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Abstract

Prokaryotic evolution is affected by horizontal transfer of genetic material through recombination. Inference of an
evolutionary tree of bacteria thus relies on accurate identification of the population genetic structure and
recombination-derived mosaicism. Rapidly growing databases represent a challenge for computational methods to
detect recombinations in bacterial genomes. We introduce a novel algorithm called fastGEAR which identifies lineages
in diverse microbial alignments, and recombinations between them and from external origins. The algorithm detects
both recent recombinations (affecting a few isolates) and ancestral recombinations between detected lineages (affecting
entire lineages), thus providing insight into recombinations affecting deep branches of the phylogenetic tree. In simu-
lations, fastGEAR had comparable power to detect recent recombinations and outstanding power to detect the ancestral
ones, compared with state-of-the-art methods, often with a fraction of computational cost. We demonstrate the utility of
the method by analyzing a collection of 616 whole-genomes of a recombinogenic pathogen Streptococcus pneumoniae,
for which the method provided a high-resolution view of recombination across the genome. We examined in
detail the penicillin-binding genes across the Streptococcus genus, demonstrating previously undetected genetic
exchanges between different species at these three loci. Hence, fastGEAR can be readily applied to investigate
mosaicism in bacterial genes across multiple species. Finally, fastGEAR correctly identified many known recom-
bination hotspots and pointed to potential new ones. Matlab code and Linux/Windows executables are available at
https://users.ics.aalto.fi/~pemartti/fastGEAR/ (last accessed February 6, 2017).

Key words: bacterial population genetics, recombination detection, population structure, hidden Markov models,
Streptococcus pneumoniae, antibiotic resistance.

Introduction

Microbial genomes are constantly subjected to a number of
evolutionary processes, including mutation, gene gain and
loss, genetic rearrangement and recombination, the latter
here broadly defined as any form of horizontal transfer of
DNA. The importance of recombination in prokaryotic evo-
lution has been recognized for some time (Feil and Spratt,
2001; Didelot and Maiden, 2010; Hanage, 2016) and genomic
studies have become an important source of data to measure
its contribution (Polz et al., 2013). Comparative studies of
prokaryotic genomes have found that the vast majority of
their genes have been laterally transferred at least once in the
past (Dagan and Martin, 2007; Dagan et al., 2008), with
around 20% of genes being acquired recently (Popa et al.,
2011). Furthermore, when measured over shorter time scales,
many bacterial species were found to recombine so fre-
quently that the impact of recombination on their genetic

diversification was shown to be greater than that of mutation
alone (Vos, 2009).

The prevalence of recombination is suggestive of its import-
ance for microbial evolution, with potential adaptive benefits.
Genetic exchange between different strains has been argued to
play an important role in shaping of bacterial communities
(Polz et al., 2013; Marttinen et al., 2015; Shapiro, 2016) and the
emergence of new bacterial species (Fraser et al., 2007, 2009;
Shapiro et al., 2012). Bacterial recombination has also proved a
powerful adaptive weapon against major forms of clinical
interventions: antibiotics and vaccines (Hanage et al., 2009;
Croucher et al., 2011; Perron et al., 2012). As most evolutionary
models (e.g., phylogenetic or phylogenomic analyses) assume
no recombination, a good understanding of the impact of
recombination on bacterial genomes is crucial for the correct
interpretation of any genomic analysis.

Currently, popular methods used for detecting recombin-
ation in bacterial genomes include ClonalFrame (Didelot and
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Falush, 2007) and ClonalFrameML (Didelot and Wilson,
2015), Gubbins (Croucher et al., 2015), and BratNextGen
(Marttinen et al., 2012). The three former approaches follow
the line of methods based on phylogenetic trees (Husmeier,
2005; Minin et al., 2005; Webb et al., 2009), and look for
clusters of polymorphisms on each branch of a phylogenetic
tree. On the other hand, BratNextGen uses Hidden Markov
Models (HMMs) to model the origin of changes in the align-
ment, where clonality (lack of recombinations) represents
one origin and other origins represent foreign recombin-
ations. All these methods specialize in identifying imports
originating in external sources, and are therefore appropri-
ately applied to a single bacterial lineage at a time. Thus, they
rely on another method to identify the underlying population
structure, which limits their ability to provide insight into
species-wide or even inter-species patterns of exchange.
With the recent development of high-throughput sequencing
methods, which can process tens of thousands of bacterial
whole-genomes, such analyses have become increasingly
interesting and necessary.

Here, we present an approach to fulfill such a demand,
which identifies both the population structure of a sequence
alignment and detects recombinations between the inferred
lineages as well as from external origins. In particular, the
method first identifies clusters of sequences that represent
lineages in the alignment. Then it locates both recent recom-
binations, affecting some subset of strains in a lineage, and
ancestral events between lineages that affect all strains in the
lineage, as shown in figure 1. Our approach is similar to the
popular STRUCTURE software with the linkage model (Falush
et al., 2003) but with the following crucial differences: (1) it
is computationally scalable to thousands of bacterial genomes
and (2) it provides insight into the mosaicism of entire bac-
terial populations by inferring also the ancestral recombin-
ation events. As our method can quickly infer the genomic
arrangement of large bacterial datasets, we called it fastGEAR.

We assess the accuracy of fastGEAR using extensive
simulations, and compare it to three other state-of-the-
art methods. We then use it to analyze a dataset of 616

whole-genomes of a recombinogenic pathogen Streptococcus
pneumoniae sampled in Massachusetts, USA, in a paediatric
carriage study (Croucher et al., 2013). By applying fastGEAR to
the assembled pneumococcal pan-genome, we obtain a high-
resolution view of the underlying mosaicism of all coding
sequences. We demonstrate that fastGEAR can be used on
one hand for in-depth understanding of the extent of mosai-
cism in particular genes of interest (e.g., antibiotic resistance
genes), and on the other hand to compare genome-wide the
population structure and the extent of mosaicism in different
bacterial genes. These analyses can be used in combination
with commonly used pan genome assembly pipelines like
Roary (Page et al., 2015), thereby improving our understand-
ing of the impact of recombination in bacterial genomes.

New Approaches
Here, we give a general high-level description of the method,
and the details are presented in “Materials and Methods”
section. The algorithm takes as input an alignment of bacter-
ial DNA sequences and performs the following four tasks:

(1) Identify lineages in the alignment.
(2) Identify recent recombinations in the lineages, where

the “recent recombinations” are defined as those that
are present in a subset of strains in a lineage.

(3) Identify ancestral recombinations between the lin-
eages, where the “ancestral recombinations” are
defined as those that are present in all strains that
belong to the lineage.

(4) Test of significance of the putative recombinations.

The distinction between recent and ancestral recombin-
ations is whether the recombination event happened before
or after the most recent common ancestor of the lineage in
which it was detected (see fig. 1).

(1) Identifying lineages: To identify lineages in a data set, we
start by running a previously published clustering algorithm
(Corander and Marttinen, 2006) included in the Bayesian
Analysis of Population Structure (BAPS) software (Corander
et al., 2003). This produces C strain clusters which represent

FIG. 1. Simulations of bacterial recombinations. The diagram shows the underlying simulation method, and here the case of P¼ 2 populations is
considered: blue and red. Populations were simulated under a clonal model of evolution for a given set of parameters (see Methods section). Three
types of recombinations were then simulated using the clonal alignment. Ancestral recombinations (case 1) occurred before the most recent
common ancestor of both populations, and thus were present in all isolates of the recipient lineage. Intermediate recombinations (case 2)
occurred sometime between the time when populations emerged and present time (t¼ 0), and thus were typically present in multiple isolates.
Recent recombinations (case 3) occurred in the last few generations, and thus were typically present in few isolates. To clarify, our method
identifies events of type 1 as ancestral recombinations, whereas all other recombinations, affecting less than any whole lineage (cases 2 and 3), are
inferred as multiple recent recombinations present in multiple individual strains.
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population structure among the strains. However, the clusters
as such are not optimal for recombination analysis for two
reasons. First, the algorithm may assign two otherwise iden-
tical sets of sequences into distinct clusters due to one of the
sets experiencing a recombination event, because after the
event the recombinant strains are more similar to each other
than to strains in the other set, resulting in a suboptimal
representation of the overall population structure across
the sequence (see supplementary fig. S1). Second, the algo-
rithm may detect clusters that have diverged very recently,
and the closeness of such clusters may result in added noise in
recombination detection. Due to these reasons, given the
clustering pattern, we infer lineages using a Hidden Markov
Model (HMM) approach (fig. 2A). In more detail, we compare
allele frequencies for each cluster pair using a HMM, where
the hidden states of the HMM represent equality of the
frequencies at the polymorphic sites. All pairwise compari-
sons are summarized as a distance matrix, which tells the
proportion of the length of the sequences where two clusters
are considered different. We apply the standard complete
linkage clustering with cutoff 0.5 to this distance matrix, re-
sulting in a grouping of clusters into L groups, which are taken
as lineages in the data. This means that two clusters will
usually be considered as part of the same lineage if their
sequences are considered similar for at least 50% of the se-
quence length, although this is not strictly enforced by the
complete linkage algorithm.

(2) Detecting recent recombinations: To identify recent re-
combinations, we analyze each lineage by applying a HMM
approach for strains assigned to the lineage, this time with
hidden states representing the origins of the different poly-
morphic sites in the strain (fig. 2B). Possible origins are the
other lineages detected in the data, as well as an unknown
origin, not represented by any strain in the data. The positions
which are assigned to a different origin than the identified
lineage of the strain are considered recombinations. After
analyzing all strains in the lineage, the hyperparameters of
the HMM are updated. Further iterations of detecting recom-
binations and updating hyperparameters are carried out until
approximate convergence. The final reported recent recom-
binations are those sequence positions where the probability
of the assigned lineage is less than some threshold, where we
have used a conservative threshold value equal to 0.05. If a
sequence position is considered recombinant, then the origin
is set to be the lineage with the highest probability at this
position. We note that also the full probability distributions
are available from our implementation.

(3) Detecting ancestral recombinations: To identify ances-
tral recombinations, we analyze all lineage pairs using the
same approach as in step (1), such that the latent variables
for the different sequence positions have two possible states,
either the lineages are the same or different, with the recent
recombination fragments treated as missing data. Putative
ancestral recombinations between lineages correspond to re-
gions of the alignment where the inferred lineages are the
same—hence a portion of the genome in isolates that are
overall assigned to different lineages, may be considered to be
part of the same lineage. However, it is important to note that

the direction of a recombination cannot be identified using
this approach. To resolve this issue, we always mark the lin-
eage with fewer strains as the recombination recipient in our
results. The convention may be justified by the principle of
maximum parsimony, as it results in fewer strains in the data
set carrying a recombinant segment (but see “Discussion”
section).

(4) Test of significance: The HMMs produce probabilities
for sequence positions of having their origins in the different
lineages, which can be used as a measure of statistical strength
of the findings. However, in our experiments we encountered
two kinds of false positive findings: first, recent recombin-
ations in strains that were outliers in the data set; second,
ancestral recombinations between lineages that were
diverged to the verge of not being considered the same by
the HMM, but not completely different either (see
“Discussion” on the limitations of the HMMs). To prune these
false positive findings, we monitor the locations of SNPs be-
tween the target strain and its ancestral lineage (for recent
recombinations) or between the two lineages (for ancestral
recombinations) within and between the claimed recombin-
ant segments. We apply a simple binomial test to compute a
Bayes factor (BF; see, e.g., Bernardo and Smith, 2001), that
measures how strongly the changes in SNP density support a
recombination, and we use a threshold BF¼ 1 for recent
recombinations and BF¼ 10 for ancestral recombinations
for additional pruning of recombinations proposed by the
HMM analyses. These thresholds represent a compromise
between false positive rate and power to detect recombin-
ations. Recombinations with BFs less than the threshold are
not reported at all, and the estimated BFs for the remaining
recombinations are included in the output.

Results

Performance on Simulated Data
To give an example of fastGEAR performance, we performed
coalescent simulations involving P¼ 3 lineages with a given
effective population size for each lineage Ne and the most
recent common ancestor (MRCA) time T. We then simulated
recombination events between them in three different
modes: recent, intermediate, and ancestral. Finally, we com-
pared the resulting, true population structure with the one
inferred by fastGEAR in figure 3. We see that fastGEAR not
only correctly identified the lineages, but also found almost all
recombinations. The inference of recent recombinations was
generally better than the inference of ancestral recombin-
ations. Of particular importance is that fastGEAR does
much better at predicting the direction of recombination
events for recent recombinations. Such direction is difficult,
if not impossible, to determine for older, ancestral recombin-
ations. However, we see that the population genetic structure
was correctly inferred in all three examples, even in the diffi-
cult case of multiple, overlapping recombinations occurring
at different time scales.

To systematically assess the performance of fastGEAR we
performed three different sets of in silico experiments. First,
we examined how well fastGEAR detects recombinations for
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different population parameters. To this end, we varied the
within-population distance (achieved by changing Ne) and
the between-population distance (achieved by changing T).
The results are shown in supplementary figure S2. We see that
fastGEAR generally detected recombinations well, particularly
the recent ones as they share higher resemblance to the origin
and are thus by definition easier to detect. The false-positive
rate was low for all types of recombinations detected and did
not vary with the between- or the within-lineage distance. By
contrast, we observed that the proportion of detected recom-
binations was highly dependent on the between-lineage dis-
tance. This is because in the absence of clear population
genetic structure, populations are relatively closely related
and there are too few polymorphisms to signal the presence
of a recombination. Furthermore, a higher within-lineage dis-
tance often affected the inference of ancestral recombin-
ations as it generated the intra-lineage population genetic
structure. Thus, as expected, performance of fastGEAR

depends on the strength of the underlying population genetic
structure.

In the second set of experiments, we compared fastGEAR
to other recombination-detection methods: STRUCTURE (link-
age model), Gubbins, and ClonalFrameML. To facilitate the
comparison with the latter two phylogeny-based approaches,
designed to detect recombinations from external origins in a
lineage-by-lineage manner, and to explore the ability of
fastGEAR to detect recombinations from unknown origins,
we ran fastGEAR both using the entire alignment and with
each lineage individually. Figure 4 shows results in terms of
false positive rate (the number of incorrect recombinations,
left column), sensitivity (the proportion of true recombin-
ations detected, middle), and the proportion of total length
of true recombinations covered by detected recombinations
(right).

We see that the false positive rate stayed very low with all
methods. Furthermore, overall, fastGEAR had similar

FIG. 2. Hidden Markov models to detect recombination. (A) Hidden Markov model used for identifying lineages and inferring ancestral recom-
binations. Each column represents a polymorphic site in the alignment and rows represent strains. The observed states of the chain are the allele
frequencies within each cluster (in the case of identifying lineages) or lineage (in the case of identifying ancestral recombinations). The latent states
of the chain represent identity of allele frequencies in the two lineages at the polymorphic sites. (B) Hidden Markov model used for identifying
recent recombinations. The observed states are nucleotide values observed in the target strain and the latent states are possible origins of the
nucleotides. The possible origins include all observed lineages plus an unknown origin.
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sensitivity to detect recent and intermediate recombinations
to the other methods, and no method was systematically the
best. Particularly interesting is the comparison between
STRUCTURE and fastGEAR, because the two methods are

generally quite similar, except that STRUCTURE explores the en-
tire parameter space using MCMC whereas fastGEAR uses the
most probable clustering and point estimates for hyperpara-
meters. In general, STRUCTURE had a bit higher sensitivity, but at

FIG. 3. Visual assessment of the inferred population genetic structure. The figure shows the population genetic structure of the simulated data. In
each panel, the rows correspond to sequences, columns correspond to positions in the alignment and colors show different populations. The left
column shows the simulated, true structure although the right column shows the population genetic structure inferred by fastGEAR. The order of
the sequences in both columns is identical, and the colors are assigned randomly, thus populations are in the same order (1, 2, 3) but can be of
different color on the left and on the right. Three figure rows correspond to three different simulation scenarios: only recent recombinations (top),
only ancestral recombinations (middle), and all three types of recombinations (bottom). The following parameters were used in the simulations:
P¼ 3, n¼ 20, Ne¼ 50, T ¼ 2e4; l ¼ 2e� 6, L¼ 10kb (all rows); Cr ¼ 800 and Rr¼ 5, Ri ¼ Ra ¼ 0 (top panel); Ca ¼ 800 and Ra¼ 3, Rr ¼ Ri ¼ 0
(middle panel); Ca ¼ 500; Cr ¼ 500 and Ra¼ 3, Ri¼ 4, and Rr¼ 6 (bottom panel).
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a much higher computational cost (between 1.5 and 2 orders
of magnitude; see supplementary fig. S3). Furthermore,
STRUCTURE was here run conditioning on the true value of
the number of populations K and the true lineage member-
ships of different strains as priors, whereas fastGEAR had no
such knowledge.

When run in a lineage-by-lineage manner, fastGEAR had
clearly lower sensitivity than with the full alignment, and the
lengths of the external recombinations were often overesti-
mated (see supplementary fig. S4). This is because fastGEAR,
similarly to STRUCTURE, gains its statistical power from having
the actual origins of recombinations. Importantly, throughout
simulations fastGEAR detected ancestral recombinations
equally well to recent and intermediate recombinations.
This is particularly encouraging as none of the other methods
could detect ancestral recombinations. These results there-
fore show that although fastGEAR is able to detect external
recombinations in a lineage-by-lineage manner, it is at its
strongest when applied to investigate between-lineage or

between-species bacterial data. An additional advantage of
fastGEAR is that it can handle missing data in a straightfor-
ward manner, although, as expected, a lot of missing data
may reduce the accuracy of recombination detection (see
supplementary fig. S5).

To facilitate the comparison of different methods, the pre-
vious benchmark simulations had predefined recombination
probabilities that were not uniform in time, thus not allowing
to investigate how the number of detected recombinations
depends on some assumed fixed underlying recombination
rate. To investigate this, we created a third set of experiments,
where we simulated gene alignments from a single bacterial
lineage with predefined internal and external recombination
rates using ancestral recombination graph (ARG) simulations
(Brown et al., 2016). Supplementary figures S6 and S7 show
the results for different underlying mutation rates and gene
sizes. Again, we see that the diversity levels affected recom-
bination detection sensitivity, with a clear detection limit for
extremely high recombination rates which reduced the

FIG. 4. Comparison of fastGEAR and other recombination detection methods. The figure shows the performance of fastGEAR compared with
other methods: STRUCTURE, Gubbins and ClonalFrameML. Top row shows results for recent, middle row for intermediate, and bottom row for
ancestral simulated recombinations. Both recent and intermediate simulated recombinations were detected by fastGEAR in the same way as
“recent” recombinations. The left column shows the false detection rate, namely, the mean number of false-positive recent recombinations per
strain (top/middle) and ancestral recombinations per alignment (bottom). The middle column shows the proportion of true recombinations
detected, and the right column shows the proportion of the total recombination length detected. Horizontal axis shows the between-population
distance per 100bp (simulated by varying T between 1.0e3 and 2.0e4). Different lines show performance of different approaches. STRUCTURE was run
for 400,000 generations (200,000 burn-in), with true populations set as prior and with three independent chains to test for convergence.
ClonalFrameML was conditioned on the true tree topology. Magenta line shows results of fastGEAR run on the full alignment, and red line for
fastGEAR run lineage-by-lineage. Each point represents the average of ten simulations. The following parameters were used in the simulations:
P¼ 3, n¼ 30, l ¼ 2:0 e–6, L¼ 20kb, Rr ¼ 300; Ra ¼ 600 and Rr¼ 5, Ri ¼ Ra ¼ 5.

Mostowy et al. . doi:10.1093/molbev/msx066 MBE

1172

Deleted Text: -
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx066/-/DC1
Deleted Text: il
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx066/-/DC1
Deleted Text: while
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx066/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx066/-/DC1


linkage between SNPs to zero. On the other hand, we did not
observe a significant effect of gene length on the detection
rate: given a recombination rate, the number of detected
recombinations per kb remained approximately constant, ex-
cept for very short genes, where the length of a recombin-
ation may exceed the length of the gene, in which case the
strains affected may be classified into a different lineage, ra-
ther than be identified as recombinant.

Analysis of Streptococcus pneumoniae Data
We next demonstrate the utility of fastGEAR in three differ-
ent data analyses using a whole-genome collection of 616
isolates of S. pneumoniae. First, we analyzed alignments of
three b-lactam genes responsible for penicillin resistance, aug-
menting the alignments with sequences from other species.
This demonstrates the ability of fastGEAR to produce a de-
tailed population structure of genome regions of interest and
detect recombination between species. Second, we analyzed
the pneumococcal pan-genome by running fastGEAR inde-
pendently on the 2,113 codon alignments for COGs with at
least 50 sequences from the previously-described pneumo-
coccal population, to detect recombination hotspots in the
pneumococcal genome. Third, we estimated a high-
resolution genome-wide population structure of the
pneumococcus population, by summarizing the analyses of
individual COGs in terms of the proportion of genome-wide
shared ancestry between isolate pairs. The third analysis also
demonstrates how the pneumococcal species-wide phyl-
ogeny, estimated from a core alignment, emerges as an aver-
age of highly variable population structures at individual loci,
rather than representing clonal descent at any genome
region.

Inter-Species Recombination at Penicillin-Binding
Proteins
The population structure of b-lactam genes, which encode
for penicillin binding proteins, has been previously analyzed
to understand the genetic basis of penicillin resistance and
investigate the flow of antibiotic resistance determinants
among streptococci (Croucher et al., 2013; Jensen et al.,
2015). Here, we included the whole population of 616 S. pneu-
moniae strains, together with sequences from other species
available in databases (list of accession numbers available in
supplementary table S1), resulting in the most comprehensive
collection analyzed for this purpose. We analyzed each of the
b-lactam genes, pbp1a, pbp2b, and pbp2x, using fastGEAR. We
also investigated the sensitivity of the results on the presence
of diverse strains by removing the outlier strains (i.e., those that
belonged to lineages with five or fewer isolates in the original
analysis).

Results with outliers removed are presented in figure 5,
and they show a high-resolution view of the pbp genes across
streptococci, with multiple recombination events between
different species. Supplementary figure S8 shows results be-
fore removing outliers, and we see that the inclusion of highly
divergent outlier strains slightly lowers the sensitivity to de-
tect recombinations, however the overall picture remains
qualitatively identical. By comparison, supplementary figure

S9 shows results separately for recent and ancestral recom-
binations, demonstrating that much of the structure remains
hidden if ancestral recombinations are not considered.

Previously a software called BratNextGen (Marttinen et al.,
2012), developed by the same authors, has been used to in-
vestigate the population structure across diverse strains at the
same loci (Croucher et al., 2013; Jensen et al., 2015). As men-
tioned previously, BratNextGen was designed for detecting
imports from external origins in whole-genome alignments of
closely related strains. For this reason, it does not automatic-
ally identify the origin of the imports, thereby requiring post-
processing like manual curation used by Jensen et al. (2015).
To better understand how the difference between the two
methods affects the inference of the underlying genetic mo-
saicism, we compared the results using both approaches
using simulated data (see supplementary fig. S10) and the
pbp’s (see supplementary fig. S11). The results show that
the lineages detected by BratNextGen as well as the strains
identified as recombinant are, broadly speaking, similar to
those from fastGEAR. However, as expected, the BratNextGen
output may be arbitrary if multiple diverse lineages are included
into the analysis (see supplementary fig. S10). This can be best
seen when comparing the results of the pbp analysis by
fastGEAR and BratNextGen side-by-side, zooming in on
the results across multiple species (see fig. 6; supplementary
fig. S12 shows results separately for recent and ancestral
recombinations). One can see that fastGEAR identified mo-
saicism between species much better than BratNextGen.
Overall, we conclude that fastGEAR is much more suited
for the analysis of mosaicism of diverse bacterial genes than
other, single-lineage methods like BratNextGen.

We also investigated the relation between recombination
and the levels of antibiotic resistance for S. pneumoniae iso-
lates analyzed here (see supplementary fig. S13). The
Spearman rank correlation between the detected recombin-
ations and the minimum inhibitory concentration (MIC) was
found significant in all genes (pbp1a, q ¼ 0:66; p � 0;
pbp2b, q ¼ 0:72; p � 0; pbp2x, q ¼ 0:75; p � 0). Here
the number of breakpoints due to both recent and ancestral
recombinations was used as the variable tested against MIC,
but all these correlations remained highly significant even if
using either recent or ancestral recombination alone, or when
representing the amount of recombination by the total
length of recombinant sequence.

Comparison of Recombination Levels across Different
Proteins
We next compared the levels of recent and ancestral recom-
bination between different proteins. Consistent with a con-
stant rate of recombination over the history of this
population, both measures were significantly correlated
(R2 ¼ 0:46; p � 0) with the mean number of recent recom-
binations almost twice the number of ancestral recombin-
ations (1.4 vs. 2.7; see supplementary fig. S14). Based on the
simulations, the overall diversity in a gene may affect the
number of recombinations detected (see fig. 4 and supple
mentary fig. S6). To investigate the potential bias caused by
this, we computed four common diversity measures and
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compared them with the estimated recombination counts
(see supplementary fig. S15). No obvious relationship was
seen, suggesting that results mainly represent true variation
in recombination intensities.

Among the genes with the highest number of ancestral
and recent recombinations shown in tables 1 and 2, respect-
ively, we found many loci previously identified as recombin-
ation hotspots (Supplementary tables S2 and S3 show top
hits for recombination intensities normalized by alignment
length). These proteins can be classified into several groups.
The first group consists of mobile genetic elements, which
include integrative and conjugative elements, prophages,
phage-related chromosomal islands, and insertion sequences.
This is not surprising as frequent between- and within-lineage
recombination of mobile genetic elements has been reported
previously (Croucher et al., 2014a). The second group are
proteins which are engaged in the interactions with the
host. Pneumococcal surface protein C (pspC), which plays a
central role in pathogenesis of the pneumococcus, was a top

hit for both recent and ancestral recombinations (Kadioglu
et al., 2008). Another top hit was the first of the rhamnose
genes (rmlA), which often serves as a breakpoint in serotype
switching events (see Supplementary text and fig. S16 for a
detailed discussion). We also found a high number of recent
recombinations in the zinc metalloprotease zmpA, which
cleaves human immunoglobulin A1 (Weiser et al., 2003).
The third group are genes involved in determining resistance
to antibiotics, including sulphamethoxazole resistance (folC,
see supplementary fig. S17), as well as b-lactams (pbp1a,
pbp2b and pbp2x) discussed above. With the exception of
the mosaic zmpA sequences, these proteins were previously
identified as recombination hotspots in globally disseminated
lineages (Croucher et al., 2011, 2014b).

We also found highly recombinogenic proteins which have
not been previously identified as recombination hotspots.
One example is the chromosome partitioning SMC protein,
which functions in chromosomal segregation during cell div-
ision (Britton et al., 1998) and is one of the top hits in both

FIG. 5. Results showing inter-species recombination at penicillin-binding proteins. The figure shows fastGEAR results for combined data sets with
the 616 S. pneumoniae strains and some number of additional sequences from other species (104 in pbp1a, 129 in pbp2b, 127 in pbp2x). The
phylogeny and the sequence clusters (SCs) on the left show the core-genome-based tree with 15 major monophyletic clusters for the S. pneumoniae
strains. Strains from other species are shown on top of the S. pneumoniae strains. The species annotation is represented by colors on the left side of the
additional strains, above the phylogeny. Note that the colors used to annotate species are independent of the colors in the fastGEAR output plots,
where colors represent lineages detected by fastGEAR, except white which denotes gaps in the alignment.
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recent and ancestral recombinations. Other genes that were
also inferred to undergo high levels of recombination are
phenylalanyl- and valyl-tRNA synthetases, enzymes that at-
tach the amino acids phenylalanine and valine to their cog-
nate tRNA molecules during the translation process. Previous
reports show that recombination and horizontal gene trans-
fer frequently occur in aminoacyl-tRNA synthetases (aaRS)
(Woese et al., 2000). The horizontal acquisition of aaRS vari-
ants may be implicated in resistance to antibiotics (Woese
et al., 2000), and at least one atypical additional aaRS has been
found on Pneumococcal Pathogenicity Island 1 (Croucher
et al., 2009). Although within-species recombination of
aaRS has not been widely investigated, our results suggest
that this process plays an important role in the evolution
of pneumococci.

High-Resolution View of Population Structure
To investigate the population structure of the entire collec-
tion of isolates, we calculated the proportion of shared

ancestry (PSA) matrix, which summarizes the fastGEAR re-
sults for all 2,113 COG alignments. Specifically, for each pair of
isolates we analyzed the population structure at each COG
with putative lineages and the list of recent and ancestral
recombinations detected in the COG. If the COG was present
in both isolates, we computed the proportion of the length of
the COG sequence in which the two isolates were assigned to
the same lineage. If the COG was absent in either or both of
the isolates, they were not compared at this COG; if multiple
copies of the gene were found, then all possible comparisons
between the two isolates were included, and correspondingly
taken into account in the total length of sequence compared.

The resulting PSA matrix together with a previously pub-
lished core-gene-based phylogeny and 15 monophyletic se-
quence clusters (SCs), which can be taken as lineages, is
shown in figure 7. Overall, the PSA results are highly concord-
ant with the tree and the SCs. First, strains within SCs share
almost all of their ancestry, such that the average PSA within
different SCs ranges from 85% up to 98%, which is visible as

FIG. 6. Comparison of fastGEAR and BratNextGen The figure presents a detailed comparison of fastGEAR and BratNextGen. The results are shown
for the pbp2x gene, zooming in to the sequences from multiple different species appearing on top in figure 5. We see that fastGEAR is able to detect
mosaic structure between species.

Table 1. Summary of COGs with the Highest Number of Ancestral Recombination Events (>20) Identified by fastGEAR.

SNPs Sequences Clusters Lineages Ancestral Gene Name

788 288 17 10 58 Pneumococcal surface protein C
818 2149 24 17 51 Insertion sequence IS1167
543 616 21 8 47 Chromosome partition protein SMC
618 2320 25 19 39 Insertion sequence IS1381
297 325 14 11 34 Bacteriophage DNA binding protein
1177 378 10 7 32 Tn5252 relaxase
720 616 12 7 31 Penicillin-binding protein 2x
191 616 20 10 30 Ribosomal protein L11 methyltranferase
332 612 14 7 23 Two component system histidine kinase
258 336 11 7 23 Capsule locus glucose-1-phosphate thymidyl transferase RmlA
320 616 22 9 22 Phenylalanyl-tRNA synthetase (PheS)
310 229 11 7 22 Protein found in phage-related chromosomal islands
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blocks of high PSA on the diagonal. Second, these blocks
correspond well to the clades of the phylogeny. Third, the
sequence cluster SC12, which has previously been identified
as “atypical”, non-encapsulated pneumococci (Croucher
et al., 2014a) and appears distant from the rest of the popu-
lation in the phylogeny, shares considerably less of its ancestry
(approximately 60%) than other SCs share with each other.
We also note that the polyphyletic SC16, which includes all
strains in the phylogeny which are not part of SCs 1–15 (and
is thus not shown), consists of multiple blocks of high PSA.
These individual groups are similar to other SCs, with the
difference that they are too small to be identified as separate
SCs. Thus, we see that fastGEAR can produce a high-
resolution view of the bacterial population genomic structure.
Even though the PSA matrix and the phylogeny are in good
accordance, our results highlight some details of the popula-
tion structure not apparent in the phylogeny; for example, a
pair of isolates between SC5 and SC8 in figure 7 that seem to
share a large proportion of their ancestry with SC8.

A conspicuous feature of the PSA matrix is the lack of
hierarchy between different SCs. Indeed, the different lineages
(except for SC12) are approximately equidistant from each
other, sharing from 71% to 81% of their ancestry, a pattern
that can be explained by frequent recombination between
the SCs (Fraser et al., 2007; Marttinen et al., 2015). To better
demonstrate this, we computed the amount of private an-
cestry for each strain, defined as the proportion of the strain
where the origin was not found in any other SC than the one
to which the strain belonged (see supplementary fig. S18). The
results show that all SCs have very little private ancestry; even
the divergent SC12 has only about 15% of its ancestry private,
i.e., not found in any other SC. These findings are consistent
with the analysis of accessory genome content, which
hypothesized that SC12 pneumococci may constitute a

different streptococcal species altogether (Croucher et al.,
2014a).

To investigate the impact of recombination on the core
genome further, we analyzed the population structure of
96 housekeeping genes from an extended MLST set (Crisafulli
et al., 2013). The results for all the 96 genes are shown in
Supplementary fig. S19, for a subset of 25 genes in figure 7,
and for all core genes (i.e., present in at least 95% of the
isolates) in supplementary figure S20. Two observations are
particularly striking. First, we see that for the vast majority of
genes the inferred number of lineages is much smaller than
15 (median: 3, 95% CI: 2–6). Second, the population structure
is highly variable across the genome including at the 96 most
essential genes, significantly deviating from a clonal model of
diversification (see supplementary figs. S21 and S22). These
findings lead to two important conclusions: (1) the
pneumococcal-wide population structure, as represented by
the SCs, emerges as the average of highly variable population
structures of individual genes; and (2) variable population
structures of individual genes reflects their different evolu-
tionary histories, and thus imply high rates of recombination
at almost all bacterial genes, even the most conserved ones.
These findings are consistent with an earlier comparison of
phylogenies based on seven pneumococcal MLST genes (Feil
et al., 2001), and support the idea that recombination in some
bacteria may eliminate the phylogenetic signal needed to
establish relationship between different bacterial clones.

Discussion
In this article, we introduced a novel tool called fastGEAR to
analyze the population genetic structure in diverse bacterial
isolates. Specifically, fastGEAR identifies major lineages and
infers recombination events between them as well as those
originating from outside the sampled population.
Simultaneous inference of the population structure and

Table 2. Summary of COGs with the Highest Number of Recent Recombination Events (>25) Identified by fastGEAR.

SNPs Sequences Clusters Lineages Recent Gene Name

788 288 17 10 69 Pneumococcal surface protein C
543 616 21 8 69 Chromosome partition protein SMC
720 616 12 7 57 Penicillin-binding protein 2x
320 616 22 9 40 Phenylalanyl-tRNA synthetase (PheS)
536 616 16 5 37 Valyl-tRNA synthetase (ValS)
191 616 20 10 37 Ribosomal protein L11 methyltransferase
583 606 23 4 35 Large cell wall surface anchored protein
558 615 12 4 34 Penicillin-binding protein 2b
2021 248 10 4 34 Zinc metalloprotease A
490 616 11 7 31 Folylpolyglutamate synthase (FolC)
263 614 17 7 31 Transporter
393 616 15 8 29 Cell wall synthesis protein MurF
618 2320 25 19 28 Insertion sequence IS1381
326 597 15 5 28 Choline binding protein C/J
284 616 18 6 27 Glucose-inhibited division protein GidA
332 612 14 7 27 Two component system histidine kinase
741 97 7 5 27 Phage protein
574 614 9 5 26 ATP-dependent protease ATP-binding protein ClpL
242 613 19 5 26 Mannosidase
138 565 20 6 26 Membrane protein
421 64 9 6 26 Part of large cell wall surface anchored protein PsrP
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between-population recombinations using Hidden Markov
Models is analogous to an earlier approach called STRUCTURE

(Falush et al., 2003) but is novel in terms of both the ability to
infer ancestral exchanges between those populations and
being computationally scalable to thousands of sequences.
In addition, our method is able to handle missing data in a
straightforward manner, although for regions with lots of
missing data the accuracy of the results may be decreased
(see supplementary fig. S5). Thus, our method is a notable
addition to the currently available approaches for recombin-
ation detection in bacterial genomes, particularly so due to its
ability to cope with increasingly large collections of whole-
genome data and the ability to infer recombination in bac-
terial pan-genome data.

When detecting ancestral recombinations, our method is,
broadly speaking, opposite to the clonal-frame-like
approaches (Didelot and Falush, 2007; Croucher et al., 2015;
Didelot and Wilson, 2015), where recombinations are diver-
gent segments among highly similar sequences; here the an-
cestral recombinations are highly similar segments between
diverse lineages. In this respect, our method resembles
ChromoPainter/fineStructure (Lawson et al., 2012), a method
that investigates the similarity of haplotypes using other
haplotypes as possible origins for the target haplotype, with
the difference that fastGEAR detects recombination between

groups of sequences. Our lineage-based approach has two
benefits: first, if two or more strains share a recombination
due to inheritance from a common ancestor, the recombin-
ation would not be seen at all if all sequences were considered
as possible donors, because the recombination recipients are
always closer to each other than to the donor. By considering
lineages rather than strains as possible donors, it is possible to
detect such a recombination. The second benefit is that in
alignments with a very large number of highly similar or even
identical sequences, identifying a specific donor would be very
noisy, in particular because the actual donor is highly unlikely
to be sampled in the collection, whereas identifying a lineage
comprising a group of similar strains as a donor can be done
robustly. The downside of the lineage-based approach is that
recombinations between members of a single lineage are not
detected. Our software implementation includes an option to
manually define the lineages, which potentially could be used
to detect recombinations between lineages defined at differ-
ent resolutions, and our plan is to investigate this aspect in
the future. Obviously, detecting recombinations between
members of a single lineage is in practice limited by the
lack of diversity between the strains, which reduces the power
of any method to detect such events.

Even though fastGEAR detected ancestral recombinations
exceptionally well in simulated data, a few points should be

FIG. 7. Population structure of the pneumococcal data. The phylogeny and the sequence clusters (SCs) on the left show the core-genome-based
tree with 15 major monophyletic clusters. Middle panel shows fastGEAR output for 25 out of 96 housekeeping genes, as discussed in the text;
results for all 96 genes are qualitatively the same and shown in supplementary figure S19. The colors represent different lineages identified in the
analysis (but are otherwise selected arbitrarily to be easily distinguishable). Recent and ancestral recombinations are colored with the color of the
donor lineage. The results for the different genes were obtained by running fastGEAR independently, but the lineage colors at different genes were
reordered to reduce the number of colors for any single strain across the genes (See Supplementary text for details). White colour denotes missing
data. The PSA matrix on the right shows the genome-wide proportion of shared ancestry between the isolates in the data set, ranging from blue
(distant) to yellow (closely related).
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kept in mind when interpreting the results. First, the term
‘ancestral’ is relative and does not have to reflect the time of
recombination; it merely reflects the fact that the recombin-
ation happened before the strains in the affected lineage
diverged. Second, fastGEAR cannot reliably infer the direction
of ancestral recombinations, as this would require additional
assumptions about relationships between the ancestral se-
quences. We have resolved this by always marking the lineage
with fewer strains as recombinant, assuming the lineage sizes
are indicative of their ages, but the potential of sampling bias
should be considered when interpreting results. This lack of
directionality also means that although recombination break-
points can be accurately inferred, determining conclusively
which part of the sequence represents clonal inheritance (the
clonal frame) is not possible. Therefore, interpreting the re-
sults in the phylogenetic context is recommended. We also
note that a long ancestral recombination from a distant origin
may appear in the results as a new lineage, rather than being
reported as an ancestral recombination. Finally, we note that
intermediate recombinations, present in multiple related iso-
lates, are detected as multiple recent recombinations by the
method. Therefore, to avoid reporting a single recombination
event multiple times, the total number in the program out-
put is obtained by considering spatially overlapping recom-
binations from the same origin as a single event (see Manual
for further details).

Our statistical approach combines HMMs to identify pu-
tative recombinations with a post-processing step to com-
pute the significances of the recombinations. These steps use
information in the sequence data differently: the HMMs are
based on allele frequencies at polymorphic sites, whereas the
significances are computed using variations in SNP frequency
along the sequence. The need for a separate post-processing
step follows from the limitation of the HMMs that they can
only tell whether two lineages are the same or different, but
not how different they are. Consequently, very close or distant
lineages are easily handled by the HMMs, but there always
seems to be some intermediate distance for which HMMs
may produce short segments of false positive recombinations,
regardless of the exact way the HMM is formulated (e.g., we
experimented with various ways to handle the hyperpara-
meters). The post-processing will produce a bias towards
removing short, diverged segments as longer ancestral recom-
binations often reach higher significance. This is useful from a
biological point of view because such short segments may
also emerge as a combined result of mutation and positive
selection. By assigning higher significance to longer fragments
the chance of those fragments representing horizontal and
not vertical evolution is increased. Nevertheless, a visual check
of significance and a good understanding of the data analyzed
is always recommended.

Although our method does not assume a phylogeny, it
nevertheless relies on some lineages between which recom-
binations are detected, and inferring the lineages is an im-
portant first step on which reliable downstream analysis can
be based. Assuming consistent lineages over the length of one
gene is more justified than over larger genomic regions, as
demonstrated also by our results. For this reason, we chose to

analyze the S. pneumoniae data gene-by-gene, rather than
concatenating multiple genes for joint analysis. The gene-
by-gene analysis has additional benefits of being straightfor-
ward to parallelize and possible to apply to whole-genome
core alignments. The latter is particularly appealing as it per-
mits insight into the population structure and evolution of
diverse microbial datasets, as well as analysis of standard bac-
terial pan-genome production pipelines. For these reasons,
this is the way we currently recommend to use the method
in practice. One downside of the gene-by-gene analysis is that
there is no straightforward way for making inferences about
long recombinations spanning multiple genes.

The usefulness of fastGEAR became evident when we
applied it to a pneumococcal pan-genome from a whole-
genome collection of 616 isolates from Massachusetts. By
further inclusion of over 100 sequences from other bacterial
species (including S. mitis, S. oralis, S. pseudopneumoniae,
S. sanguis, and S. infantis) to alignments of each of the three
penicillin-binding protein loci (pbp1a, pbp2x, pbp2b), we
gained a high-resolution view into the level of inter-species
recombination within these important antibiotic-resistance
genes. Furthermore, the analysis of all 2,113 genes produced a
high-resolution view of the species-wide population struc-
ture. The population structure was consistent with previous
studies of the fifteen major monophyletic groups but it also
permitted insight into the ancestral composition of smaller
clusters as well as to the relationships between the clusters.
Finally, the analysis of recombinations within individual genes
not only correctly identified many known major recombin-
ation hotspots in the pneumococcus but also pointed to
potentially novel ones (SMC protein, valS, aaRS).

Although developed and tested with bacterial genomes in
mind, there is nothing in the method per se to exclude it from
the analysis of other pathogens, including viruses.
Nevertheless, fastGEAR assumes the isolates to be haploid,
for which reason we expect fastGEAR to be particularly useful
in questions related to microbial evolution. To conclude,
fastGEAR offers a novel approach to simultaneously infer
the population structure and recombinations (both recent
and ancestral) between lineages of diverse microbial popula-
tions. We expect the method will bring novel insight into the
evolution of recombinogenic microbial species, particularly so
when recombination rates are high enough for the concept of
species to be challenging to define.

Materials and Methods

Simulations
Details of simulations are given in Supplementary text. In
brief, to generate in silico data we first created a phylogeny
using a coalescent simulation framework Excoffier et al.
(2013) assuming P¼ 3 demes which diverged T generations
ago, each with a clonal population of effective size Ne and
with mutation rate l. A sample of n isolates was drawn from
each population. An alignment of length L was created con-
ditional on the phylogeny and recombinations were simu-
lated by donating a homologous DNA fragment from a
prespecified donor population to the target population, after
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which the fragment evolved according to the phylogeny of
the target population. Recent recombinations were assumed
to occur on average several generations before the present;
intermediate recombinations were assumed to occur some-
time between present and the youngest of all P most recent
common ancestors for each population; ancestral recombin-
ations were assumed to occur before the oldest of all P most
recent common ancestors. The recombination size was mod-
elled as a geometrically distributed variable with Cr being the
mean size of recent and intermediate recombinations and Ca

the mean size of ancestral recombinations. We assumed on
average Rr recombination events per population for recent
recombinations (with targets chosen randomly), Ri recombin-
ation events per population for intermediate recombinations
and Ra recombination events for ancestral recombinations.

The accuracy of fastGEAR was assessed by quantifying the
number of wrong recombinations (false-positives) and missed
recombinations (false-negatives). To account for non-
independence of recent and ancestral recombinations affect-
ing multiple isolates, we clustered similar recombinations
together with 95% identity threshold and counted each clus-
ter as a single event. Inferred recombinations were then com-
pared with true recombinations by comparing the isolates in
which they occurred and position at which they occurred
(assuming any overlap), which determined the number of
false-positives and the proportion of all recombinations de-
tected. Due to the difficulties in identifying direction of re-
combination, a detected recombination was considered a
true-positive if the resulting population structure was correct,
even if the recipient was not identified correctly.

Data from Streptococcus pneumoniae
We analyzed a collection of 616 Streptococcus pneumoniae
genome strains sampled in Massachusetts, for which whole-
genome sequences were described in the original publication
Croucher et al. (2013). The assembled data were scanned for
putative protein-coding sequences, which were grouped ac-
cording to their similarity, resulting in 5,994 clusters of orthol-
ogous genes (COGs). From these, we selected into our
analysis those with at least 50 sequences, and we only
included proteins that were within 75% and 125% of the
median length of the COG. After this filtering, we kept
COGs with at least five distinct protein sequences included
in the data set, resulting in a total of 2,113 COGs included into
our analysis. Unique sequences were aligned with Muscle
Edgar (2004). All DNA sequences associated with each pro-
tein sequence were then back-translated into a full codon
alignment. A core alignment was constructed using COGs
present once in each genome assembly. This alignment was
previously used to produce a maximum likelihood phylogeny
of the data, and analyzed by BAPS to produce 16 sequence
clusters (SCs), of which 15 were monophyletic Croucher et al.
(2013).

Details of the Algorithm
Identifying Lineages
Let X ¼ ½xij� denote the alignment of polymorphic positions
j ¼ 1; . . . ; J in strains i ¼ 1; . . . ;N: We use the BAPS

algorithm (Corander and Marttinen, 2006) to estimate a par-
tition S ¼ fs1; . . . ; sCg of strains into C separate clusters sc.
To identify lineages in the data, a HMM is used to compare all
cluster pairs. To define a HMM, a probability distribution for
the first latent variable, z1, a transition matrix, and emission
probabilities must be specified (see, e.g., Bishop, 2006, Ch.13).
We use a uniform prior

pðz1 ¼0 same0Þ ¼ pðz1 ¼0 not same0Þ ¼ 0:5;

and we define a transition matrix Tj for a transition from the
ðj� 1Þst to the jth polymorphic site as

Tj ¼
n 1� n

1� n n

" #dj�1;j

:

Here n is a hyperparameter that specifies the probability
that if the clusters are considered the same in some sequence
position, they are the same in the next position as well. The
distance dj�1;j between the polymorphic positions is taken
into a account by raising the matrix to the power dj�1;j. We
use a fixed value for the hyperparameter:

n ¼ 0:51=ðl�1Þ;

which corresponds to the assumption that the two clus-
ters are the same for the entire length l of the sequence
with probability 0.5. We note that when comparing clus-
ters (and later lineages) using the HMM, the emission
probabilities, which are based on all observations in the
clusters, are highly informative, and therefore, the con-
clusions are insensitive to the exact value of the param-
eter n; replacing 0.5 by 0.05 or 0.005 produced almost
identical results in our experiments. Let x

ð1Þ
j and x

ð2Þ
j de-

note observations at locus j in the two clusters that are
compared, and let x

ð12Þ
j ¼ ðxð1Þj ; x

ð2Þ
j Þ: We specify the

emission probabilities as:

pðxð12Þ
j jzj ¼0 same0Þ ¼

ð
f j

pðxð12Þ
j jf jÞpðf jÞdf j; (1)

where f j ¼ ðfj1; . . . ; fjMj
Þ are the frequencies and Mj the

number of the different alleles observed at locus j.
Furthermore,

pðxð12Þ
j jzj ¼0 not same0Þ ¼ pðxð1Þj Þpðx

ð2Þ
j Þ

¼
Ð

f j
pðxð1Þj jf jÞpðf jÞdf j �

Ð
f j
pðxð2Þj jf jÞpðf jÞdf j:

(2)

The likelihood in equations (1) and (2) is defined as:

pðxðxÞj jf jÞ ¼
YMj

m¼1
f

n
ðxÞ
jm

jm ; for x 2 f1; 2; 12g;

where we have denoted the count of allele m at locus j in
group x by n

ðxÞ
jm . The prior on the frequencies f j is defined as

f j � Dirichletð1=Mj; . . . ; 1=MjÞ:

With this prior it is possible to integrate out the frequen-
cies analytically, which gives
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Ð
f j
pðxðxÞj jf jÞpðf jÞdf j

¼
QMj

m¼1 CðnðxÞjm þ 1=MjÞ

C 1=Mj

� �Mj C 1þ
PMj

m¼1 n
ðxÞ
jm

� � ; (3)

which can be used to compute equations (1) and (2).
Finally, the HMM analysis is used to calculate a distance ma-

trix between the clusters sc detected in BAPS analysis, with the
distances representing the proportion of sequences considered
’not same’ by the HMM. This distance matrix is used as an input
to the standard complete linkage clustering, and lineages are
defined by using a cutoff 0.5, resulting in another partition
S ¼ fs1; . . . ; sL�1g of the strains into L – 1 lineages. We add to
this an empty lineage sL ¼1 that represents an unknown origin
of recombinations, not represented by any strains in the data.

Detecting Recent Recombinations
To detect recent recombinations in a lineage, we analyze all
strains in the lineage with a HMM, and repeat this for all
lineages. We call the lineage that is currently analyzed the
ancestral lineage for strains that belong to the lineage,
whereas other lineages are called foreign for the strains.
The strains in the lineage are analyzed consecutively, after
which the hyperparameters of the HMM are updated, after
which the strains are again analyzed, and this is continued
until approximate convergence. We note that we use a sep-
arate probability model for each lineage as opposed to a
more formal approach with a joint model over all data.
This simplification enables computation that is scalable up
to thousands of strains in dozens of lineages.

The HMM is defined with transition probabilities that rep-
resent switches in the origin of the target strain between the
ancestral lineage and foreign lineages. We define these in a
way that resembles the transition probabilities used in the
BratNextGen (Marttinen et al., 2012), with the difference that
in BratNextGen the transitions happen between a single non-
recombinant state that represents the clonal ancestry of all
strains in the data and other states that represent possible
recombination origins outside of the data. Let lanc denote the
lineage that is currently analyzed. Then the transition matrix
at a polymorphic position j is specified as:

Tj ¼ ½ðtxyÞdj�1;j �x;y21;...;L

where,

txy ¼

q0; if x ¼ y ¼ lanc

1� q0

L� 1
; if x ¼ lanc and y 6¼ lanc

q; if x ¼ y 6¼ lanc

ð1� qÞa; if x 6¼ lanc and y ¼ lanc

ð1� qÞð1� aÞ
L� 2

; if x 6¼ lanc; y 6¼ lanc; and x 6¼ y

:

8>>>>>>>>>>><
>>>>>>>>>>>:

The different parameters are interpreted as follows: q0 is
the probability of staying in the ancestral lineage; 1�q0

L�1 is the

probability of moving away from the ancestral lineage into a
foreign lineage, q is the probability of staying in a foreign
lineage; ð1� qÞa is the probability of moving from a foreign
lineage back to the ancestral lineage; ð1�qÞð1�aÞ

L�2 is the prob-
ability of moving from a foreign lineage to a different foreign
lineage.

Emission probabilities are defined by assuming that pðxij ¼
mjzij ¼ lÞ ¼ fjlm; where f jl ¼ ðfjl1; . . . ; fjlMj

Þ are the frequen-
cies of the different alleles at locus j in lineage l. With the prior
f jl � Dirichletðajl; . . . ; ajlÞ; we can integrate out f jl, which
yields the emission probabilities:

pðxij ¼ mjzij ¼ lÞ ¼ njlm þ ajlPMj

m0¼1ðnjlm0 þ ajlÞ
; (4)

where njlm is the count of allele m at locus j in lineage l. When
calculating njlm, we remove the target strain from its ancestral
lineage, as well as recombinant regions of other strains that
belong to the lineage. Also, for the external origin, corres-
ponding to l¼ L, njlm¼ 0 always. An important consideration
is how to specify the hyperpameters ajl:One possibility would
be to set ajl ¼ cj, with some cj that would be constant across
the lineages. This has the downside that if sequences in mul-
tiple lineages are exactly the same, then the origin corres-
ponding to the largest lineage would have the highest
probability according to equation (4). However, we want
the model to assign the highest probability to the ancestral
lineage unless there’s evidence against it, which we achieve by
assuming overdispersion in the multinomial distributions of
the allele counts (see, e.g., Poortema, 1999) in those foreign
lineages that are larger than the ancestral lineage. In practice,
we specify:

ajl ¼

1:1�
P

m njlmP
m njlancm

�M�1
j

if
P

m njlm >
P

m njlancm > 0

1=Mj; otherwise:

8>>>><
>>>>:

This ensures that the ancestral lineage will always have a
higher value of equation (4) than a foreign lineage, even if all
sequences in both lineages are identical to the value in the
target sequence. Finally, a uniform prior is again used for the
first latent variable, completing the definition of the HMM for
recent recombinations.

Detecting Ancestral Recombinations
Ancestral recombinations between lineages are estimated by
first removing the recent recombinations in the lineages de-
tected in step 2, and then analyzing each lineage pair using a
HMM similar to the one that was used for comparing differ-
ent pairs of clusters when estimating lineages in step 1. This
tells us sequence regions in which two lineages are the same
(with probability> 0.5) or different. We note that the direc-
tion of recombination is not identifiable by this approach, it
only tells whether two lineages are “the same” or “different” in
some region. Therefore, after we have computed the similar-
ity patterns for all lineage pairs, we follow the convention
stated in the main text, and assign the regions of the smaller
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lineage to have their origin in the largest lineage that is similar
to the smaller lineage in the region.

Test of Significance Based on SNP Density
To compute an additional significance check for putative re-
cent recombinations, we identify locations of SNPs between
the target strain and the summary sequence (modal se-
quence after removing recent recombinations) of the ances-
tral lineage of the strain. The SNP density between the non-
recombinant regions is compared with SNP densities within
the putative recombinations. In detail, let nr ¼ ðnðrÞ1 ; n

ðrÞ
0 Þ be

the numbers of SNPs and non-SNPs within the rth recombin-
ation and n0 ¼ ðnð0Þ1 ; n

ð0Þ
0 Þ the corresponding numbers in

the non-recombinant regions. We compute a Bayes factor
(BF):

BFr ¼
pðnr; n0jM1Þ
pðnr; n0jM0Þ

; (5)

where M1 assumes that nr and n0 come from different
distributions

pðnr; n0jM1Þ /
ð

pr

pn
ðrÞ
1

r ð1� prÞn
ðrÞ
0 fðprÞdpr (6)

�
ð

p0

p
n
ð0Þ
1

0 ð1� p0Þn
ð0Þ
0 fðp0Þdp0; (7)

where pr and p0 denote SNP frequencies within the recom-
bination and non-recombinant regions, respectively. M0 as-
sumes that the observations come from the same distribution
with a single frequency parameter p

pðnr; n0jM0Þ /
ð

p

pn
ðrÞ
1 þn

ð0Þ
1 ð1� pÞn

ðrÞ
0 þn

ð0Þ
1 fðpÞdp: (8)

We note that the proportionality constants in equations
(7) and (8) are equal and, thus, cancel when computing equa-
tion (5). With a non-informative uniform prior p; po; pr � U
ð0; 1Þ; the integrals in equations (7) and (8) can be computed
and equal

pðnr; n0jM1Þ ¼
Y

x2f0;rg

Cð2ÞCð1þ n
ðxÞ
1 ÞCð1þ n

ðxÞ
0 Þ

Cð2þ n
ðxÞ
1 þ n

ðxÞ
0 Þ

and

pðnr; n0jM0Þ ¼
Cð2ÞCð1þ n

ðrÞ
1 þ n

ð0Þ
1 ÞCð1þ n

ðrÞ
0 þ n

ð0Þ
0 Þ

C 2þ n
ðrÞ
1 þ n

ðrÞ
0 þ n

ð0Þ
1 þ n

ð0Þ
0

� �

In detail, the algorithm continues as long as there are re-
combinations with BF less than 1, and always removes the
recombination with the lowest BF, combines observations
from the removed recombination with the non-
recombinant observations, and recomputes the Bayes factors
for all remaining recombinations.

We compute analogous Bayes factors for the ancestral
recombinations. In detail, we process the lineages one by

one, such that we consider the segmentation of the lineage
into different origins. For each segment, we compute the
Bayes factor using a similar beta-binomial model based on
changes in SNP density between segments. SNP density is
here computed between the origin of a recombination and
non-recombinant regions (for recombinant segments), or be-
tween the ancestral lineage and origins of its neighboring
segments (for non-recombinant segments). If the BF for
SNP density changing is less than 10 for any segment, then
the segment with the smallest BF will be combined with its
neighbor, such that always the shorter segment is merged
with the larger one. The thresholds for recent and ancestral
recombination BFs, 1 and 10, correspondingly, were selected
based on preliminary experiments, and represent a com-
promise between false positive rate and power to detect
recombinations.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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