

Article

New 8-Hydroxybriaranes from the Gorgonian Coral *Junceella fragilis* (Ellisellidae)

You-Ying Chen ^{1,2}, Lee-Shing Fang ^{3,4}, Yu-Hsin Chen ², Bo-Rong Peng ^{2,5,6}, Tung-Pin Su ^{2,7}, Thanh-Hao Huynh ^{2,7}, Feng-Yu Lin ^{2,8}, Chiung-Chin Hu ², Nai-Cheng Lin ², Zhi-Hong Wen ¹, Jih-Jung Chen ⁹, Chieh-Yu Lee ^{2,7,*}, Jin-Wei Wang ^{10,*} and Ping-Jyun Sung ^{1,2,7,11,12,*}

- ¹ Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; zoeblack0108@gmail.com (Y.-Y.C.); wzh@mail.nsysu.edu.tw (Z.-H.W.)
- ² National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan; kb5634@yahoo.com.tw (Y.-H.C.); pengpojung@gmail.com (B.-R.P.); g3xz84120@yahoo.com.tw (T.-P.S.); haohuynh0108@gmail.com (T.-H.H.); fengyu30658252@gmail.com (F.-Y.L.); smallsmallhu@gmail.com (C.-C.H.); lnc7222@gmail.com (N.-C.L.)
- ³ Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; Isfang@csu.edu.tw
- ⁴ Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- ⁵ Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- ⁶ Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
- ⁷ Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
- ⁸ Department of Applied Chemistry, National Pingtung University, Pingtung 900, Taiwan
- ⁹ Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; chenjj@ym.edu.tw
- ¹⁰ Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
- ¹¹ Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
- ¹² Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- * Correspondence: 610663007@gms.ndhu.edu.tw (C.-Y.L.); xenoprophet@gmail.com (J.-W.W.); pjsung@nmmba.gov.tw (P.-J.S.); Tel.: +886-8-882-5037 (P.-J.S.); Fax: +886-8-882-5087 (P.-J.S.)

Received: 20 August 2019; Accepted: 10 September 2019; Published: 14 September 2019

Abstract: Three new 8-hydroxybriaranes—fragilides R–T (1–3) were obtained from a sea whip gorgonian coral *Junceella fragilis*. The structures of briaranes 1–3 were elucidated by using spectroscopic methods, including 1D (¹H and ¹³C NMR), 2D (COSY, HSQC, HMBC, and NOESY experiments) NMR studies, and (+)-HRESIMS. Fragilides S and T (2 and 3) are the only briaranes known to possess 8 α -hydroxy and 17 β -methyl groups, respectively. Briarane 2 exerted an inhibition effect on iNOS release from RAW264.7; a macrophage cell line that originated from a mouse monocyte macrophage, stimulated with lipopolysaccharides.

Keywords: Junceella fragilis; fragilide; briarane; anti-inflammatory; iNOS

1. Introduction

Gorgonian corals belonging to the genus *Junceella* (family Ellisellidae) [1–3] have been found to produce marine origin briarane-type diterpenoids in abundance [4]. Our recent research into the chemical constituents and properties of a gorgonian coral, *Junceella fragilis* (Ridley 1884) (Figure 1), which was distributed extensively in the waters of Orchid Island (= Lanyu Island), intersection of Kuroshio current and South China Sea surface current, has resulted in the isolation of three new 8- hydroxybriaranes–fragilides R–T (1–3) (Figure 1). A pro-inflammatory suppression assay was employed to assess the activity of these isolates against the release of inducible nitric oxide synthase (iNOS) from macrophage cells.

Junceella fragilis

Figure 1. Structures of fragilides R–T (**1**–**3**), 9-O-deacetylumbraculolide A (**4**), and a picture of the gorgonian coral *Junceella fragilis*.

2. Results and Discussion

Fragilide R (1) was isolated as an amorphous powder and displayed a pseudomolecular ion at m/z 489.20971 in the (+)-HRESIMS, which indicated its molecular formula was $C_{24}H_{34}O_9$ (calcd. for $C_{24}H_{34}O_9$ + Na, 489.20950) (Ω = 8). Both the ¹H and ¹³C NMR data (Tables 1 and 2) indicated two acetates ($\delta_{\rm H}$ 1.99, 1.94, each 3H × s; $\delta_{\rm C}$ 21.3, 21.0, 2 × CH₃; $\delta_{\rm C}$ 170.8, 170.8, 2 × C). Besides the above ester carbonyls, the carbon signal at δ_C 176.7 (C) was assigned to a γ -lactone ring along with an oxymethine (δ_H 5.97, 1H, d, J = 10.2 Hz; δ_C 76.4, CH-7). The spectroscopic data, including 1D and 2D NMR experiments (Figure 2), were similar to those of a known metabolite, 9-O-deacetyl- umbraculolide A (4) [5] (Figure 1), except that the hydroxy group at C-4 in 1 was replaced by a proton in 4. It is interesting to note that an allylic coupling was observed between H-6 and H_3 -16 (J = 1.2 Hz) in the COSY spectrum (Figure 2). In the NOESY spectrum (Figure 2), one of the C-3 methylene protons ($\delta_{\rm H}$ 2.96) exhibited a correlation to H-7 and not with H-2, suggesting the β - orientation of this proton. A correlation from H-4 to H-3 α ($\delta_{\rm H}$ 1.91) as well as the coupling constants between H-4 and H-3 α/β (J = 5.4, 12.6 Hz), suggested that H-4 was α -oriented according to modeling study. Based on the above findings, the structure, including the relative configuration of stereogenic centers of 1 were assigned as 1R*,2S*,4R*,7S*,8R*,9S*,10S*,14S*, and 17R*, as those of 4 by correlations observed in a NOESY experiment.

One of the C-20 methylene protons ($\delta_{\rm H}$ 4.88) showed an NOE correlation to H-9, demonstrating that this olefin proton was H-20b, and the other was assigned as H-20a ($\delta_{\rm H}$ 4.97). The proton chemical shifts of the briarane derivatives containing an 11-methylidene group were summarized, and the difference between these two olefin protons (H-20a/b) was smaller than 0.2 ppm, whereas the methylidene-containing six-membered rings exhibited a twisted boat conformation [6]. Owing to the chemical shifts of C-20 methylene protons ($\delta_{\rm H}$ 4.97 and 4.88), the conformation of six- membered ring in **1** was concluded to be twisted boat. In a previous study, the absolute configuration of a known chlorinated briarane, junceellin, was established by a single-crystal X-ray diffraction analysis [7].

As briaranes 1–3 were isolated along with junceellin from the same organism [7], it is reasonable on biogenetic grounds to assume that 1–3 have the same absolute configuration as that of junceellin. Therefore, the configuration of the stereogenic centers of 1 were elucidated as $1R_2S_4R_7S_8R_9S_10S_14S_7$, and 17R (Figure 2), and this compound was found to be the 4 β -hydroxy derivative of 4 (Supplementary Materials, Figures S1–S9).

Figure 2. The COSY (—) correlations, selective HMBC (\frown), and selective protons with key NOESY correlations (4) of **1**.

Fragilide S (2) had a molecular formula C₂₆H₃₃ClO₉ as deduced by (+)-ESIMS, which showed a pair of peaks at *m*/z 547/549 [M + Na]⁺:[M + 2 + Na]⁺ (3:1), suggesting a chlorine atom, and further confirmed by (+)-HRESIMS at *m*/z 547.17055 (calcd. for C₂₆H₃₃³⁵ClO₉ + Na, 547.17053). The IR spectrum indicated the presence of hydroxy (3447 cm⁻¹), γ-lactone (1785 cm⁻¹), and ester carbonyl (1733 cm⁻¹) groups. The ¹³C NMR data (Table 2), showed the presence of a disubstituted olefin (δ_C 135.4, CH-4; 129.7, CH-3) and two methylidene groups (δ_C 142.6, C-5; 118.8, CH₂-16; 149.3, C-11; 111.4, CH₂-20). Moreover, four carbonyl resonances at δ_C 174.1, 170.4, 170.1, and 169.2 in the ¹³C spectrum confirmed the presence of a γ -lactone and three other ester groups. In the ¹H NMR spectrum (Table 1), three acetate methyls (δ_H 2.09, 2.04, 2.01, each 3H × s) were observed. Moreover, a methyl singlet, a methyl doublet, two aliphatic methines, two pair of aliphatic methylenes, four oxymethines, a chlorinated methine, and a hydroxy proton were observed (Table 1).

Position	1 ^a	2 ^b	3 ^a
2	4.83 d (7.2) ^c	5.47 d (9.5)	6.33 d (10.8)
3α/β	1.91 ddd (15.6, 7.2, 5.4);	5.67 dd (16.0, 9.5)	5.78 dd (12.0, 10.8)
	2.96 dd (15.6, 12.6)		
4	4.18 dd (12.6, 5.4)	6.72 d (16.0)	5.96 d (12.0)
6	5.64 d (10.2, 1.2)	5.20 s	5.12 br s
7	5.97 d (10.2)	4.97 br s	4.88 d (4.2)
9	4.22 dd (5.4, 3.6)	5.53 s	5.59 s
10	3.20 d (3.6)	3.47 s	4.08 s
12α/β	2.22 m	2.24 m; 2.38 m	5.37 dd (5.4, 3.0)
13α/β	1.96 m; 1.81 m	1.84 m; 1.74 m	2.06 m
14	4.74 dd (4.2, 1.8)	4.84 dd (2.5, 2.0)	4.94 dd (4.2, 3.0)
15	1.25 s	1.18 s	1.16 s
16a/b	2.09 d (1.2)	5.49 s; 5.32 s	5.66 s; 5.48 s
17	3.11 q (7.2)	2.93 q (7.5)	2.90 q (7.2)
18	1.14 d (7.2)	1.18 d (7.5)	1.22 d (7.2)
20a/b	4.97 s; 4.88 s	4.93 s; 4.76 s	5.33 s; 4.72 s
OH-8	-	3.11 s	2.70 s
OH-9	2.09 d (5.4)	-	-
Acetoxy groups	1.94 s	2.01 s	2.00 s
	1.99 s	2.04 s	2.16 s
		2.09 s	
Propionoxy group	-	-	1.08 t (7.2)
			2.26 m
Isovaleroxy group	-	-	0.96 d (6.6)
			0.98 d (6.6)
			2.10 m
			2.15 m

Table 1. ¹H NMR data for briaranes 1–3.

^a Spectra measured at 600 MHz in CDCl₃. ^b Spectra measured at 500 MHz in CDCl₃. ^c J values (in Hz) in parentheses.

Position	1 ^a	2 ^b	3 ^a
1	48.2, C ^c	47.5 <i>,</i> C	47.7, C
2	73.3, CH	76.9, CH	70.4, CH
3	39.7, CH ₂	129.7, CH	130.4, CH
4	71.4, CH	135.4, CH	128.7, CH
5	146.9, C	142.6, C ^d	137.5, C
6	123.1, CH	66.0, CH ^d	64.5, CH
7	76.4, CH	79.5, CH	76.9, CH
8	83.4, C	81.8, C	80.3, C
9	74.1, CH	76.3, CH	74.8, CH
10	43.0, CH	41.8, CH	37.0, CH
11	152.3, C	149.3, C	146.3, C
12	29.0, CH ₂	29.1, CH ₂	74.3, CH
13	27.8, CH ₂	26.0, CH ₂	31.4, CH ₂
14	74.2, CH	74.4, CH	73.0, CH
15	15.6, CH ₃	16.4, CH ₃	14.7, CH ₃
16	26.2, CH ₃	118.8, CH ₂ ^d	116.4, CH ₂
17	43.8, CH	49.3, CH	50.7, CH
18	6.6, CH ₃	9.1, CH ₃	8.7, CH ₃
19	176.7, C	174.1, C ^d	173.9, C
20	111.3, CH ₂	111.4, CH ₂	115.2, CH ₂
Acetoxy groups	21.0, CH ₃	21.2, CH ₃	20.7, CH ₃
,,,,,	170.8, C	170.4, C	169.7, C
	21.3, CH ₃	21.2, CH ₃	21.3, CH ₃
	170.8, C	170.1, C	169.6, C
		21.2, CH ₃	
		169.2, C	
Propionoxy group	-	-	8.8, CH ₃
			27.8, CH ₂
			172.0, C
Isovaleroxy group	-	-	22.6, CH ₃
			22.8, CH ₃
			25.0, CH
			43.5, CH ₂
			172.6. C

Table 2. ¹³C NMR data for briaranes 1–3.

^a Spectra measured at 150 MHz in CDCl₃. ^b Spectra measured at 125 MHz in CDCl₃. ^c Multiplicity deduced by DEPT and HSQC spectra. ^d Chemical shfits were assigned by HSQC or HMBC experiments.

Analyses of 2D NMR data established a tricyclic nucleus. This assignment was evident from the spin systems from H-2 to H-3, H-3 to H-4, H-6 to H-7, H-9 to H-10, H₂-12 to H₂-13, H₂-13 to H-14, and H-17 to H₃-18 (Figure 3), while the HMBC between protons and quaternary carbons such as H-2, H-9, H-10, H₃-15/C-1; H-6, H-16a/C-5; H-6, H-9, H-10, H-17, H₃-18, OH-8/C-8; H-9, H-10, H-20b/C-11; and H-17, H₃-18/C-19, revealed the carbon skeleton (Figure 3). The methylidene groups at C-5 and C-11 were confirmed by the HMBC between H₂-16 to C-4 and C-5, H₂-20 to C-10, C-11, and C-12, respectively. The C-15 methyl group at C-1 was confirmed by the HMBC between H₃-15 to C-1, C-2, C-10, and C-14. HMBC spectrum also revealed that the carbon signal at $\delta_{\rm C}$ 170.4, 170.1, and 169.2 correlated with the signals of the methyl protons at $\delta_{\rm H}$ 2.04, 2.01, and 2.09, respectively, and were assigned as the carbon atom of acetate carbonyl groups. The acetates at C-2, C-9, and C-14 were confirmed from the connectivity between H-2 ($\delta_{\rm H}$ 5.47), H-9 ($\delta_{\rm H}$ 5.53), and H-14 ($\delta_{\rm H}$ 4.84) to the carbonyl carbons of the acetate groups at $\delta_{\rm C}$ 170.1, 169.2, and 170.4, respectively. The hydroxy group at C-8 was deduced from the HMBC of a hydroxy proton ($\delta_{\rm C}$ 3.11) to C-8 and C-9.

In the NOESY spectrum of **2** (Figure 3), one of the C-16 methylene protons (δ_H 5.49) showed a correlation to H-4, demonstrating that this olefinic proton was H-16a and the other was assigned as H-16b (δ_H 5.32). Moreover, one of the C-20 methylene protons (δ_H 4.76) correlated to H-10, indicating that this proton was H-20b and the other was assigned as H-20a. According to a summary for the chemical shifts of 11-methylidene groups, the configuration of six-membered ring was in a twisted boat conformation [6]. The *E*-geometry of C-3/4 double bond was determined by a large proton coupling constant (*J* = 16.0 Hz) between H-3 and H-4. Correlations between H-10 with H-2 and H-9, while no correlation was seen with Me-15, suggested that H-2, H-9, and H-10 were all in α -oriented. Meanwhile, a correlation of Me-15 with H-14 indicated that H-14 was β -oriented. Furthermore, OH-8 showed correlations with H-4 and H-17, indicating that the hydroxy group at C-8 and proton at C-17 were

 α -oriented. In addition, H-7 exhibited correlations with H-6 and H₃-18 but not with OH-8, suggesting that H-7 was β -oriented. Based on above findings, the configuration of stereogenic carbons was determined as 1*R*,2*S*,6*S*,7*R*,8*R*,9*S*,10*S*,14*S* and 17*S* (see Figures S10–S18 in the Supplementary Materials).

Figure 3. The COSY (—) correlations, selective HMBC (*(*), and selective protons with key NOESY correlations (*(*)) of **2**.

Compound 3 (fragilide T) has a molecular formula C32H43ClO11 according to its (+)-HRESIMS at m/z 661.23866 (calcd. for C₃₂H₄₃³⁵ClO₁₁ + Na, 661.23861). Both the ¹H and ¹³C NMR (Tables 1 and 2) indicated two acetates (δ_H 2.16, 2.00, each 3H × s; δ_C 21.3, 20.7, 2 × acetate methyls; 169.7, 169.6, 2 × acetate carbonyls), a propionate (δ_H 1.08, 3H, t, J = 7.2 Hz; 2.26, 2H, m; δ_C 8.8, CH₃; 27.8, CH₂; 172.0, propionate carbonyl), and an isovalerate (δ_H 0.96, 0.98, each 3H, d, J = 6.6 Hz; 2.10, 1H, m; 2.15, 2H, m; δ_C 22.6, 22.8, 2 × CH₃; 25.0, CH; 43.5, CH₂; 172.6, isovalerate carbonyl). Besides the above ester carbonyls, the carbon signal at δ_C 173.9 was assigned to a γ -lactone ring along with an oxymethine (δ_H 4.88, 1H, d, J = 4.2 Hz; δ_C 76.9, CH-7). Two pairs of proton signals at δ_H 5.66 and 5.48, and 5.33 and 4.72, correlating to the methylidene signals at $\delta_{\rm C}$ 116.4 and 115.2 respectively, were ascribed to two methylidene groups. The tertiary methyl singlet at $\delta_{\rm H}$ 1.16 (3H, s) was assigned to H₃-15 while the secondary methyl doublet at δ_H 1.22 (3H, d, J = 7.2 Hz) was assigned to H₃-18. In the HMBC spectrum (Figure 4), the propionoxy group at C-2 was confirmed by the connectivity between H-2 ($\delta_{\rm H}$ 6.33) with the carbonyl carbon (δ_C 172.0) of propionoxy group. The HMBC also revealed that an acetoxy group at C-9 (Figure 4) and the remaining isovaleroxy and acetoxy groups should be positioned at C-12 or C-14, oxygen-bearing methines, by analysis of characteristic NMR signals (δ_H 5.37, 1H, dd, J = 5.4, 3.0 Hz; δ_C 74.3, CH-12; δ_H 4.94, 1H, dd, *J* = 4.2, 3.0 Hz; δ_C 73.0, CH-14). However, due to no HMBC detected between H-12 and H-14 and ester carbonyl, the positions of the isovalerate and remaining acetoxy group cannot be determined by HMBC.

Based on previous studies, while the difference between the two olefin protons (H-20a/b) was bigger than 0.3 ppm, the six-membered rings showed a chair conformation [6]. Owing to the chemical shifts of the C-20 methylene protons ($\delta_{\rm H}$ 5.33 and 4.72 ppm), the configuration of the methylidene-containing six-membered ring was concluded to exist in a chair conformation. In the NOESY experiment (Figure 4), H-10 correlated to H-2, H-9, and OH-8, but not to H₃-15, indicating that these protons are located on the same face and can be assigned as α -protons, as C-15 methyl group is a β -substituent at C-1. H-14 was found to exhibit a correlation with H₃-15, showing that this proton is positioned on the equatorial direction and has a β -orientation at C-14. The *cis* geometry of the C-3/4 double bond was indicated by a 12.0 Hz coupling constant between H-3 ($\delta_{\rm H}$ 5.78) and H-4 ($\delta_{\rm H}$ 5.96). Moreover, a correlation between H-3 and H₃-15, and there are correlations which were observed among H-4, H-6, and H-7, further supported the Z-form of C-3/4 double bond and indicated that H-6 and H-7 were on the β face. A correlation between OH-8 and H-17 showed that Me-18 at C-17 was β -oriented. The C-12 oxymethine proton ($\delta_{\rm H}$ 5.37) was found to couple C-13 methylene protons with coupling constants J = 5.4, 3.0 Hz, showing that this proton should be positioned on the equatorial direction and has a β -orientation. Fortunately, a correlation between the methyl protons of acetoxy group at C-9 and methyl protons of isovaleroxy group, indicated that the isovaleroxy group should be located at C-12 by modeling analysis. Thus, based on the above findings, the stereogenic centers were assigned as 1*R*,2*S*,6*S*,7*R*,8*R*,9*S*,10*R*,12*R*,14*S*, and 17*S* (see Figures S19–S27 in the Supplementary Materials).

Figure 4. The COSY (—) correlations, selective HMBC (\frown), and selective protons with key NOESY correlations (\checkmark) of **3**.

Using an *in vitro* pro-inflammatory suppression assay, the effects of briaranes **1–3** on the release of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein from lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cells were assessed. The results of pro-inflammatory suppression assay showed that briarane **2** at 10 μ M suppressed the release of iNOS to 61.21 ± 9.61% as compared with results of the cells stimulated with LPS only (Table 3).

Table 3. Effects of briaranes **1–3** on LPS-induced pro-inflammatory iNOS and COX-2 protein expression in macrophages.

Commound	iNOS	COX-2	β-Actin	n
Compound	Е			
Negative Control	1.80 ± 0.21	1.04 ± 0.35	110.02 ± 5.23	2
LPS	100.01 ± 5.06	100.06 ± 0.43	100.07 ± 8.4	4
1	104.11 ± 16.63	100.51 ± 6.11	105.70 ± 7.05	4
2	61.21 ± 9.61	100.01 ± 5.11	99.29 ± 11.29	3
3	100.91 ± 24.08	96.36 ± 21.31	115.29 ± 3.4	4
Dexamethasone	5.54 ± 1.72	8.15 ± 5.13	105.21 ± 15.57	4

Data were normalized to those of cells treated with LPS alone, and cells treated with dexamethasone were used as a positive control. Data are expressed as the mean \pm SEM (n = 2-4).

3. Materials and Methods

3.1. General Experimental Procedures

NMR spectra were recorded on a 600 MHz Jeol NMR (model ECZ600R, Tokyo, Japan) or on 500 MHz Varian NMR (model Unity Inova-500, Palo Alto, CA, USA) spectrometers using the residual CHCl₃ signal ($\delta_{\rm H}$ 7.26 ppm) and CDCl₃ ($\delta_{\rm C}$ 77.1 ppm) as internal references for ¹H and ¹³C NMR, respectively. ESIMS and HRESIMS were obtained from the Bruker mass spectrometer with 7 Tesla magnets (model: SolariX FTMS system, Bremen, Germany). Column chromatography, high-performance liquid chromatography (HPLC), IR spectra, and optical rotation were performed according to our earlier research [7].

3.2. Animal Material

Specimens of *J. fragilis* used for this study were collected in June 2017 by self-contained underwater breathing apparatus (SCUBA) divers off the coast of Orchid Island, Taiwan. The samples were stored in a -20 °C freezer until extraction. A voucher specimen was deposited in the NMMBA (voucher no.: NMMBA-TW-GC-2017-08). Identification of the species of this organism was performed by comparison as described in previous studies [1–3].

3.3. Extraction and Isolation

Sliced bodies (wet weight = 423 g) of the coral specimen were prepared and extracted with a 1:1 mixture of methanol (MeOH) and dichloromethane (CH₂Cl₂) to give 5.53 g of crude extract, which was partitioned between ethyl acetate (EtOAc) and H₂O. The EtOAc extract (2.50 g) was then applied to a silica gel column and eluted with gradients of *n*-hexane/acetone (stepwise from 50:1 to 1:2; volume ratio) to furnish 8 fractions (fractions: A–H). Fraction F was purified by normal-phase HPLC (NP-HPLC) using a mixture of *n*-hexane and EtOAc (3.5:1 of volume ratio) as solvent to obtain 14 subfractions (fractions: F1–F14). Fraction F10 was repurified by reverse-phase HPLC (RP-HPLC) using a mixture of MeOH and H₂O (with volume:volume = 80:20; at a flow rate = 4.0 mL/min) to yield **2** (0.2 mg) and **3** (0.5 mg). Fraction G was separated by NP-HPLC using a mixture of *n*-hexane/EtOAc (1:1; volume ratio) to yield 9 fractions (fractions: G1–G9). Fraction G2 was purified by RP-HPLC using a mixture of MeOH and H₂O (with volume:volume = 65:35; at a flow rate = 4.0 mL/min) to afford **1** (0.2 mg).

Fragilide R (1): Amorphous powder; $[\alpha]_D^{28} - 288$ (*c* 0.07, CHCl₃); IR (ATR) ν_{max} 3391, 1779, 1736 cm⁻¹; ¹H (600 MHz, CDCl₃) and ¹³C (150 MHz, CDCl₃) NMR data, see Tables 1 and 2; ESIMS: *m/z* 489 [M + Na]⁺; HRESIMS: *m/z* 489.20971 (calcd. for C₂₄H₃₄O₉ + Na, 489.20950).

Fragilide S (2): Amorphous powder; $[\alpha]_D^{28}$ +45 (*c* 0.16, CHCl₃); IR (ATR) ν_{max} 3447, 1785, 1733 cm⁻¹; ¹H (500 MHz, CDCl₃) and ¹³C (125 MHz, CDCl₃) NMR data, see Tables 1 and 2; ESIMS: *m/z* 547 [M + Na]⁺, 549 [M + 2 + Na]⁺; HRESIMS: *m/z* 547.17055 (calcd. for C₂₆H₃₃³⁵ClO₉ + Na, 547.17053).

Fragilide T (3): Amorphous powder; $[\alpha]_D^{20}$ –168 (*c* 0.17, CHCl₃); IR (ATR) ν_{max} 1788, 1737 cm⁻¹; ¹H (600 MHz, CDCl₃), and ¹³C (150 MHz, CDCl₃) NMR data, see Tables 1 and 2; ESIMS: *m*/*z* 661 [M + Na]⁺, 663 [M + 2 + Na]⁺; HRESIMS: *m*/*z* 661.23866 (calcd. for C₃₂H₄₃³⁵ClO₁₁ + Na, 661.23861).

3.4. In Vitro Anti-inflammatory Assay

The pro-inflammatory suppression assay was employed to assess the activities of the isolated compounds **1–3** against the release of iNOS and COX-2 from macrophage cells as the literature reported [8–11].

4. Conclusions

J. fragilis has been demonstrated to have a wide structural diversity of briarane-type diterpenoids that possess various pharmacological properties, particularly in anti-inflammatory activity [12,13]. In our continued study of *J. fragilis*, three previously unreported fragilides R–T (1–3) were isolated. In the previous studies [14], all the Me-18 attached at C-17 was *cis* to the hydroxy group at C-8, and most of these two groups were α -oriented in briarane derivatives, respectively. Fragilides S and T (2 and 3) were proved to be the only two briaranes known to possess hydroxy group at C-8 α and methyl group at C-17 β , respectively. In the present study, the anti-inflammatory activity of 1–3 was assessed using inhibition of pro-inflammatory iNOS and COX-2 release from macrophages. The results indicated that fragilide S (2) showed the most potent suppressive effect on iNOS release.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1660-3397/17/9/534/s1. Figure S1: ESIMS spectrum of compound 1, Figure S2: HRESIMS spectrum of compound 1, Figure S3: IR spectrum of compound 1, Figure S4: 1H NMR spectrum (600 MHz) of compound 1 in CDCl3, Figure S5: 13C NMR spectrum (150 MHz) of compound 1 in CDCl3, Figure S6: HSQC spectrum of compound 1 in CDCl3, Figure S7: 1H-1H COSY spectrum of compound 1 in CDCl3, Figure S1: ESIMS spectrum of compound 2, Figure S1: HRESIMS spectrum of compound 2 in CDCl3, Figure S1: HSQC spectrum of compound 2 in CDCl3, Figure S1: HSQC spectrum of compound 2 in CDCl3, Figure S16: 1H-1H COSY spectrum of compound 2 in CDCl3, Figure S16: 1H-1H COSY spectrum of compound 2 in CDCl3, Figure S19: ESIMS spectrum of compound 3, Figure S20: HRESIMS spectrum of compound 3, Figure S21: IR spectrum of compound 3, Figure S22: 1H NMR spectrum (600 MHz) of compound 3, Figure S22: 1H NMR spectrum (600 MHz) of compound 3 in CDCl3, Figure S19: ESIMS spectrum of compound 3 in CDCl3, Figure S19: ESIMS spectrum of compound 3 in CDCl3, Figure S24: HSQC spectrum of compound 3 in CDCl3, Figure S25: 1H-1H COSY spectrum of compound 2 in CDCl3, Figure S26: MBC spectrum of compound 3 in CDCl3, Figure S26: MBC spectrum of compound 3 in CDCl3, Figure S26: MBC spectrum of compound 3 in CDCl3, Figure S27: NOESY spectrum of compound 3 in CDCl3, Figure S26: MBC spectrum of compound 3 in CDCl3, Figure S27: NOESY spectrum of compound 3 in CDCl3, Figure S26: MBC spectrum of compound 3 in CDCl3, Figure S27: NOESY spectrum of compound 3 in CDCl3, Figure S26: MBC spectrum of compound 3 in CDCl3, Figure S27: NOESY spectrum of compound 3 in CDCl3, Figure S26: MBC spectrum of compound 3 in CDCl3, Figure S27: NOESY spectrum of compound 3 in CDCl3.

Author Contributions: Conceptualization, L.-S.F. and Z.-H.W.; investigation, Y.-Y.C., Y.-H.C., B.-R.P., T.-P.S., T.-H.H.; N.-C.L., and J.-J.C.; data curation, F.-Y.L.; writing-original draft preparation, C.-Y.L.; writing-review and editing, J.-W.W. and P.-J.S.; project administration, C.-C.H.

Funding: This research was supported by grants from the National Museum of Marine Biology and Aquarium, the National Dong Hwa University, and the Ministry of Science and Technology, Taiwan (Grant Nos: MOST 104-2320-B-291-001-MY3 and 107-2320-B-291-001-MY3) awarded to Ping-Jyun Sung.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Bayer, F.M. Key to the genera of octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. *Proc. Biol. Soc. Wash.* **1981**, *94*, 902–947.
- 2. Bayer, F.M.; Grasshoff, M. The genus group taxa of the family Ellisellidae, with clarification of the genera established by J.E. Gray (Cnidaria: Octocorallia). *Senckenb. Biol.* **1994**, *74*, 21–45.
- 3. Chen, C.C.; Chang, K.H. Gorgonacea (Coelenterata: Anthozoa: Octocorallia) of Southern Taiwan. *Bull. Inst. Zool. Acad. Sin.* **1991**, *30*, 149–181.
- Chung, H.M.; Wang, Y.C.; Tseng, C.C.; Chen, N.F.; Wen, Z.H.; Fang, L.S.; Hwang, T.L.; Wu, Y.C.; Sung, P.J. Natural product chemistry of gorgonian corals of genus *Junceella*–Part III. *Mar. Drugs* 2018, 16, 339. [CrossRef] [PubMed]
- 5. Sung, P.J.; Fan, T.Y. 9-O-Deacetylumbraculolide A, a new diterpenoid from the gorgonian *Junceella fragilis*. *Heterocycles* **2003**, *60*, 1199–1202. [CrossRef]
- 6. Sung, P.J.; Wang, S.H.; Chiang, M.Y.; Su, Y.D.; Chang, Y.C.; Hu, W.P.; Tai, C.Y.; Liu, C.Y. Discovery of new chlorinated briaranes from *Junceella fragilis*. *Bull. Chem. Soc. Jpn.* **2009**, *82*, 1426–1432. [CrossRef]
- 7. Lin, C.C.; Chen, W.F.; Lee, G.H.; Wen, Z.H.; Fang, L.S.; Kuo, Y.H.; Lee, C.Y.; Sung, P.J. Fragilides M–O, new triacetoxybriaranes from the gorgonian coral *Junceella fragilis* (Ellisellidae). *Heterocycles* **2019**, *98*, 984–993.
- 8. Jean, Y.H.; Chen, W.F.; Sung, C.S.; Duh, C.Y.; Huang, S.Y.; Lin, C.S.; Tai, M.H.; Tzeng, S.F.; Wen, Z.H. Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic in rats. *Br. J. Pharmacol.* **2009**, *158*, 713–725. [CrossRef] [PubMed]
- Jean, Y.H.; Chen, W.F.; Duh, C.Y.; Huang, S.Y.; Hsu, C.H.; Lin, C.S.; Sung, C.S.; Chen, I.M.; Wen, Z.H. Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral *Lemnalia cervicorni*. *Eur. J. Pharmacol.* 2008, 578, 323–331. [CrossRef] [PubMed]
- 10. Chen, L.C.; Lin, Y.Y.; Jean, Y.H.; Lu, Y.; Chen, W.F.; Yang, S.N.; Wang, H.M.D.; Jang, I.Y.; Chen, I.M.; Su, J.H.; et al. Anti-inflammatory and analgesic effects of the marine- derived compound comaparvin isolated from the crinoid *Comanthus bennetti*. *Molecules* **2014**, *19*, 14667–14686. [CrossRef] [PubMed]
- 11. Oliveira, T.; Figueiredo, C.A.; Brito, C.; Stavroullakis, A.; Prakki, A.; da Silva Velozo, E.; Nogueira-Filho, G. Effect of *Allium cepa* L. on lipopolysaccharide-stimulated osteoclast precursor cell viability, count, and morphology using 4',6-diamidino-2-phenylindole-staining. *Int. J. Cell Biol.* **2014**, 535789. [CrossRef]

- 12. Cheng, W.; Li, X.; Yin, F.; van Ofwegen, L.; Lin, W. Halogenated briarane diterpenes with acetyl migration from the gorgonian coral *Junceella fragilis*. *Chem. Biodiver.* **2017**, *14*, e1700053. [CrossRef] [PubMed]
- Cheng, W.; Ji, M.; Li, X.; Ren, J.; Yin, F.; van Ofwegen, L.; Yu, S.; Chen, X.; Lin, W. Fragilolides A–Q, norditerpenoid and briarane diterpenoids from the gorgonian coral *Junceella fragilis*. *Tetrahedron* 2017, 73, 2518–2528. [CrossRef]
- 14. Su, Y.D.; Su, J.H.; Hwang, T.L.; Wen, Z.H.; Sheu, J.H.; Wu, Y.C.; Sung, P.J. Briarane diterpenoids isolated from octocorals between 2014 and 2016. *Mar. Drugs* **2017**, *15*, 44. [CrossRef] [PubMed]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).