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Abstract
Glioblastoma (GBM), the most common and aggressive brain tumor in adults, shows resistance to treatment, particularly radio-
therapy. One method for effective treatment is using a group of radiosensitizers that make tumor cells responsive to radiotherapy. A
class of molecules whose expression is affected by radiotherapy is the microRNAs (miRNAs) that present promising regulators of
the radioresponse. Eighteen miRNAs (miR-26a, -124, -128, -135b, -145, -153, -181a/b, -203, -21, -210, -212, -221/222, -223, -224,
-320, and -590), involved in the pathogenesis of GBM and its radioresponsive state, were reviewed to identify their role in GBM and
their potential as radiosensitizing agents. MicroRNAs-26a, -124, -128, -145, -153, -181a/b, -203, -221/222, -223, -224, -320, and -590
promoted GBM radiosensitivity, while microRNAs-135b, -21, -210, and -212 encouraged radioresistance. Ectopic overexpression of
the radiosensitivity promoting miRNAs and knockdown of the radioresistant miRNAs represent a prospective radiotherapy
enhancement opportunity. This offers a glimmer of hope for a group of the most unfortunate patients known to medicine.
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Introduction

Glioblastoma (GBM) is the most common and lethal brain

tumor in adults.1,2 It is a grade IV tumor characterized by a

heterogeneous population of cells that are genetically unstable,

highly infiltrative, angiogenic, and resistant to chemotherapy

and radiotherapy.3 Exploring the mechanisms underlying

tumor resistance and recurrence is warranted to design future

molecularly targeted therapies.2

The current first-line therapy is surgical resection, followed

by a combination of the chemotherapeutic agent temozolomide

(TMZ) and regional fractionated ionizing radiation (IR).4 In

addition, personalized therapeutic modalities against molecular

deregulated targets that drive tumor growth have been tried in

several clinical trials. However, almost all patients with GBM

undergo inevitable tumor recurrence.1,3 This could be attrib-

uted to the incomplete resection of the infiltrative tumor tis-

sues, as well as the extensive hypoxic nature of GBM tumors

that limits the efficiency of chemotherapy and radiotherapy.5,6

Multiple factors can affect resistance to radiotherapy, for

example, tumor location, size, microenvironment, and most
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importantly, genetic influences.7 Some of the major genetic

elements regulating tumorogenesis as well as the radioresis-

tance are microRNAs (miRNAs). In the following sections,

we will address the role of miRNAs in GBM and the differen-

tial miRNA genomic landscape of pre- and posttreated GBM

cells for a better understanding of the miRNA-related tumor

regression and resistance.

MicroRNAs: Key Players in Glioblastoma

MicroRNAs are small noncoding RNA molecules that regulate

gene expression at a posttranscriptional level by either cleaving

or repressing the translation of messenger RNA targets via

binding to complementary sequence.8 They control various

cellular processes including apoptosis, proliferation, cell cycle,

invasion, and angiogenesis.9 Several miRNAs have been

recently reported to be involved in modulation of GBM devel-

opment and progression.10 The miRNAs can function as onco-

genes or tumor suppressors according to the genes or pathways

that they target.11 Emerging evidence demonstrated the poten-

tial role of miRNAs in the response of chemotherapy and

radiotherapy, a finding that opens new avenues for identifying

potentially more effective therapeutic targets in an attempt of

improving patient survival.12

Role of MicroRNAs in Modulation
of Radiosensitivity in Glioblastoma

Radiotherapy is widely used in cancer treatment and biological

studies where the IR damages cancer cells through producing

free radicals and intermediate ions that cause single- or double-

stranded breaks in the DNA. This usually triggers activation of

the DNA damage response, which is one of the main reasons of

radioresistance.13

DNA, however, is not the only component affected by radia-

tion, where growing evidence suggests that radiation can dis-

turb the expression of miRNAs. Since miRNAs regulate DNA

repair,14 cellular homeostasis,15 and response to stress,16 they

can modulate the radiosensitivity of GBM tumor cells. In that

context, miRNAs could have the potential to be either radio-

sensitizers or radioprotectors.17

Figure 1. Mechanisms of radioresistance in glioblastoma (GBM). The figure shows deregulated microRNAs following irradiation of GBM. They
are involved in hallmarks of cancer (colored donut). Micro-RNAs-26a, -124, -128, -145, -153, -181a/b, -203, -221/222, -223, -224, -320, and -590
(red) promoted GBM radiosensitivity, while microRNAs-135b, -21, -210 and -212 (green) encouraged radioresistance via targeting various
cancer-related genes (black box).
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Multiple miRNAs deregulated in GBM were found to affect

the tumor response to radiotherapy. The mechanisms of those

miRNAs in GBM are displayed in Figure 1 and reviewed below

together with their association with IR.

MicroRNAs Involved in Radiosensitivity Enhancement
in GBM

MicroRNA-26a. In GBM, miRNA-26a (miR-26a) was frequently

amplified at the DNA level in human glioma.18 It was found to

promote low expression of the tumor suppressors phosphatase

and tensin homolog (PTEN) and retinoblastoma 1.19 Further-

more, Guo et al showed that overexpression of miR-26a can

enhance radiosensitivity and reduce the DNA repair ability of

cells by targeting ataxia–telangiectasia mutated (ATM) gene

with subsequent inhibition of the homologous recombination

repair pathway. In contrast, miR-26a knockdown in U87 GBM

radiosensitive cells reverses this phenotype.20

MicroRNA-124. MicroRNA-124 (miR-124), a brain-specific

miRNA, was identified to be markedly downregulated in

human brain glioma. Aberrant expression of miR-124 resulted

in cyclin-dependent kinase 4 (CDK4) upregulation, which in

turn caused radioresistance and disease relapse. Ectopic

expression of miR-124 and knockdown of CDK4 could confer

radiosensitivity in glioma cell lines and animal models.7

MicroRNA-128. MicroRNA-128 (miR-128), which is also

enriched in brain cells, has previously been observed to be under-

expressed in GBM.21,22 It could function as a tumor suppressor in

glioma stem cells (GSCs) by negatively regulating tumor cell

proliferation and invasion.23 Downregulation of miR-128, fre-

quently encountered in GBM cells, could mediate tumorigenesis,

promote cancer stem cell self-renewal, and enhance radiation

resistance through targeting the oncogenes Bmi-1 and SUZ12, 2

members of the polycomb repressor complex (PRC).24,25 Ye

et al25 reported that low expression of miR-128 in U87 GBM cells

following high doses of irradiation enhanced the escape of cells

from radiation-induced senescence resulting in radioresistance.

However, miR-128 upregulation decreased the expression of

PRC genes and rendered GSC more sensitive to radiation.26

MicroRNA-145. Another tumor suppressor, microRNA-145

(miR-145), has been reported to be downregulated in GBM.

The recovery of its expression level can induce apoptosis via

targeting Bcl2/adenovirus E1b 19-kDa interacting protein 327

and inhibit migration and invasion of GSC via interaction with

ATP-binding cassette subfamily G member 228 and connective

tissue growth factor.29 In GBM-CD133 (þ) cells, delivery of

miR-145 using a therapeutic vehicle can inhibit the malignant

phenotype and cancer stem cell–like abilities by targeting

octamer-binding transcription factor 4 (Oct4) and SRY-box 2

(Sox2). This was found to effectively suppress the expression of

drug resistance and antiapoptotic genes and synergistically

increase the sensitivity of the cells to radiation both in vivo

and in vitro.30

MicroRNA-153. MicroRNA-153 (miR-153), a brain-enriched

miRNA, is abnormally downregulated in GBM. This miRNA

has the ability to reverse stem cell properties and induce apop-

tosis via targeting B-cell lymphoma/leukemia-2 (Bcl-2) and

myeloid cell leukemia sequence 1 proteins.31 Upregulation of

miR-153 suppressed the oxidative stress transcription factor

nuclear factor erythroid 2-related factor 2 and increased reac-

tive oxygen species level, with subsequent enhancement of

apoptosis, differentiation, and radiosensitivity in GSCs in vitro

and increased survival in mice bearing human GSCs.26,32

MicroRNA-181a/b. MicroRNA-181a/b (miR-181a/b), members

of the miR-181 family, was one of the downregulated miRNAs

in U87GBM cells.33 In response to radiation treatment, the

radiation-responsive miR-181a was significantly overex-

pressed transiently, leading to malignant glioma (MG) cell

sensitization to radiotherapy via targeting the apoptotic regu-

lator Bcl-2 protein.33

MicroRNA-203. MicroRNA-203 (miR-203), another known

cancer-associated miRNA, was downregulated in glioma and

correlated with prognosis.34 Overexpression of miR-203

increased the radiation sensitivity in U251, U373, and T98G

human MG cell lines, prolonged radiation-induced g-H2AX

(H2A Histone Family Member X) foci formation, which is

an indicator of double-strand DNA damage, and inhibited DNA

damage repair by downregulating ATM and modulating AKT

and STAT3 signaling pathways.35 Moreover, upregulated miR-

203 suppressed invasion, epithelium–mesenchyme transition,

and migration potentials via inhibiting prosurvival signaling,

neural crest transcription factor SLUG (a member of the Snail

family of zinc finger transcriptional repressors), has been

implicated in the acquisition of invasive behavior during tumor

progression, and the intermediate filament protein (Vimentin)

and increasing the expression of the senescence-associated

epithelial membrane protein 1 (Claudin-1) and the tight junc-

tion protein (Zona Occludens 1).26,35,36 Therefore, miR-203

could potentially contribute to the modulation of radiation sen-

sitivity in MG cell lines.26

MicroRNAs-221/222. MicroRNAs-221/222 (miR-221/222) play

key roles in modulating DNA damage response.26 In GBM

tissues and cells, miR-221/222 were found to be upregulated

and correlated with the stage of disease.37 They regulate glioma

tumorigenesis and invasiveness through the control of protein

phosphate PTPm.37 In contrast, transfection with miR-221/222

antisense oligonucleotides halted GBM proliferation in the

U251 human glioblastoma cell line and U251 glioma subcuta-

neous mice.38 Knocked down cells exhibited cell cycle arrest

via increasing the cell cycle inhibitor p27Kip1 which in turn

suppressed G1/S shift in the cell cycle in vitro and in vivo38 and

reduced tumor volume in a GBM xenograft mouse model.26

Combining anti-miR-221/222 with tumor irradiation synergis-

tically enhanced mitotic cell death and decreased S-phase

fraction.38
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MicroRNA-223. MicroRNA-223 (miR-223) was identified as a

key regulator in cancer cell differentiation, proliferation, adhe-

sion, and motility via targeting several proteins as forkhead box

O 1 transcription factor and insulin-like-growth factor 1 recep-

tor, expression of erythrocyte membrane protein band 4.1.-like

3, and F-box/WD repeat-containing protein 7. In U87 MG

cells, miR-223 overexpression downregulates the serine/threo-

nine kinase ATM expression and sensitizes U87 cells to radia-

tion in vitro and in vivo, thus highlighting its putative utility as

a cancer-targeting therapy.39

MicroRNA-224. The influence of microRNA-224 (miR-224) on

cell growth has been well characterized in GBM cell lines and

primary GBM tumor tissues.40 Low expression level in patients

with GBM was associated with poor prognosis. Exogenous

introduction of miR-224 reduced clonogenic potential of

U87GBM cells by 30% to 55% with a more synergistic effect

reaching 85% to 90% upon combination with irradiation with a

dose of 6G that when applied solely produced a 50% reduc-

tion.40 Therefore, miR-224 increased radiation sensitivity in

GBM tumor partially by targeting apoptosis inhibitor 5 gene.

MicroRNA-320. MicroRNA-320 (miR-320) has been demon-

strated to be closely correlated with the development of glioma.

Downregulated miR-320 along with upregulated forkhead box

protein M1 was encountered in radioresistant glioma tissues

and cells. However, miR-320 overexpression dramatically

enhanced radiosensitivity, promoted apoptosis, and improved

g H2AX expression and caspase 3 activity in glioma cells

through downregulation of sirtuin 1.41

MicroRNA-590-3p. MicroRNA-590-3p (miR-590-3p) was

reported as a mediator for glioma initiation and development. Its

upregulation was observed in high-grade glioma tissues and radio-

resistant human GBM cells (U251 R) through targeting leucine-

rich repeats and immunoglobulin-like domains protein 1 (LRIG1).

Inhibiting miR-590-3p promoted radiosensitivity of U251 R cells

by enhancing apoptosis and suppressing cell viability.42

MicroRNAs Involved in Radioresistance in GBM

MicroRNA-21. MicroRNA-21 (miR-21) profile was observed to

be significantly increased in MG cell lines and tissues, promot-

ing cell survival, tumor growth, and chemo- and radioresis-

tance.43 It is one of the major players in glioma

radioresistance through the regulation of autophagy.44 It was

upregulated 1.4.9-fold in radioresistant cell line SHG-44 (R)

relative to the SHG-44 cells.45 Application of anti-miR-21

resulted in radiosensitization of U373 and U87 cells, whereas

overexpression of miR-21 led to a decrease in radiosensitivity

of LN18 and LN428 cells.44 Moreover, knockdown of miR-21

combined with tumor irradiation synergistically enhanced

mitotic death and apoptosis in glioma cell lines and xenograft

tumor models.44 Blocking miR-21 decreased the expression of

the epidermal growth factor receptor,46 phospho-AKT,44 cas-

pase-3,45 cyclin D, and Bcl-2, as well as induced cell cycle

arrest and autophagy.26

MicroRNA-210. High expression of microRNA-210 (miR-210)

was found in some types of cancer, especially in GBM.46 It is

involved in cell survival, stemness maintenance, and hypoxia

adaptation,47-49 and its expression is modulated by hypoxia

inducible factor and nuclear factor kB.50 It regulates cell pro-

liferation and apoptosis via targeting regulator of differentia-

tion 1 in GBM cells.51 Knockdown of miR-210 increased the

apoptotic rate, reduced the antioxidant capacity, and sensitized

hypoxic GSCs following irradiation,52 thus suggesting the

putative beneficial role of combining miR-210 inhibition and

radiotherapy to halt GBM cells.26

MicroRNA-212. MicroRNA-212 (miR-212) revealed inconsis-

tent altered expression patterns in various types of tumors. How-

ever, in GBM, it functioned as a tumor suppressor whose

expression was significantly downregulated.53 Overexpression

of miR-212 decreased viability of GBM cells in vitro and sup-

pressed tumor growth in vivo by directly targeting serum and

glucocorticoid-inducible kinase 3 (SGK3).53 In human U251 and

SHG-44 GBM cells, miR-212 was identified as negatively asso-

ciated radiation-induced miRNA that was downregulated follow-

ing g-ray exposure.17 Transfection of miR-212 mimic in

irradiated U251 and SHG-44GBM cell lines has been shown to

attenuate radiation-induced apoptosis, alter the expression of

apoptosis-related proteins (downregulation of Bcl-2 and upregu-

lation of cleaved-caspase-3), and increase colony formation abil-

ity in response to radiation, hence suggesting its contribution in

radioresistance via targeting breast cancer susceptibility gene 1.17

MicroRNA-135b. The tumor suppressor microRNA-135b (miR-

135b) was recognized to play a critical role in GBM develop-

ment. It was the most downregulated miRNA in patient-derived

GBM stem-like cells, and its restoration decreased tumorigenic

potentiality and reduced brain infiltration in GBM animal mod-

els.54 However, miR-135b expression was found to be upregu-

lated in the U87R radio-GBM cell line compared to parent U87

cells. Its knockdown increased radiosensitivity by direct regu-

lation of glycogen synthase kinase-3b (GSK3b), a negative

regulator of cell growth.54 Similarly, in patients with GBM,

miR-135b overexpression and GSK3b downregulation were

encountered in recurrent tumors compared to primary ones

after treatment with IR, highlighting the correlation of miR-

135b/ GSK3b axis with radiotherapy.26,55

Functional Enrichment Analysis

Taking into consideration the “off-target phenomenon” associ-

ated with miRNA therapy, we used DIANA tools56 to investi-

gate the miRNA molecular target pathways and gene ontology

and define how each miRNA can influence the downstream

signaling pathway in each target. Radiotherapy-related miR-

NAs were analyzed, and ontology terms were filtered accord-

ing to the significance of the interaction (P < .01) and

intersected as depicted in Figure 2. Among the 18 selected

miRNAs, miR-320 and miR-210, modulators for radiosensitiv-

ity and radioresistance, respectively, were involved in few
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biological processes, which could indicate minimal off-target

effects upon using these miRNAs in therapeutic purpose.

MicroRNA Delivering System in Glioblastoma

Micro-RNA-based therapies (miRNA mimics or antagonists)

could be delivered locally or systemically in the form of naked

or modified nucleic acids, conjugated with lipids and other

molecules or carried in various forms of nanoparticles and

vectors.57 However, such therapies present several challenges

including inadequate penetration to tumor cells, miRNA

degradation and reduced half-life, undesired effects on other

genes, and systemic toxicities.57 Although the blood–brain bar-

rier, which limits passage of miRNAs to the brain tissue, rep-

resents another major hurdle in GBM, some studies have

described effective miRNA therapy techniques.58 For instance,

Shatsberg et al used miR-34a nanogels in mice with human

GBM cell line U-87 MG and succeeded in suppressing tumor

progression.59 Malhotra et al adopted cyclic arginine-glycine-

aspartic-targeted poly(lactic-co-glycolic acid) nanoparticles in

GBM mouse models and reported an enhancement in therapeu-

tic response to TMZ.60 Also noted was the in vitro and in vivo

Figure 2. Functional enrichment analysis of glioblastoma-related microRNAs (miRNAs). Gene ontology analysis of 18 miRNAs (miR-26a, -124,
-128, -135b, -145, -153, -181a/b, -203, -21, -210, -212, -221/222, -223, -224, -320 and -590) involved in the pathogenesis of glioblastoma (GBM),
and its radioresponsive state was carried out by DIANA-miRPath v3.0 tool using experimentally validated gene targets stored in TarBase v7.0
database.56
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inhibition of GBM growth after using ribonucleoprotein con-

taining anti-miR-21.61 Delivery through mesenchymal stem

cells has also proved worthwhile in GBM.62,63 Further clinical

trials are required to test the side effects of such therapies.

Conclusions and Prospectives

Taken together, miR-26a, miR-124, miR-128, miR-145, miR-

153, miR-181a/b, miR-203, miR-221/222, miR223, miR-224,

miR-320, and miR-590-3p increase the radiosensitivity of

GBM cells, while miR-21, miR-210, miR-212, and miR-135b

decrease it. Therefore, overexpressing the former group or

knocking down the latter group could help increase the

response of GBM cancer cells to radiotherapy, ultimately con-

tributing to cancer control and improving patient survival.
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