

simulations have shown that results are biased if k was fixed to a too high value. However, to 

ensure that this limitation is unlikely to impact our results, we performed additional analysis using 

k=90 and 110. The top two latent factors were highly consistent in 20 leading traits and 10 leading 

variants across k=90,100, and 110 results (Figure S21). The leading factors for BMI, height, RA, 

and PCa were overall consistent in traits (Figure S22-25). Fifth, in real data analysis, our selection 

of variants using genome-wide significance thresholds can underestimate the degree of pleiotropy 

due to lack of power, especially in disease traits. For example, in the case study of prostate 

cancer, we did not observe prostate cancer in the top rank of leading factor, suggesting either 

prostate cancer has limited shared components with other traits or lack of power in GWAS study 

to estimate the variant effects. Despite this, we were still able to recapitulate known shared biology 

for BMI, height and RA using this subset of pleiotropic variants. Similarly, our selection of variants 

involved an LD pruning procedure. While pruning could limit the functional interpretation of the 

latent factors, our gene-set analyses leveraging LD scores computed on a sequenced reference 

panel mitigates this issue. We anticipate that improvement in fine-mapping techniques and 

ongoing efforts to perform fine-mapping on hundreds of phenotypes at the biobank scale47 should 

improve variant selection in the near future. Sixth, unlike other methods based on non-negative 

matrix factorization4, our model did not distinguish between varying directional effects of 

pleiotropic factors, but rather focused on non-directional summary of pleiotropic effects. Seventh, 

recent works have highlighted that shared effect sizes across traits might be driven by assortative 

mating48. Further investigation is required to see how it impacts the interpretation of our results. 

Lastly, although our method was developed for single ancestry analysis, it can be extended to 

multi-ancestry data and learn shared genetic components. Taking a step further regarding the 

model and subsequent interpretation, it is also possible to incorporate functional annotation as 

priors so that interpreting functional enrichment a posteriori is more straightforward.  

In conclusion, FactorGo provides a variational Bayesian factor analysis model on GWAS 

summary statistics to learn and characterize pleiotropic factors across thousands of human 

complex traits and diseases. It allows rich biological interpretation at tissue or cell type specific 

level.   
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Figures 

 
Figure 1. Overview of FactorGo. 

FactorGo decomposes the observed Z-score summary statistics of 𝑝 variants in 𝑛 traits to 𝑘 

pleiotropic factors. The column vector of 𝐿 is variant loadings and row vector of 𝐹 is the trait factor 

score for each inferred factor as highlighted in light blue. Here we plotted for 𝑛 = 5, 𝑝 = 7, and 

𝑘 = 3 for illustrative purposes. To identify traits characterizing a given factor, we calculated 

contribution scores of this factore across all traits (top arrow). To understand the biological 

function of a given factor, we regressed transformed variant loadings on cell-type-specific 

annotations using LD score regression (bottom arrow). The colors on transformed scores 

represent the magnitude of values. 
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Figure 2. FactorGo provides accurate estimates of model parameters. 

We report errors for (A) trait factor score 𝐹, (B) variant loading 𝐿 and (C) genetic effect 𝐵 

aggregated over four sets of simulations letting varying either the number of studies (𝑛), the 

number of SNPs (𝑝), the number of true latent factors (𝑘), and SNP heritability (ℎ2
𝑔) (See separate 

results in Figure S2). The median value is displayed as a band inside each box. Boxes denote 

values in the second and third quartiles. The length of each whisker is 1.5 times the interquartile 

range. All values lying outside the whiskers are considered to be outliers.  
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Figure 3. FactorGo outperforms tSVD in trait factor scores when k is underspecified. 

We report reconstruction error for (A) trait factor score 𝐹, (B) variant loading 𝐿, and (C) genetic 

effect 𝐵 in simulations under varying user-defined latent dimensions 𝑘 = 2,5,10,15,20 when fixing 

true 𝑘 = 10 (and 𝑝 = 2000, 𝑛 = 100, and ℎ2
𝑔 = 0.1). 
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Figure 4. FactorGo factors explain more variance in traits than tSVD factors. 

We report the projection of 2,483 UK Biobank traits over the top two FactorGo pleiotropic factors. 

Error bars were 2 times square root of posterior variance for trait factor scores and plotted only 

for highlighted traits. Binary (BIN) and quantitative (QT) traits were colored differently. FEV1: 

Forced expiratory volume in 1-second; IMT: Mean carotid intima-medial thickness; “v” for different 

versions of trait.  
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Figure 5. Characterizing shared biology in pleiotropic factors leading four representative 

traits.  

We characterized the pleiotropic factors leading (A) BMI, (B) height, (C) rheumatoid arthritis (RA), 

and (D) prostate cancer (PCa). For each focal trait (row), we identified its leading factor, and 

reported the contribution scores of the 20 leading traits of this factor, the 10 leading variants with 

their closest gene, and −𝑙𝑜𝑔10(𝑞𝑣𝑎𝑙𝑢𝑒) at FDR < 5% for significantly enriched LDSC-SEG 
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annotations (truncated to 10 if more than 20 enriched annotations). See detailed result in Table 

S4. FEV1: Forced expiratory volume in 1-second; FVC: Forced vital capacity; “v” for different 

versions.  
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