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Carbohydrate sulfotransferase 14 (CHST14) encodes dermatan 4-O-sulfotransferase 1,
a critical enzyme for dermatan sulfate (DS) biosynthesis. Musculocontractural Ehlers-
Danlos syndrome (mcEDS) is associated with biallelic pathogenic variants of CHST14
and is characterized by malformations and manifestations related to progressive
connective tissue fragility. We identified myopathy phenotypes in Chst14-deficient mice
using an mcEDS model. Decorin is a proteoglycan harboring a single glycosaminoglycan
chain containing mainly DS, which are replaced with chondroitin sulfate (CS) in
mcEDS patients with CHST14 deficiency. We studied the function of decorin in the
skeletal muscle of Chst14-deficient mice because decorin is important for collagen-
fibril assembly and has a myokine role in promoting muscle growth. Although decorin
was present in the muscle perimysium of wild-type (Chst14+/+) mice, decorin was
distributed in the muscle perimysium as well as in the endomysium of Chst14−/−

mice. Chst14−/− mice had small muscle fibers within the spread interstitium; however,
histopathological findings indicated milder myopathy in Chst14−/− mice. Myostatin, a
negative regulator of protein synthesis in the muscle, was upregulated in Chst14−/−

mice. In the muscle of Chst14−/− mice, decorin was downregulated compared to that
in Chst14+/+ mice. Chst14−/− mice showed altered cytokine/chemokine balance and
increased fibrosis, suggesting low myogenic activity in DS-deficient muscle. Therefore,
DS deficiency in mcEDS causes pathological localization and functional abnormalities of
decorin, which causes disturbances in skeletal muscle myogenesis.

Keywords: Ehlers-Danlos syndrome, dermatan sulfate, dermatan 4-O-sulfotransferase 1, decorin, chst14 mutant
mouse, myostatin, myopathy
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INTRODUCTION

The musculocontractural Ehlers-Danlos syndrome (mcEDS)
subtype is caused by defective biosynthesis of dermatan sulfate
(DS). Most patients with mcEDS have biallelic pathogenic
variants in the gene for carbohydrate sulfotransferase 14
(CHST14), which encodes dermatan 4-O-sulfotransferase 1
(D4ST1) (mcEDS-CHST14), whereas the remaining patients
have biallelic pathogenic variants in the DS epimerase gene
(Dündar et al., 2009; Miyake et al., 2010; Müller et al., 2013;
Brady et al., 2017; Kosho et al., 2020). mcEDS is clinically
characterized by craniofacial features, multiple congenital
contractures, ocular and visceral malformations, and progressive
connective tissue fragility-related manifestations, such as
skin hyperextensibility and fragility, joint hypermobility
with luxation, progressive spinal and foot deformities, large
subcutaneous hematomas, and visceral ruptures (Kosho et al.,
2011, 2020; Kosho, 2016). The myopathic process has been
suggested in mcEDS because of a reduced amplitude of muscle
action potential with normal distal latency time and nerve
conduction velocity (Dundar et al., 1997); the muscle phenotypes
of a patient with mcEDS-CHST14 have also been reported
(Voermans et al., 2012).

Proteoglycans are the most abundant components of the
non-fibrillar extracellular matrix (ECM). They are composed
of a protein core to which long, linear, highly sulfated
glycosaminoglycan (GAG) chains are covalently attached.
Proteoglycans display different functions that are principally
mediated by GAG chains (Sugahara et al., 2003). The main
sulfated GAG families in muscles are chondroitin sulfate
(CS)/DS, heparan sulfate, and keratan sulfate (Handel et al., 2005;
Fadic et al., 2006; Hannesson et al., 2007; Zhang, 2010; Negroni
et al., 2014). Decorin is a proteoglycan that contains a single GAG
chain and plays an important role in the assembly of collagen
fibrils, possibly via electrostatic interaction between decorin-DS
chains and adjacent collagen fibrils (Iozzo, 1998; Nomura, 2006).
The GAG side chain of decorin from the skin fibroblasts of
mcEDS-CHST14 patients contained CS instead of DS (Miyake
et al., 2010). Collagen fibrils normally aggregate in line and form
collagen fibers, which are round and uniform. Although there
were no significant differences in the diameter of collagen fibrils
as well as the circularity as an index of shape between Chst14+/+

and Chst14−/− mice, collagen fibrils were scattered and oriented
in various directions (Hirose et al., 2021). Furthermore, irregular
shapes and sizes of collagen fibrils were detected in decorin-null
mice (Danielson et al., 1997), being partially different from those
in Chst14−/− mice.

Decorin is also characterized as a myokine, which is elevated
following exercise in normal muscle, and promotes muscle fiber
hypertrophy by competitively binding to inhibit myostatin, a
negative regulator of muscle protein synthesis (Ostrowski et al.,
1998; Lightfoot and Cooper, 2016). In transgenic models, decorin
has been shown to induce upregulation of factors associated with
myogenesis, such as MyoD and follistatin (Lightfoot and Cooper,
2016). In addition, transforming growth factor type β (TGF-β), a
potent inhibitor of myogenesis like myostatin, is also regulated
by complexing with decorin (Florini et al., 1991). Decorin

requirement seems to be necessary for myogenesis as decorin
expression accelerates skeletal muscle differentiation (Cabello-
Verrugio and Brandan, 2007; Brandan and Gutierrez, 2013).

We developed CRISPR/Cas9-genome engineered Chst14
mutant (Chst14−/−) mice, which showed a pathological
phenotype and shared the typical mcEDS phenotype features,
including loss of DS, growth delay, skin fragility, myopathy,
reduced muscle function, and thoracic kyphosis. In the present
study, we investigated the effects of decorin on spatial
distribution and expression in myopathy using Chst14−/− mice
as an mcEDS model.

MATERIALS AND METHODS

All experimental procedures were approved by the Experimental
Animal Care and Use Committee at the National Center of
Neurology and Psychiatry (NCNP) and Nippon Medical School.
Chst14−/− mice with a 6 base pair (bp) insertion/10 bp deletion
(31_40delinsCCACTG) and 1 bp deletion (–1 bp mutant;
c.57delG) were developed by CRISPR/Cas9-genome engineering
at NCNP (Nitahara-Kasahara et al., 2021b) and were maintained
according to the standard protocol for animal care at the
NCNP and Nippon Medical School. Chst14−/− mice were
inbred as C57BL/6 and 129svj mixed backgrounds. 129S1/SvImJ
and B6C3F1 mice were purchased from Nihon CLEA (Tokyo,
Japan) and Japan SLC, Inc. (Shizuoka, Japan), respectively. Age-
matched littermate mice were used in all the experiments. Each
mouse group contained sex-matched mice (females, n = 2;
males, n = 2).

Histopathology and
Immunohistochemistry
The tibialis anterior (TA) muscle obtained from age- and sex-
matched mice was immediately frozen in liquid nitrogen-cooled
isopentane. Transverse cryosections (10 µm thickness) were
prepared from frozen muscle tissues, stained with hematoxylin
and eosin (H&E) using standard procedures, and immunostained
for decorin. Muscle cryosections fixed with 1% paraformaldehyde
were treated with anti-decorin antibody (monoclonal mouse
IgG1 clone 115402, R&D Systems, Minneapolis, MN) or anti-
laminin β-1 antibody (Abcam, Cambridge, United Kingdom) as
the primary antibody, followed by Alexa 488-conjugated anti-
rat IgG antibody (Thermo Fisher Scientific, Waltham, MA) or
Alexa 594-conjugated anti-mouse IgG antibody (Thermo Fisher
Scientific) as the secondary antibody. The sections were mounted
in Vectashield with 4, 6-diamidino-2-phenylindole (Vector
Laboratories). Immunofluorescence and H&E staining were
visualized using an IX81 fluorescence microscope (Olympus,
Tokyo, Japan). For quantification analysis of myofiber size
distribution, the myofiber area in H&E images (95-100
fibers) was measured using CellSence software (Olympus).
For collagen staining, sirius red staining of cryosections from
the TA muscle was performed using a general protocol
(Morphotechnology, Sapporo, Japan). Quantitative analysis of
the sirius red staining area was performed using CellSence
software (Olympus).
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Enzyme-Linked Immunosorbent Assay
Protein expression levels were measured in TA muscle lysate
obtained from each mouse using a Quantikine enzyme-linked
immunosorbent assay (ELISA), such as mouse myostatin
Immunoassay (Thermo Fisher Scientific), mouse collagen type
I, and type III Immunoassay (Cloud-clone Corp., Katy,
TX), and mouse transforming growth factor-β1 (TGF-β1)
Immunoassay (R&D Systems), according to the manufacturer’s
recommendations. The final values were normalized to protein
concentrations and measured using a Pierce R© BCA Protein Assay
Kit (Thermo Fisher Scientific).

Reverse Transcription Polymerase Chain
Reaction
Total RNA was isolated from muscle samples disrupted in a
Multi-Bead Shocker (M&S Instruments, Osaka, Japan) using an
RNeasy Micro Kit (Qiagen). First-strand cDNA was synthesized
using a Super Script III First Strand Synthesis System for
RT-PCR (Thermo Fisher Scientific). For each PCR assay, 500
ng –1 µg cDNA was used. The primers used in the present
study were as follows: decorin, forward, 5′-TGCTGCTGCCGTC
CATGCTGAT-3′, and reverse, 5′-CATGCCTGGCTGTCCGCA
CA-3′; MyoD, forward, 5′-GCCGCCTGAGCAAAGTGAATG-
3′, and reverse, 5′-CAGCGGTCCAGGTGCGTAGAAG-3′. As
an internal control, the primer set used for the housekeeping
gene, glyceraldehyde-3-phosphate dehydrogenase (Gapdh) was
as follows: mouse, forward, 5′- GATGACATCAAGAAGGT
GGTGA-3′, and reverse, 5′-TGCTGTAGCCGTATTCATTGTC-
3′. Quantitative PCR was performed using SYBR R© Premix Ex
TaqTM II (Perfect Real Time, Takara Bio Inc., Ohtsu, Japan).
SYBR green detection of PCR products was conducted in
real time using the MyiQ single-color detection system (Bio-
Rad, Hercules, CA).

Western Blotting Analysis
The proteins were separated by electrophoresis using precast
NuPAGE 4–12% Bis-Tris gels (Thermo Fisher Scientific) in
NuPAGETM 3-(N-morpholino) propanesulfonic acid buffer (pH
7.7) containing sodium dodecyl sulfate, and then transferred to
a polyvinylidene difluoride membrane. The membranes were
blocked for 60 min at room temperature in Tris-buffered saline
containing 0.1% Tween 20 and 5% skim milk. The blots were
probed with the primary antibody: mouse monoclonal antibody
to decorin (R&D Systems, clone 115402) or GAPDH (Santa
Cruz, Dallas, TX, clone G-4) at 1:1,000 dilution overnight at
4◦C or for 60 min at room temperature and then incubated
with horseradish peroxidase (HRP)-conjugated goat anti-mouse
IgG (Cytiva, Marlborough, MA) at 1:2,000 dilution for 45 min.
Immunoreactive proteins were detected and quantified using an
enhanced chemiluminescence system, Image Quant LAS 4000
coupled with Image Quant TL software (GE Healthcare, Chicago,
IL).

Proteome Cytokine/Chemokine Array
The relative expression of cytokines and chemokines in
muscle lysate was quantified using the Proteome ProfilerTM

Array (Mouse Cytokine/chemokine Array, Panel A; R&D

Systems), as previously described (Nitahara-Kasahara et al.,
2014, 2021a). To achieve maximum assay sensitivity, the
blots were incubated overnight with the lysate. Enhanced
chemiluminescence incubation was performed for 5 min using
a Super Signal West Femto Chemiluminescence Kit (Thermo
Scientific Pierce), and the samples were imaged and analyzed
using Image Quant LAS 4000 coupled with Image Quant TL
software (GE Healthcare).

Quantitative Analysis of Chondroitin
Sulfate and Dermatan Sulfate
Disaccharides
The disaccharide compositions of the CS and DS moieties of
CS/DS hybrid chains in the skeletal muscle of mice were assessed
as described previously (Mizumoto and Sugahara, 2012). Briefly,
the GAG fraction was crudely purified from the tissue and then
digested with a mixture of chondroitinase AC-I and AC-II, or
chondroitinase B. Each digest was labeled with a fluorophore, 2-
aminobenzamide, and then analyzed using anion-exchange high-
performance liquid chromatography (HPLC) on a PA-G silica
column (4.6 × 150 mm; YMC Co., Kyoto, Japan). Identification
and quantification of the resulting disaccharides were achieved
by comparing with the elution positions of the CS- or DS-
derived authentic unsaturated disaccharides. The amount of
disaccharides in each sample was calculated by comparing the
peak areas of standard unsaturated disaccharides.

Statistical Analyses
Data are presented as the mean± standard deviation. Differences
between two groups were assessed using unpaired two-tailed
t-tests. Multiple comparisons between three or more groups were
performed using a one-way or two-way analysis of variance.
Statistical differences were defined as ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001, and were calculated using
Excel (Microsoft, Redmond, WA, United States) and GraphPad
Prism 8 (GraphPad, La Jolla, CA).

RESULTS

Decorin Expression and Localization in
the Dermatan Sulfate Deficiency Muscle
To confirm D4ST1 inactivation for DS biosynthesis in
Chst14−/−mice, we analyzed the amount of CS and DS
disaccharides in the skeletal muscle (Figure 1A). Largely
suppressed DS disaccharides and an increase in CS disaccharides
were observed in Chst14−/− mice compared to the wild type
(Chst14+/+) mice, suggesting DS deficiency due to D4ST1
inactivation (Supplementary Table 1). To investigate the
expression levels and localization of decorin in skeletal muscle,
quantitative reverse-transcription PCR, western blotting, and
immunohistological analysis were performed using the TA
muscle from Chst14−/− mice. We confirmed that the mRNA
expression of decorin was downregulated in the Chst14−/−

mice compared to that in the Chst14+/+ mice (Figure 1B). The
expression of glycanated decorin was also downregulated in
Chst14−/− mice compared to that in Chst14+/+ mice, whereas
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FIGURE 1 | Decorin expression and localization in dermatan sulfate (DS) deficient muscle. (A) Total amounts of chondroitin sulfate (CS) and DS disaccharides
derived from the tibialis anterior (TA) muscle of Chst14+/+ and Chst14−/− mice, analyzed by anion-exchange HPLC after enzymatic digestion. (B) Decorin mRNA in
the TA muscle from Chst14+/+ (n = 3) and Chst14−/− (n = 4) mice was quantified by reverse transcription polymerase chain reaction (RT-PCR). Quantitative data
were normalized using the glyceraldehyde 3-phosphate dehydrogenase (Gapdh) signal. (C) The protein level of decorin in the TA muscle were analyzed by western
blotting using anti-decorin antibody and anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibodies. (D) Signal intensity quantified using blotting band
images using Image Quant TL software. (E) Immunofluorescence staining of TA muscle from Chst14+/+and Chst14−/− mice was performed using anti-decorin
antibody (red signals). Nuclear staining was detected using 4,6-diamidino-2-phenylindole (blue signals). Bars, 50 µm. (F) Dual staining of the TA muscle from
Chst14+/+ and Chst14−/− mice for the detection of decorin (red signals) and laminin (green signals) with nuclear staining (blue signals). Bars, 100 µm. (G)
Hematoxylin and eosin (H&E) staining of the TA muscle from Chst14+/+ and Chst14−/− mice. Arrows show the nuclear accumulation and spread of muscle fiber
stroma. Bars, 100 µm. (H) Muscle fiber areas (µm2) measured from the TA muscle of Chst14+/+ and Chst14−/− mice using H&E staining. Each fiber area is
indicated by a dot, and the average fiber area is described as a bar for each muscle. In total, 1931 fibers are represented in the dot plot. Median values are indicated
by red bars. Statistical differences between Chst14+/+ and Chst14−/− (*P < 0.05, **P < 0.01. ***P < 0.001, and ****P < 0.0001), t-test. All data were analyzed
using the TA muscle of 1-year-old sex-matched Chst14+/+ (n = 3) and Chst14−/− (n = 3) mice.
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the expression levels of the internal control, GAPDH protein,
were not changed based on western blot and quantitative data
(Figures 1C,D). In healthy muscle, histochemical images showed
that most of the decorin was localized in the perimysium, which
is the sheath of connective tissue that covers a bundle of muscle
fibers, whereas a small amount was found in the endomysium, a
layer of connective tissue that surrounds individual muscle fibers
(Figure 1E). In contrast, decorin in the muscle of Chst14−/−

mice was localized in the perimysium around packages of muscle
fibers and was augmented around individual muscle fibers in
the endomysium (Figure 1E). The decorin in the Chst14−/−

mice was co-localized with laminin in the endomysium, whereas
decorin did not co-localization with laminin in the perimysium
of muscle from Chst14+/+ mice, as shown in Figure 1F. A cross-
section of the TA muscle from Chst14−/− mice revealed the
spreading of the muscle fiber interstitium and cell infiltration
by H&E staining (Figure 1G). The histopathological findings
observed in Chst14−/− mice indicated high myofiber size
variability due to a higher number of smaller fibers (Figure 1H).
Furthermore, central nuclear fibers, which are regenerated fibers
that have undergone degeneration, were observed in Chst14−/−

mice (0.96% per total number of fibers), whereas only a small
percentage were found in Chst14+/+ mice (0.28%).

Effect of Chst14 on Myogenesis and
Myokine/Chemokine Expression in the
Muscle
mcEDS showed a smaller area of muscle fibers compared to
healthy muscle; therefore, we investigated the possibility of
muscle formation in the mcEDS and myokine environments.
Myostatin, a negative regulator, was upregulated in the muscle of
Chst14−/− mice compared to that in the muscle of Chst14+/+

mice (Figure 2A). We assessed expression of MyoD, which is
a muscle-growth-associating factor that maintains a regulated
signal pathway toward muscle growth, but did not find a
significant difference in MyoD mRNA expression in the muscle
between Chst14+/+ and Chst14−/− mice (Figure 2B).

To investigate the changes in the myokine and chemokine
expression in the DS-deficient muscle, we performed
a cytokine/chemokine array using the muscle lysate
(Figures 2C,D). Quantitative results demonstrated that
soluble intercellular adhesion molecule-1 (sICAM-1) showed
strong signals in the muscles of both Chst14+/+ and Chst14−/−

mice. Stromal cell-derived factor 1 (SDF1), complement
component C5a, and pro-inflammatory cytokines, interferon-
γ (IFN-γ) as well as IL-1β, was found to be reduced in
Chst14−/− mice. In contrast, IL-1ra, an antagonist of IL-1,
was slightly increased compared to that in the Chst14+/+ mice
(Figures 2C,D), suggesting an altered cytokine/chemokine
balance in DS-deficient muscles.

Enhanced Fibrosis in the Dermatan
Sulfate-Deficient Muscle
Decorin can interact with fibrillar collagens and is assumed
to play a role in fibril formation and the maintenance of the
fibrillar network, organizing the ECM (Toole and Lowther,

1968; Weber et al., 1996). To examine disease-associated
fibrosis in DS-deficient muscle, we performed sirius red staining
(Figures 3A,B). Chst14−/− mice showed a higher fibrotic area
in the muscle compared to that in Chst14+/+ mice. To further
characterize fibrosis in mcEDS, the expression of TGF-β1 and
collagen type I and III, which are classically upregulated in
fibrotic processes, was measured by ELISA. We confirmed the
upregulation of TGF-β1 and collagen type III, but not of collagen
type I (Figures 3C–E). These results suggest that fibrosis is
enhanced in DS-deficient muscle.

DISCUSSION

In the present study, we investigated the effects of DS deficiency
on myogenesis and the potential cause of myopathy. We
demonstrated that the pathological decorin localization and
functional abnormalities of decorin with the CS side chain were
caused by DS deficiency in mcEDS, which causes disturbances
in myogenesis of skeletal muscle, suggesting disease-specific
phenotypes in myogenesis. Figure 4 summarizes the hypotheses
proposed in this study.

We focused on the pathology analysis to eliminate the effects
of decreased motor function in mcEDS mice in the present
study (Nitahara-Kasahara et al., 2021b), even though decorin
has been reported to act as a myokine after exercise (Kanzleiter
et al., 2014). In Chst14−/− mice, a decrease of DS accompanied
with an increase of CS was observed in TA muscle (Figure 1).
Furthermore, total CS/DS was also increased in the Chst14-
deficient mice, indicating that the chain length as well as
number of CS may be increased in the mice. Most of the
decorin with DS chains was localized in the perimysium of
normal muscle; however, decorin with the CS chain showed co-
localization with laminin and was diffused in the perimysium
and endomysium (Figure 1). In the muscle of Chst14−/−

mice, decreased expression and altered localization of decorin
core protein may affect the conventional functions of decorin.
We previously reported the structural and conformational
alteration of GAG chains of decorin-proteoglycan in the skin of
patients with mcEDS-CHST14 (Hirose et al., 2019). By electron
microscopy staining, rod-shaped linear GAG chains were found
to be attached at one end to collagen fibrils and protruded outside
the fibrils in the skin of mcEDS-CHST14, in contrast to those
in wild type mice where they surround and wrap the collagen
fibrils. The structure of the GAG chain from Chst14−/− mice
also exhibited similar abnormalities of collagen networks in the
skin (Hirose et al., 2021). Similar to these findings observed in
skin tissue, structural and conformational abnormalities in the
GAG chain on decorin may affect the formation of collagen
fibrils in the muscle tissue. Decorin-null mice exhibit dermal
collagen fibrils with a large variety of sizes and shapes (Danielson
et al., 1997). These findings suggest that the decorin-proteoglycan
is important for collagen fibril formation, and regulates the
space between collagen fibrils as well as bundles, as reported
previously (Scott et al., 1995). DS and CS/DS hybrid chains are
conformationally more flexible than CS chains (Casu et al., 1988;
Hirose et al., 2021). Thus, collagen bundles bound by CS chains,
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FIGURE 2 | Expression of myogenesis-associated factors and myokines/chemokines in DS-deficient muscle. (A) Quantitative measurement of myostatin expression
(pg/µg protein) in the muscle lysate using an enzyme-linked immunosorbent assay (ELISA) (*p < 0.05). (B) Quantitative measurement of MyoD mRNA in the muscle
from 1-year-old sex-matched Chst14+/+ (n = 8) and Chst14−/− (n = 4) mice by quantitative real-time PCR were normalized with Gapdh (ng/Gapdh/µg cDNA). Data
are presented as mean ± standard deviation, and there was no statistical difference between Chst14+/+ and Chst14−/− by t-test. (ns, not significant). (C) Cytokine
and chemokine expression in the muscle from 1-year-old sex-matched Chst14+/+ (n = 3) and Chst14−/− (n = 3) mice were analyzed using the Proteome profilerTM

array. Images of dot signals showed changes in the expression levels of stromal cell-derived factor 1 (SDF-1), soluble intercellular adhesion molecule-1 (sICAM-1),
complement component 5a (C5a), interferon-γ (IFN-γ), IL-1β, and IL-1ra, compared to the reference spot signals. (D) Relative signal intensity correlated by reference
spot signals in the array images were quantified using Image Quant TL software.

instead of DS chains, on decorin in mcEDS-CHST14 patients as
well as Chst14−/− mice may be more fragile than those in healthy
and wild-type controls, respectively.

The diffused decorin localization in the spread of the
endomysium and perimysium of DS-deficient muscle was similar
to that of the dystrophic muscle (Caceres et al., 2000). In
dystrophic skeletal muscle, the biosynthesis and accumulation
of decorin around individual muscle fibers are enhanced in
the endomysium and exomysium (Caceres et al., 2000). The
histopathological findings observed in the Chst14−/− mice
indicated that several central nuclear fibers, nuclear infiltration,
and fibrosis were not as high as in severe myopathy and

dystrophy (Figure 1; Coulton et al., 1988). Although dystrophic
muscles showed a larger number of smaller fibers, occurrence of
hypertrophic fibers, and high levels of creatine kinase, a marker
of muscle damage, this was not confirmed in Chst14−/− mice,
suggesting milder phenotypes of myopathy in mcEDS.

Altered localization of decorin indicates structural
modification of the ECM in the spreading interstitium of the DS-
deficient muscles. Expression of decorin mRNA was confirmed
in the connective tissue cells, that is, in the mesenchymal and
satellite cells, suggesting that decorin plays an important role in
organizing the fibrillar network of the ECM (Caceres et al., 2000;
Fadic et al., 2006). In the muscle of Chst14−/−mice, upregulated
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FIGURE 3 | Fibrosis in DS-deficient muscles. (A) Sirius red staining of the tibialis anterior (TA) muscle of 1-year-old sex-matched Chst14+/+ and Chst14−/− mice.
Bars, 100 µm. (B) Quantification of sirius red staining area of the cross-section (% of total area) from 1-year-old sex-matched Chst14+/+ and Chst14−/− mice
(n = 3, each). (C–E) Quantitative measurement of TGF-β (C), collagen type I (D), and collagen type III (E) in the muscle lysate from 1-year-old sex-matched
Chst14+/+ and Chst14−/− (n = 3, each) mice using ELISA. All data are presented as mean ± standard deviation, and statistical differences between Chst14+/+

and Chst14−/− (*P < 0.05), t-test. ns, not significant.

myostatin appears to induce muscle growth delay and muscle
dystrophy. MyoD and follistatin have also been reported to
increase in response to decorin overexpression (Kanzleiter et al.,
2014). Chst14−/− mice had decorin with a CS side chain and
showed lower activity of myogenesis and muscle formation in
the DS-deficient muscle, supported by a larger number of smaller
fibers, while the significant difference of MyoD expression was
not detected between Chst14−/− and Chst14+/+ mice.

Besides function as a matrix component, biglycan-
proteoglycan can be either proteolytically released from the
ECM upon tissue stress and injury or synthesized by activated
macrophages (Schaefer et al., 2005). Biglycan protein core
together with GAG side chain(s), triggers a proinflammatory
response by acting as a signaling molecule and an endogenous
ligand of Toll-like receptors (TLR)-2 and -4 on the surface of
macrophages. It then induces the synthesis and secretion of pro-
inflammatory cytokines and chemokines, such as IL-1β, tumor
necrosis factor (TNF)-α, chemokine (C-C motif) ligand (CCL)
2 and 5, and chemokine (C-X-C motif) ligand (CXCL)1, -2, and
-13 (Schaefer et al., 2017). These processes initiate modulation of
the immune environment. Pathogenic muscle-derived cytokines

are thought to be produced by infiltrating inflammatory
cells. Cytokine and chemokine arrays demonstrated that the
expression pattern of SDF-1, IFN-γ, C5a, IL-1β, and IL-1ra
was altered in Chst14−/− mice (Figure 2). Thus, the reduction
of DS in Chst14−/− mice might affect the expression and/or
stability of cytokines as well as chemokines in the ECM or on
the cell surface. SDF-1 and its receptor CXCR4 and CXCR7,
stimulate the production of paracrine mediators, including some
of growth factors such as vascular endothelial growth factor,
fibroblast growth factor, and hepatocyte growth factor (Liu et al.,
2012) associated muscle growth. Thus, the reduction of SDF-1
may indicate lower activity of growth factors in Chst14−/−

mice. C5a, which is known to play recruitment of inflammatory
cells, and lead to pro-inflammatory cytokines. Thus, low
expression of C5a may suppress pro-inflammatory activation
in Chst14−/− mice. The IL-1ra gene has been associated with
various human diseases, primarily epithelial and endothelial
cells. This may indirectly lead to an imbalance in the IL-1 system
with enhanced production of IL-1β and reduced production
of IL-1ra (Arend, 2002). In DS-deficient muscle, disease-
specific changes in cytokine balance could affect myogenesis
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FIGURE 4 | Schematic for the proposed hypothesis of this study. Decorin is one of the most abundant proteoglycans in the skeletal muscle, mainly associated with
ECM surrounding bundles of myofibers. In normal muscle, decorin acts as a myokine through the pathway: inhibition of transforming growth factor (TGF)-β, and
down-regulation of myostatin expression, by competitively binding to TGF-β or myostatin. The inhibitory effects on TGF-β or myostatin (arrow with minus mark) might
be reduced in DS-deficient muscle, because down-regulation of decorin core protein as well as its modification by CS instead of DS lead to diffused localization and
induced up-regulated expression of myostatin and TGF-β, with the resulting collagen production leading to fibrosis. Decorin with CS also leaded to changes in the
cytokine/chemokine environment, and might result in delayed muscle growth and pathological phenotypes, but had no effect on expression levels of myogenic
factors.

and induce disease progression. Functional changes in CS-
containing decorin may induce a modified environment for
some myokines.

The ECM is essential for normal myogenesis, which includes
interactions between myoblasts and their environment (Osses
and Brandan, 2002). Decorin plays an important role in
organizing the fibrillar network of the ECM (Caceres et al.,
2000; Fadic et al., 2006). Various proteoglycans in the ECM have
been reported to play a role in the differentiation process by
regulating growth factor activity (Villena and Brandan, 2004).
DS is an enhancer of growth factor-dependent proliferation of
satellite cells and migration during skeletal muscle formation
(Villena and Brandan, 2004). Therefore, DS depletion in the
skeletal muscle of Chst14−/− mice and mcEDS may induce
disease-specific myogenesis, including delayed muscle growth
and reduced structural stability.

CS/DS-proteogrycans regulate cell signaling on the cell surface
through binding with various growth factors (Mizumoto et al.,
2015). Both the amount and distribution of iduronic acid
(IdoUA) are subjected to physiological regulation; for example,
TGF-β considerably affects IdoUA in decorin (Tiedemann et al.,
2005). The conformational flexibility of IdoUA-containing CS/DS
hybrid as well as DS chains is thought to facilitate the binding
activity to proteins (Casu et al., 1988). For instance, the

interaction of hepatocyte growth factor with CS/DS requires
IdoUA residue flanked by 4-O-sulfated N-acetylgalactosamine
(Deakin et al., 2009). The IdoUA-containing domains of CS/DS
have also been shown to interact with the fibroblast growth
factor family, thereby regulating cell migration (Trowbridge et al.,
2002). Considering these facts, the IdoA residue seems to effects
of the replacement of DS by CS migration and proliferation of
muscle cells in Chst14−/− mice.

Decorin shows high affinity for TGF-β by binding to
decorin core protein (Hildebrand et al., 1994), allowing decorin
to function as a reservoir for TGF-β in the ECM. We
demonstrated enhanced fibrosis in Chst14−/− mice supported by
histopathological staining and upregulated expression of collagen
and TGF-β (Figure 3). Decorin with the CS chain in Chst14−/−

mice led to enhanced fibrosis and resulted in connective
tissue fragility, as observed in dystrophic muscle. In patients
with dystrophy, selective accumulation of CS, increase in 4-O-
sulfation of CS accompanied by upregulation of CHST11, which
encodes chondroitin 4-O-sulfotransferase-1, and reduction in
expression of CS-degrading enzyme, hyaluronidase-4, in the
muscles (Negroni et al., 2014). In this study, we demonstrated
that DS chain of decorin-proteoglycan was replaced with CS,
and that its protein expression was reduced in Chst14−/− mice
(Figure 1). The functional alteration by decorin-proteoglycan
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in Chst14−/− mice might lead the myopathy phenotype in
the muscle. Further investigation may be required for more
understanding of the mechanisms of myopathy phenotype
caused by decorin-proteoglycan with CS side chain.

Abnormal collagen bundle formation was associated with
decorin GAG abnormalities. Decorin interacts with collagen I as
well as with collagens II, III, IV, V, VI, XII, and XIV (Gubbiotti
et al., 2016). The fibril-forming of types I and III are by far
the most abundant by proteomic studies, suggesting that they
jointly account for approximately 75% of total muscle collagen
(McKee et al., 2019). The strong parallel fibers of collagen I, which
are present in the endo-, peri-, and epimysium, are assumed
to confer tensile strength and rigidity to the muscle, whereas
collagen III forms a loose meshwork of fibers that bestows
elasticity to the endo- and perimysium (Kovanen, 2002). Our
data showed downregulation of collagen III in the muscle of
Chst14−/− mice. Therefore, the loose meshwork of fibers might
be associated with the myopathy phenotype in Chst14−/− mice,
and mcEDS may be caused by connective tissue fragility in
the skeletal muscle, associated with ECM functional changes
including ectopic localization of decorin. These findings will
facilitate future research on the disease-specific mechanisms
of decorin with DS or CS chains in muscle maintenance and
potential therapeutic approaches for myopathy.
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