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Abstract: Gastric cancer has remained in the top five cancers for over ten years, both in terms of incidence
and mortality due to the shortage of biomarkers for disease follow-up and effective therapies. Aiming to
fill this gap, we performed a bioinformatics assessment on our data and two additional GEO microarray
profiles, followed by a deep analysis of the 40 differentially expressed genes identified. PPI network
analysis and MCODE plug-in pointed out nine upregulated hub genes coding for proteins from the
collagen family (COL12A1, COL5A2, and COL10A1) or involved in the assembly (BGN) or degradation of
collagens (CTHRC1), and also associated with cell adhesion (THBS2 and SPP1) and extracellular matrix
degradation (FAP, SULF1). Those genes were highly upregulated at the mRNA and protein level, the
increase being correlated with pathological T stages. The high expression of BGN (p = 8 × 10−12), THBS2
(p = 1.2 × 10−6), CTHRC1 (p = 1.1 × 10−4), SULF1 (p = 3.8 × 10−4), COL5A1 (p = 1.3 × 10−4), COL10A1
(p = 5.7 × 10−4), COL12A1 (p = 2 × 10−3) correlated with poor overall survival and an immune infiltrate
based especially on immunosuppressive M2 macrophages (p-value range 4.82 × 10−7–1.63 × 10−13). Our
results emphasize that these genes could be candidate biomarkers for GC progression and prognosis and
new therapeutic targets.

Keywords: collagens; extracellular matrix; cell adhesion; biomarkers; survival; targeted therapy

1. Introduction

Gastric cancer remains one of the top five cancers both in terms of incidence and
mortality. According to GLOBOCAN 2020’s latest data, gastric cancer (GC) is the fifth most
common cancer worldwide, with over 1,000,000 new cases each year, and also the fourth
cause of cancer-related death in the world, with a 5-year survival rate of around 32% [1].
The high rate of mortality is due to the fact that the majority of GC patients are diagnosed
at late stages when treatment is often useless (about 20% of GC patients are diagnosed
in early stages in Europe), and the therapeutic approach still consists only of combined
chemo-radiation therapy followed by surgical resection [2]. A significant percentage of GC
patients develop recurrent disease represented by distant metastases, despite surgery and
perioperative treatment [3]. However, there are no effective biomarkers for GC diagnosis.
The lack of biomarkers for GC diagnosis represents an important issue in the management of
this malignancy. Tumor markers such as alpha-fetoprotein (AFP), carcinoembryonic antigen
(CEA), CA19–9, CA72.4, and CA125 have low sensitivity 34 (<40%), and their specificities
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are modest for GC patients [4]. HER2 overexpression was recognized as another biomarker
in GC, and its presence was documented to be associated with 12–22% of GC [5,6]. HER2
positive GC was correlated with more aggressive disease and poor outcomes [7]. These
tumors respond to therapies that include trastuzumab, but the improvement of median
overall survival was modest, by only 2.7 months, according to the results from the ToGA
trial [8]. Therefore, significant efforts are being made to improve the clinical management
of GC through the discovery of new biomarkers and shaping up of new technologies for
cancer management.

Substantial advances in cancer biology have resulted from bioinformatics analysis,
which assist in the identification of significantly deregulated genes and highlight the
pathogenic pathways involved in cancer development and progression. In recent years, a
wide range of bioinformatics methods that have combined multiple databases of biological
information such as the Gene Expression Omnibus (GEO), protein–protein interaction (PPI)
network, STRING tool, and Cytoscape software have led to certain breakthroughs. As
follows, several key genes signatures were reported to be involved in GC development and
prognosis. Thus, Wang et al. reported FN1, COL1A1, INHBA, and CST1 to be associated
with worse overall survival in GC [9], Lu et al. found that SPP1 and FN1 were correlated
with tumor relapse and poor prognosis [10], Liu et al. identified TIMP1, SPP1, CXCL8,
THY1, and COL1A1 genes to be negatively correlated with survival [11], and Chong et al.
found FN1, TIMP1, SPP1, APOE, and VCAN genes to be associated with poor overall
survival in GC patients [12]. Although TIMP1 is a tissue inhibitor of metalloproteinases,
it may also have MMP-independent functions in solid cancers. TIMP-1 can stimulate cell
proliferation, accelerating tumor invasion and metastasis, via important signaling pathways
such as NOTCH and WNT [13,14], with recent reports demonstrating the poor prognostic
value of TIMP-1-positive expression in solid cancers [15]. Interestingly, some of the genes
highlighted by these meta-analyses appeared repeatedly, such as FN1, SPP1, TIMP1, or
collagen, most of which are involved in tissue reorganization.

The novelty of our results consists of emphasizing the role of the collagen family and
of other proteins associated with the assembly mechanism of collagen fibers and with
their degradation. The results indicate the important role that extracellular matrix (ECM)
reorganization plays during the carcinogenesis process. To this end, we used our previous
data GSE103236, together with other two gene expression microarray datasets from the
Gene Expression Omnibus (GEO) (GSE13911, GSE79973), and several bioinformatics tools,
to identify aberrant expressed genes significantly involved in gastric carcinogenesis and
progression. Moreover, we used correlation with immune infiltrate and survival analyses
to explore the prognostic value of the selected genes.

We consider that this study could provide a potential progression and prognosis
biomarkers panel for GC and new therapeutic targets for cancer management.

2. Materials and Methods
2.1. Microarray Dataset Information

To identify commonly deregulated genes (DEGs) in GC, our previous data GSE103236 [16],
and two additional gene expression microarray data were downloaded from GEO (https://
www.ncbi.nlm.nih.gov/geo/; access date 5 November 2021) [17], GSE13911 [18], and
GSE79973 [19], including a total of 55 gastric tumor samples and 53 adjacent non-tumor
tissues, were used for differential analysis. Gene expression was analyzed by the GEO2R
tool, with log FC ≥ 2 and p < 0.05 as standards to identify DEGs. The Benjamini and
Hochberg false discovery rate method was applied for Geo2R analyses. After that, the
common DEGs profile was obtained through a Venn diagram (http://bioinformatics.psb.
urgent.be/webtools/Venn/; access date 6 October 2021).

2.2. Common DEGs Enrichment Analysis

Common DEGs lists were analyzed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) 6.8 (https://david.ncifcrf.gov/; access date 8 October

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://bioinformatics.psb.urgent.be/webtools/Venn/
http://bioinformatics.psb.urgent.be/webtools/Venn/
https://david.ncifcrf.gov/


Int. J. Mol. Sci. 2022, 23, 3214 3 of 16

2021) [20] and Kyoto Encyclopedia of Gene and Genome (KEGG). Gene ontology (GO)
enrichment was used to identify molecular function (MF), cellular component (CC), and
biological process (BP), and KEGG to pinpoint the main affected pathways.

2.3. Protein–Protein Interaction (Ppi) Network Analysis

PPI network was achieved using STRING (https://string-db.org/; access date 12
October 2021) tool [21]. The analysis assessed the correlation between protein products.
Then, Cytotype Molecular Complex Detection (MCODE) plug-in in Cytoscape software
was used to detect hub genes in the PPI network [22]. The MCODE parameters were set as
follows: node score cut-off = 0.2, k-core = 2, maximum depth from seed = 100.

2.4. Gene Expression Analysis

The expression levels of hub genes in different pathological stages of GC were assessed
in UALCAN web tool (http://ualcan.path.uab.edu/; access date 9 November 2021), based
on TCGA online available RNAseq data. Differential mRNA expression analysis includes
351 gastric tumor samples (18 in stage I, 123 in stage II, 169 in stage 3, and 41 in stage IV) and
34 normal tissues. The p-value for Student’s t-test was set as follows * p < 0.05, ** p < 0.01,
*** p < 0.001.

2.5. Patient and Specimens

Pairs of human gastric tumor and adjacent normal tissues were collected from GC
patients during surgery at the Center of General Surgery and Liver Transplantation of
Fundeni Clinical Institute, after written informed consents and approval of the Fundeni
Clinical Institute Ethical Committee (No 52495/2018). Tissue samples from tumor and
adjacent tissue from the proximal resection margin were selected by pathologists and
frozen in liquid nitrogen immediately after excision and stored at −80 ◦C. The GC samples
were classified according to the American Joint Committee on Cancer TNM (tumor, node,
and metastasis) staging. None of the patients had received preoperative chemotherapy
or radiotherapy.

2.6. Western Blot Analysis

Whole protein extracts were obtained using RIPA buffer supplemented with Complete
O, Mini, EDTA-free Protease Inhibitor Cocktail (Roche Applied Science, Penzberg, Ger-
many) and quantified using BCA Protein Assay kit (Pierce, Rockford, IL, USA). Proteins
(40 µg) were electrophoretically separated by SDS-PAGE and transferred onto PVDF mem-
branes. The membranes were blocked in Tris-Buffer Saline (TBS)-0.5% Tween 20 with 2%
bovine serum albumin, and then incubated with the primary antibodies against proteins
of interest at 4 ◦C overnight. Used antibodies (1:1000 dilutions) were: mouse monoclonal
anti-human biglycan (BGN) antibody (MAB2667, R&D, Minneapolis, MN, USA), sheep
polyclonal anti-human fibroblast activation protein alpha (FAP) antibody (-AF3715, R&D,
Minneapolis, MN, USA), rabbit-monoclonal anti-human collagen type X alpha 1 (COL10A1)
antibody (NBP2-66988, Novus Biologicals, Littleton, CO, USA), and anti-beta actin mono-
clonal antibody (AC-15) (AM4302, Invitrogen, Carlsbad, CA, USA). Secondary antibodies
used were: anti-mouse (HAF007, R&D, Minneapolis, MN, USA), anti-rabbit (HAF008,
R&D, Minneapolis, MN, USA), and anti-sheep (HAF016, R&D, Minneapolis, MN, USA), all
conjugated with HRP. Signals were developed using ECL HRP chemiluminescent substrate
(WP20005, Invitrogen) and captured using MicroChemi 4.2 system (Bio Imaging Systems).

2.7. Kaplan–Meier Plotter Database Analysis

The correlations between the expression of selected genes and overall survival (OS) of
GC were tested in the Kaplan–Meier plotter (http://kmplot.com/analysis/; access date 22
October 2021) [23].

https://string-db.org/
http://ualcan.path.uab.edu/
http://kmplot.com/analysis/
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2.8. TIMER

TIMER2.0 (https://cistrome.shinyapps.io/timer/; access date 17 January 2022) [24]
was used to analyze the relationship between the hub genes and 12 immune cell types in
the tumor microenvironment. A heat map with Spearman’s rho was generated presenting
the correlation of the expression of selected genes with various immune cells in GC.

3. Results
3.1. Identification of DEGs in GC Tissue

Three independent microarray studies deposited in GEO OMNIBUS were selected
for comparison of all genes to identify genes linked to GC pathogenesis. A schematic
representation for methods applied during analysis is presented in the supplementary
materials (Figure S1). We used GEO2R online tool to select upregulated and downregulated
genes for each subset, and then the obtained profiles were run through the Venn diagram
tool. Results revealed 22 common upregulated genes and 18 common downregulated genes
(Figure 1). Gene’s names are detailed in Table 1.
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Figure 1. Venn diagrams of upregulated and downregulated genes in all three GC microarray datasets.

Table 1. Common upregulated and downregulated genes.

Upregulated Genes (Symbol) Gene Name

CDH3 cadherin 3
KIF26B kinesin family member 26B
CEMIP cell migration inducing hyaluronan binding protein

CTHRC1 collagen triple helix repeat-containing 1
IGF2BP3 insulin like growth factor 2 mRNA binding protein 3
SULF1 sulfatase 1
KRT80 keratin 80

FAP fibroblast activation protein alpha
THBS2 thrombospondin 2
BGN biglycan

INHBA inhibin beta A subunit
S100A2 S100 calcium binding protein A2

SPP1 secreted phosphoprotein 1
MFAP2 microfibrillar associated protein 2

COL1A1 collagen type I alpha 1 chain
WISP1 WNT1 inducible signaling pathway protein 1

COL12A1 collagen type XII alpha 1 chain
CLDN1 claudin 1
NOX4 NADPH oxidase 4

COL10A1 collagen type X alpha 1 chain
MMP11 matrix metallopeptidase 11

IL11 interleukin 11

https://cistrome.shinyapps.io/timer/
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Table 1. Cont.

Downregulated Genes (Symbol) Gene Name

GC GC, vitamin D binding protein
AKR1C1 aldo-keto reductase family 1 member C1
SCARA5 scavenger receptor class A member 5
TPCN2 two pore segment channel 2

SLC2A12 solute carrier family 2 members 12
LIFR leukemia inhibitory factor receptor alpha

SIGLEC11 sialic acid binding Ig like lectin 11
FGA fibrinogen alpha chain

ATP4A ATPase H+/K+ transporting alpha subunit
CKMT2 creatine kinase, mitochondrial 2
CCKBR cholecystokinin B receptor
GHRL ghrelin/obestatin prepropeptide

GIF gastric intrinsic factor
ATP4B ATPase H+/K+ transporting beta subunit
MAL mal, T cell differentiation protein

CHGA chromogranin A
ESRRG estrogen related receptor gamma

SST somatostatin

3.2. Functional Enrichment Analysis of Common DEGs

We used DAVID to perform a biological functions enrichment analysis of common
DEGs. When analyzing the upregulated genes, we identified clusters of genes involved in
cell adhesion, collagen catabolic process, extracellular matrix organization, and collagen
fibril organization (Figure 2).
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The main pathways involved were ECM (extracellular matrix)–receptor interaction,
protein digestion, focal adhesion, and PI3K-Akt signaling. The main terms that appeared
during analysis were secretion, ECM, cell adhesion, and collagen.
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3.3. PPI Network Enrichment and Cytoscape Analysis of the Module Genes and Hub Genes

Next, we analyzed the interaction between upregulated DEGs using PPI network analysis
and applied the MCODE plug-in in Cytoscape to obtain hub genes. The PPI enrichment
p-value for the upregulated DEGs network was <1.0 × 1016, showing a high interaction between
genes that are most probably biologically connected, as a group (Figure 3A). The highest
interconnectivity was observed for three genes from the collagen family: collagen type 1, 10,
and 12 alpha 1 chain (COL1A1, COL10A1, and COL12A1) and Thrombospondin-2 (THBS2).

Network string interaction was then analyzed in Cytoscape for hub genes based on the
MCODE score. The results identified nine upregulated hub genes including CTHRC1, BGN,
FAP, THBS2, COL12A1, COL5A2, SULF1, SPP1, and COL10A1 (Figure 3B). Most of the hub
genes are coding for collagen family proteins (COL12A1, COL5A2, COL10A1), negative
regulators of collagen matrix deposition (collagen triple helix repeat-containing protein
1—CTHRC1), and other proteins involved in collagen fiber assembly (biglycan—BGN).
Other genes are coding for proteins involved in extracellular matrix degradation (Prolyl
endopeptidase—FAP and sulfatase 1—SULF1), cell to cell and cell to matrix interactions
(Thrombospondin-2—THBS2, Osteopontin—SPP1) (Table 2).
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Table 2. Hub genes selected by Cytoscape MCODE score and their biological role.

No. Gene Name MCODE Score Annotation and Biological Role

1 CTHRC1 5
Collagen triple helix repeat-containing protein
1; may act as a negative regulator of collagen

matrix deposition.

2 BGN 5
Biglycan; may be involved in collagen fiber

assembly; small leucine rich
repeat proteoglycans.
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Table 2. Cont.

No. Gene Name MCODE Score Annotation and Biological Role

3 FAP 5

Prolyl endopeptidase FAP; cell surface
glycoprotein serine protease that participates in

extracellular matrix degradation and is
involved in many cellular processes including

tissue remodeling, fibrosis, wound healing,
inflammation, and tumor growth. Both plasma

membrane and soluble forms exhibit
post-proline cleaving endopeptidase activity,

with a marked preference for
Ala/Ser-Gly-Pro-Ser/Asn/Ala consensus

sequences, on a substrate such as
alpha-2-antiplasmin SERPINF2 and SPRY2.

Degrades also gelatin, heat-denatured type I
collagen, but not native collagen type I and IV,

vibronectin, etc.

4 THBS2 4.46

Thrombospondin-2; adhesive glycoprotein that
mediates cell to cell and cell to matrix

interactions. Ligand for CD36 mediating
antiangiogenic properties

5 COL12A1 4.46

Collagen alpha-1(XII) chain; type XII collagen
interacts with type I collagen containing fibrils,
the COL1 domain could be associated with the
surface of the fibrils, and the COL2 and NC3
domains may be localized in the perifibrillar

matrix; belongs to the fibril-associated collagens
with interrupted helices (FACIT) family.

6 COL5A2 4.46

Collagen alpha-2(V) chain; type V collagen is a
member of group I collagen (fibrillar forming

collagen). It is a minor connective tissue
component of nearly ubiquitous distribution.

Type V collagen binds to DNA, heparan sulfate,
thrombospondin, heparin, and insulin. Type V
collagen is a key determinant in the assembly of

tissue- specific matrices (by similarity).

7 SULF1 4

Extracellular sulfatase Sulf-1. Modifies the
structure of heparan sulfate chains, an

important component of the extracellular
matrix, and, thereby, alters the function of

the ECM.

8 SPP1 4

Osteopontin; Binds tightly to hydroxyapatite.
Appears to form an integral part of the

mineralized matrix. Probably important to
cell–matrix interaction; endogenous ligands.

9 COL10A1 4

Collagen alpha-1(X) chain; type X collagen is a
product of hypertrophic chondrocytes and has
been localized to presumptive mineralization

zones of hyaline cartilage; collagens.

3.4. The Expression Levels of Hub Genes in GC

We used UALCAN to analyze the mRNA expression level of hub genes in GC samples
from different stages and normal adjacent tissue. The analysis was performed on TCGA
samples that include 351 gastric tumor samples (18 in stage I, 123 in stage II, 169 in stage 3,
and 41 in stage IV) and 34 normal tissues. The results showed that the expression levels of
all hub genes in stages 2, 3, and 4 were significantly higher than normal tissues (p < 0.05)
(Figure 4A). Moreover, CTHRC1, BGN, and FAP also displayed a higher expression in stage
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1 than normal tissues. Importantly, the expression levels of all nine genes in stage 2, 3, and
4 were significantly higher than those in stage 1, except for SPP1 (Figure 4A). Overall, the
increase in expression levels of all hub genes was correlated with pathological stages in GC.
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Figure 4. The expression levels of hub genes in GC. (A) The mRNA expression was correlated with
pathological T stages. The asterisk represents the comparison between a specific stage and the normal
group, or between different stages. * p < 0.05, ** p < 0.01, *** p < 0.001. (B) Representative western
blotting for COL10A1, BGN, and FAP proteins in 4 paired gastric tumor (T) and adjacent non-tumor
tissues (N) with progressive stages from T1 to T4.

Next, protein expression was tested in clinical specimens of tumor and normal gastric
tissue through western blot assay (Figure 4B). Results showed an increase in COL10A1
protein in tumor tissue, and in BGN and FAP proteins involved in collagen fibril assembly
and matrix degradation, respectively, emphasizing that these hub genes could have a
crucial function in gastric tumorigenesis.
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The results show an abundance of ECM proteins, such as collagens, and remodeling
enzymes (BGN, FAP) in tumor tissue, compared to the normal tissue. These proteins are
secreted mainly by cancer-associated fibroblast and infiltrating immune cells.

3.5. Relation between Selected DEGs and Clinical Outcome

To assess the prognostic value of selected DEGs in GC, specific survival curves were
generated using the Kaplan–Meier plotter (Figure 5). Results showed that high expression
of BGN (p = 1.2 × 10−8), COL5A1 (p = 1.3 × 10−4), COL10A1 (p = 5.7 × 10−4), COL12A1
(p = 2 × 10−3), CTHRC1 (p = 1.1 × 10−4), SULF1 (p = 3.8 × 10−4), and THBS2 (1.2 × 10−6)
are significantly correlated with poor overall survival and may be effective prognostic
biomarkers for GC. Among them, BGN, THBS2, and CTHRC1 have a higher hazard ratio
(HR) for poor overall survival then other hub genes, 1.68 and 1.55, respectively.
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Figure 5. Overall survival curves according to high and low DEG expression. High gene expression
has a higher hazard ratio (HR) for poor overall survival.
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3.6. TIMER Analysis

To find out if the hub genes are associated with the inflammatory response, and
therefore are influencing the poor survival of GC, we used the TIMER tool. The analysis
showed that our hub genes, associated with alterations in the extracellular matrix and cell
adhesion, are negatively correlated with the abundance in B cells, CD8+ T cells, CD4+ Th1
cells, T regulatory (Tregs) cells, and activated dendritic cells (Figure 6). However, a positive
and significant correlation was noticed with the presence of macrophages, the predominant
type being the immunosuppressive M2 macrophages (R value 0.255–0.448, p-value range
4.82 × 107–1.63 × 1013), which predicts a poor prognosis (Table S1).
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4. Discussion

The key findings of our study are nine hub genes related to the collagen family, assembly
and cell adhesion, which are upregulated during gastric carcinogenesis and tumor progression
according to the mRNA and protein level analysis, and highly biologically connected according
to the PPI network and MCODE plug-in analyses. Furthermore, the high expression of these
genes was related to poor overall survival according to Kaplan–Meier plotter. This result is
sustained by TIMER analysis that showed that upregulation of these genes was positive and
significantly associated with the presence of an immune infiltrate based mostly on tumor-
associated macrophages, especially on immunosuppressive M2 macrophages.

One of the reasons why GC remains as one of the top five cancers, both in terms
of incidence and mortality, is the lack of effective biomarkers. In recent years, several
bioinformatics studies have emerged emphasizing the importance of the collagen family in
solid cancer development. Thus, Chen Y et al. identified COL1A1, COL1A2, and COL12A1
as prognostic biomarkers and immune-associated targets in GC using two GEO OMBIBUS
data files with 25 pairs of gastric tumor and adjacent non-tumor mucosa tissues [25].
Moreover, Zhaoxing Li et al. extended the list including other family members such as
COL1A1, COL1A2, COL3A1, COL5A2, COL4A1, FN1, COL5A1, COL4A2, and COL6A3,
where COL1A1 and COL1A2 were proposed as poor prognostic biomarkers for GC [26].

Our study, involving our own data and two additional GEO profiles including a total
of 55 gastric tumor samples and 53 adjacent non-tumor tissues, identified a common list
containing 40 DEGs. Further analysis including PPI network analysis and MCODE plug-in
in Cytoscape pointed out nine upregulated hub genes including CTHRC1, BGN, FAP,
THBS2, COL10A1, COL12A1, COL5A2, SULF1, and SPP1. These upregulated genes are
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involved in several processes that are associated with carcinogenesis, such as modulation
of cell adhesion (THBS2 and SPP1), collagen fibril organization (COL12A1, COL5A2,
and COL10A1, BGN), collagen catabolic process (CTHRC1), and ECM degradation (FAP,
SULF1). They belong to signaling pathways that sustain ECM–receptor interaction, protein
digestion, focal adhesion, and PI3K-Akt signaling.

Collagen family proteins, together with elastins, fibronectins, and laminins, play an
important role in tissue organization as parts of the ECM, sustaining tissue resistance and
its main form [27]. During wound repair, the microenvironment tries to limit the tumor
by attracting an inflammatory infiltrate, which, through the secreted cytokines, recruit
fibroblasts that close the wound, and, in the end, will secrete MMPs that will remodel the
collagen matrix, allowing wound resolution. In cancer, there is a disturbance in the balance
between synthesis and protein degradation in the ECM, which has the effect of remodeling
the matrix [28]. Tumor fibrosis (desmoplasia) is characterized by chronic inflammation
and high numbers of cancer-associated fibroblasts that secrete abundant ECM proteins,
such as collagens, and remodeling enzymes that reorganize and strengthen the matrix.
Moreover, cancer-associated cells, via the secreted factors (IL-6), influence the immune
response towards a pro-tumor phenotype, attracting pro-tumorigenic immune cell infiltrate
(M2 macrophage, Th2 cells, Tregs, etc.). In the meantime, tumor cells begin to secrete matrix-
degrading enzymes, which in turn degrade the matrix and release cytokines and growth
factors that signal cancer cells proliferation, favoring tumor growth and progression [29].

Over time, it has become increasingly clear that desmoplasia is compromising cancer
treatment, playing an active role in therapeutic resistance, and, therefore, in cancer progression.
There are also evidences that collagens together with fibronectin, integrin, and laminin, and other
components of ECM, are directly involved in tumor initiation and progression to metastasis
by engaging in the EMT program by inducing signals through focal adhesion kinase, a core
component of integrin signaling, promoting ERK and PI3K signaling pathways [30,31]. More
and more data are accumulating supporting the collagen effects on surrounding tumor cells,
where they are directly regulating cell proliferation, differentiation, gene expression, migration,
invasion, metastasis, and survival [32–35].

A similar degradation of the extracellular matrix is found in some genetic diseases
(e.g., Ehlers–Danlos syndrome) associated with mutations in collagen genes. Thus, a recent
study looked at the incidence of mutations in collagen genes and their role in gastric
tumor progression, as well as their association with survival. The results showed that the
mutations were associated with a distinctive lower matrisome expression, due to the loss
of collagen expression and secretion, strongly associated with improved outcomes [36].

The identified genes were further confirmed to be highly upregulated in gastric cancer
samples compared to normal tissue, the mRNA expression being correlated with the increase in
tumor T stage on the TCGA samples by UALCAN analysis. Our results on protein expression
using western blot assay also showed an increase in COL10A1, BGN, and FAP proteins in tumor
tissue compared with adjacent normal tissue, consistent with staging.

The novelty of our results consists of emphasizing the role of the collagen family and
of other proteins associated with the assembly mechanism of collagen fibers and with their
degradation. The results indicate the important roles that degradation of the structure and
normal functioning of the ECM play in the carcinogenesis process.

The collagen family, including COL10A1, COL12A1, and COL5A2, was reported to be
overexpressed in various types of epithelial cancers, including GC. Recent studies associate these
molecules with processes such as migration, invasion, and poor overall survival. Moreover,
inhibition of the gene expression reduces cell proliferation and invasion [34,37–42]. The overex-
pression of biglycan (BGN) was also identified in GC and was associated with poor prognosis,
while inhibition of BGN enhanced chemotherapeutic efficacy. BGN was found to be secreted
by tumor endothelial cells and was able to induce tumor angiogenesis and metastasis [43].
Fibroblast activation protein α (FAP), a protein involved in tissue remodeling, can sustain
invasion of the adjacent tissue in cancer, and was reported to be overexpressed in colorectal
cancer being correlated with survival [44]. Cancer-associated fibroblasts that express FAP show
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immunosuppressive proprieties for the tumor microenvironment [45]. Collagen triple helix
repeat-containing (CTHRC1) was considered a cancer-related factor that sustains migration
processes, proliferation, invasion, and metastasis in GC. Moreover, it is considered that CTHRC1
could promote early-stage cancer and is a candidate as a prognostic biomarker, signaling tumor
recurrence or metastasis [46]. An increased expression of THBS2 seems to sustain cancer pro-
gression in GC [47] and is associated with a poor prognosis in colorectal cancer [48]. Moreover,
a recent study reported circulating THBS2 and CA19-9 levels as possible candidates for a panel
that detects early stages of pancreatic ductal adenocarcinoma [49]. Secreted phosphoprotein
1 (SPP1) expression level was correlated with tumor stage and aggressiveness in several cancers,
including colorectal cancer [50,51]. SULF1 (human sulfatase 1) is overexpressed in GC [52] and
the inhibition of SULF1 expression resulted in decreased proliferation, migration, and invasion
in urothelial carcinomas cell lines [53].

Our findings suggest that these genes could be candidate biomarkers for GC progres-
sion. Since many of the identified genes can be measured through the soluble plasma
circulating proteins with available immune-enzymatic tests, these biomarkers offer a less
invasive and more accessible approach to obtain real-time progression information of the
tumor burden and have proved to be really helpful in estimating overall survival [54].
These blood-based biomarkers may be particularly beneficial in monitoring the disease pro-
gression during tumor therapeutic management since repeated tissue biopsies are difficult
to obtain and cause real distress to the patient.

Collagen fibers and matrix remodeling enzyme correlation with tumor aggression and
immune infiltrate can be exploited to predict cancer patient outcome. Kaplan–Meier analysis
revealed a significant correlation between the high expression of BGN (p = 1.2 × 108), COL5A1
(p = 1.3 × 104), COL10A1 (p = 5.7 × 104), COL12A1 (p = 2 × 103), CTHRC1 (p = 1.1 × 104),
SULF1 (p = 3.8 × 104), and THBS2 (1.2 × 106) and poor overall survival.

An explanation for the negative impact of hub gene overexpression on survival may
come from the analysis of the type of inflammatory infiltrate. The TIMER analysis showed
that upregulation of these genes was positively correlated with M2 macrophages that are
associated with more aggressive tumor features, reflected by tumor progression, invasion,
and metastasis [55,56]. M2 macrophages create an immunosuppressive microenviron-
ment, which favors angiogenesis by directly secreting vascular epithelial growth factors
(VEGFs), and various immunosuppressive molecules such as TGFb, IL-10, or immune
checkpoints [57,58]. Quite the opposite to this, M1 macrophages have pro-inflammatory
activities and high antigen-presenting capacity, being very important in the fight against
tumor cells. The ratio of M1/M2 is currently being used in assessing tumor prognosis.
Polarization toward the M2 phenotype, reflected by low M1/M2 ratio was found to be a
predictor for poor prognosis in several cancers [59,60].

The tumor-promoting inflammatory infiltrate is recruited and activated by tumor
stroma [61,62]. This is due to an early programing during cancer development of cancer-
associated fibroblast, via IL-1β-secretion and nuclear factor-κB (NF-κB) activation, to
sustain a tumor-promoting inflammatory response [63]. Acerbi I et al. demonstrated
that the stroma of the invasive region of the most aggressive Basal-like and Her2 breast
tumor subtype, was rich in collagen fibers and stiffened, and also presented the greatest
number of infiltrating M2 macrophages and the highest level of TGF beta. These findings
indicate that cancer progression, collagen deposition, and matrix stiffness are linked, and
implicate tissue inflammation and TGF beta [64]. The M2 infiltrate was associated with
poor prognosis in colorectal or oral squamous epithelial cells [65,66].

Cancer-associated fibroblasts can reduce the activation of various immune effector
cells, such as cytotoxic CD8+ T cells and natural killer (NK) cells, by expressing im-
mune checkpoints inhibitory molecules such as programmed death ligands PD-L1, PD-L2,
and anti-cytotoxic T lymphocyte-associated protein 4 CTLA-4 [67]. In this way, cancer-
associated stroma can influence the tumor immunity, favoring a pro-tumorigenic tumor
microenvironment. Additionally, studies have shown that M2 macrophages can directly
inhibit the T cell response by expressing PD-L1 on their surface [68]. This aspect favors the
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efficacy of anti-PD-1/PD-L1 or anti-CTLA-4 therapy [69]. Furthermore, some studies on
animal models have shown that macrophage blockade by inhibiting colony stimulating
factor 1 receptor (CSF-1R), which controls the production, differentiation, and function of
macrophages, can add further value to immune checkpoint blockade therapy [69]. As a
result of these preliminary research, the idea of combining immune checkpoint blockade
therapy with CSF-1R antagonists has been applied in clinical trials (e.g., NCY02323191).

Numerous ongoing studies are dedicated to finding an inhibitor for tumor-associated
fibrosis. Starting from the observation that collagen-producing myofibroblasts express on
their surface fibroblast activation protein (FAP), a FAP-targeted PI3K/mTOR inhibitor that
specifically targets FAP-expressing myofibroblasts was recently developed. The inhibitor
effectively reduced collagen production, showing that collagen-producing cells could be an
effective target in human lung fibrosis [70].

Clinical trials combining immunotherapy, targeted therapy, and chemotherapy are in
progress, and will represent a landmark in cancer management [71].

5. Conclusions

The overexpressions of hub genes identified in our study, mainly associated with
changes in the extracellular matrix and cell adhesion, have been shown to be important
biomarkers that predict poor prognosis in GC, especially due to the association with an
inflammatory infiltrate composed mainly of M2 macrophages with an inhibitory effect on
the activation of T lymphocytes. Moreover, the study highlighted the significant value
of collagen family members for the development of new targeted therapies that may be
associated with immune checkpoint blockade therapy and CSF-1R inhibitors.
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