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The treatment of large bone defects is a clinical challenge. 3D printed scaffolds

are a promising treatment option for such critical-size defects. However, the

design of scaffolds to treat such defects is challenging due to the large number

of variables impacting bone regeneration; material stiffness, architecture or

equivalent scaffold stiffness—due it specific architecture—have all been

demonstrated to impact cell behavior and regeneration outcome. Computer

design optimization is a powerful tool to find optimal design solutions within a

large parameter space for given anatomical constraints. Following this

approach, scaffold structures have been optimized to avoid mechanical

failure while providing beneficial mechanical stimulation for bone formation

within the scaffold pores immediately after implantation. However, due to the

dynamics of the bone regeneration process, the mechanical conditions do

change from immediately after surgery throughout healing, thus influencing the

regeneration process. Therefore, we propose a computer framework to

optimize scaffold designs that allows to promote the final bone regeneration

outcome. The framework combines a previously developed and validated

mechanobiological bone regeneration computer model, a surrogate model

for bone healing outcome and an optimization algorithm to optimize scaffold

design based on the level of regenerated bone volume. The capability of the

framework is verified by optimization of a cylindrical scaffold for the treatment

of a critical-size tibia defect, using a clinically relevant large animal model. The

combined framework allowed to predict the long-term healing outcome. Such

novel approach opens up new opportunities for sustainable strategies in

scaffold designs of bone regeneration.
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1 Introduction

Large bone defects do not heal spontaneously if they exceed a

critical dimension. The current gold standard treatment in such

clinical cases consists of autologous bone grafting but has several

drawbacks such as the need for a second surgery and a limited

amount of adequate bone graft tissue (Dimitriou et al., 2011;

Schlundt et al., 2018). 3D-printed scaffolds appear as a promising

alternative treatment strategy for large bone defects, with good

pre-clinical results (Reichert et al., 2012; Pobloth et al., 2018).

However, their translation to the clinic has been limited so far,

partly due to the large number of scaffold design variables

influencing the regeneration process, which limits the

predictability of the clinical outcome; hence, bone scaffold

design is often the result of a trial-and-error process.

Several research groups have departed from a trial-and-error

approach by using computational optimization methods when

designing bone scaffolds. A common approach consisted in

maximizing or minimizing specific mechanical properties such

as stiffness to mimic the material properties of bone tissue

(Almeida and da Silva Bártolo, 2010; Chen et al., 2011; Xiao

et al., 2012; Dias et al., 2014; Wang et al., 2016; Metz et al., 2020).

Such concept may be considered limited, since endogenous bone

regeneration is limited in too stiff environments (Prendergast

et al., 1997; Pobloth et al., 2018). Other groups have targeted

specific values for stiffness and/or diffusivity of the scaffold to

mimic the tissue being replaced (Hollister et al., 2002; Hollister

and Lin, 2007; Sturm et al., 2010; Wieding et al., 2014; Makowski

and Kuś, 2016; Chang et al., 2017). Nonetheless, scaffold

properties mimicking a missing tissue do not ensure being

supportive to the endogenous bone regeneration process

(Petersen et al., 2018).

Few studies have focused on the mechanobiological potential

of a scaffold design as a means of optimization. Boccaccio and

colleagues optimized periodic scaffolds to provide favorable

mechanical conditions for bone regeneration immediately

after implantation (Boccaccio et al., 2016a, 2016b, 2018a,

2018b; Percoco et al., 2020). However, such approach is also

limited as the bone regeneration process is known to be highly

dynamic, where initial optimal conditions cannot ensure an

optimal regeneration outcome (Perier-Metz et al., 2021). Over

the course of bone healing, different types of tissues are formed,

remodeled and resorbed in specific areas of a defect, creating a

highly dynamic local mechanical niche that changes over time

and further influences cell response and tissue formation. A few

studies confirmed that designs optimized for the situation

immediately after surgery did not yield optimal bone

regeneration in various set-ups (Bashkuev et al., 2015; Perier-

Metz et al., 2021; Wu et al., 2021). These findings suggest that

bone scaffold optimization should rather be performed on an

intended regeneration outcome and not only the initial post-

surgery setting, preferably as a time-dependent

mechanobiological optimization (Metz et al., 2020).

So far, to the best of our knowledge, only two time-

dependent, mechanobiology-based bone scaffold optimization

studies have been performed. In the first one, Poh et al. (2019)

optimized a scaffold porosity distribution for a large defect in a

sheep long bone, based on a simplified bone regeneration model.

However, their model did not include any other tissue type than

bone (e.g., cartilage, fibrous tissue). Furthermore, the

optimization set-up was restricted to 1D, meaning that the

actual scaffold micro-structure was not optimized. More

recently, Wu and colleagues proposed a method for a time-

dependent mechanobiology-based topology optimization of

bone scaffolds (Wu et al., 2021). However, also this model did

not account for any other tissue type but bone nor for the needed

initial cell infiltration into the defect.

To overcome these limitations, we propose a novel in silico

framework to optimize scaffold design based on the level of

regenerated bone volume aimed at the end of the regeneration

process. Such prediction has to consider the activity of individual

cells and the potential for different tissue types to be formed

during the healing process. To achieve this, a computer

framework combining a multiscale mechanobiological bone

regeneration model, a surrogate model for bone healing

outcome and an optimization algorithm was developed. This

framework was applied to optimize scaffolds for a large defect in

a sheep tibia.

2 Materials and methods

To realize an optimization taking into account the

regeneration outcome, this study focuses on the design

optimization of a cylindrical scaffold to be implanted in a

large bone defect in the sheep tibia as an example. The in

silico framework to optimize scaffolds was realized by using a

finite element model that was coupled to an agent-basedmodel to

simulate bone regeneration within such scaffolds. This computer

model was first used to simulate bone regeneration in a relatively

large set of scaffold designs, to generate the interpolation data

necessary for a surrogate model. Based on the results of the bone

regeneration model, a simplified relationship between the

scaffold design parameters and the predicted regenerated bone

outcome was computed (i.e., surrogate model). Thereafter, this

relationship was used in an optimization framework, to find the

optimal scaffold design parameters to maximize the amount of

regenerated bone.

2.1 Finite element model

A finite element model was developed where the geometry of

the defect and the surrounding bone extremities was based on

previously published in silico-in vivo studies (Pobloth et al., 2018;

Perier-Metz et al., 2020). A 4-cm segmental defect in a sheep tibia
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was modelled by a cylinder of outer radius 10 mm (cortical bone)

and inner radius 7.5 mm, containing the bone marrow

(Figure 1A). The defect was modelled to be stabilized by an

internal stainless steel fixation plate and six screws, following

previous experimental setups (Pobloth et al., 2018). A

regenerating zone, the callus, was modelled in and around the

defect by rotating a circle arc of maximum width 10 mm at mid-

height and overlapping the intact bone extremities by 10 mm.

A scaffold with outer radius 10 mm and inner radius 5 mm

and pores with square sections following three perpendicular

directions was modelled (Figures 1B,C). The pore centers had a

spacing of 1 mm in both horizontal directions (longitudinal view,

Figures 1B,D); whereas the 12 pores extruded along the vertical

direction were placed regularly in a circle (radial view,

Figure 1C). Three variables were defined to parametrize the

scaffold geometry: x1 was the pore size closest to the bone

extremities and x2 the pore size at mid-height of the scaffold,

assuming a linear gradient of the pore sizes in the three rows

between these (Figure 1D); and x3 defined the pore size in the

radial plane (Figure 1C). The parameters x1 and x2 were

constrained between 0.3 and 3.8 mm and x3 between 0.3 and

3 mm. The lower bound was dictated by biological requirements

to ensure good vascularization and nutrient supply, as

experimental studies suggested a minimal pore size of 300 µm

(De Witte et al., 2018), while the upper bound was chosen to

avoid that neighboring pores overlap.

FIGURE 1
(A) Finite element model set-up: longitudinal cut through the defect configuration showing the intact bone extremities, the implanted scaffold
and the fixation plate; the dashed line represents the symmetry plane used in the analysis. (B–D)Cylindrical scaffold description and parametrization:
(B) longitudinal view of the full scaffold geometry; (C) radial view of the scaffold defining the vertical pore size parameter x3; (D) longitudinal view of
the half scaffold (taking advantage of the symmetry) defining the horizontal pore size parameters x1 and x2.
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This model was implemented in the finite element (FE)

software Abaqus v.6.18 (Simulia, Rhode Island) to perform

mechanical analyses. Because of the symmetry of the

geometry, only one half of the model was simulated, following

the dashed line along the horizontal plane at mid-height

(Figure 1A). The different geometrical parts were meshed with

second-order elements as follows: hexahedral elements of

average size 2.5 mm for the intact cortical bone, the bone

marrow and the plate; beam elements of size 1 mm for the

screws; and tetrahedral elements of average sizes 1.2 mm for

the callus and scaffold—this size was adapted depending on the

size of the meshed geometry, in particular the scaffold struts.

The following constraints were defined between the different

geometrical parts: the intact bone extremities (cortical bone and

bone marrow) were tied to the callus; the screws were tied to the

intact bone; the screw heads were constrained by multi-point

constraints of type beam with the plate holes; the callus was

constrained such that it was tied to the scaffold.

The biological parts (cortical bone and bone marrow) were

modelled as poroelastic materials with properties summarized in

Table 1. The callus space was assumed to be initially filled with

granulation tissue (poroelastic material, Table 1). Over time,

regenerating tissue material properties were updated according

to the predicted tissue formation of the bone regeneration model

(Section 2.2).

A compression load of 1372 N and a bending moment of

17.125 Nm were applied on the proximal end of the bone,

corresponding to two body weights (BW) proximal-distal

compression and an anterior-posterior moment of 0.025 BWm

at the fixed end of a 20-cm intact bone, respectively (Duda et al.,

1997; Perier-Metz et al., 2020). A symmetry boundary condition

was defined on the xy symmetry plane (“ZSYMM”). Lastly, pore

pressure was constrained to be zero on the outer surfaces of the

poroelastic parts (callus, cortical bone and bone marrow).

Two different scaffold optimization studies were performed,

assuming different scaffold Young’s moduli (Table 1):

1) titanium, defined as a linear elastic material with Young’s

modulus 104 GPa

2) a hypothetical very soft material, defined as a linear elastic

material with Young’s modulus 0.2 MPa (similar to the

Young’s modulus of granulation tissue)

2.2 Bone regeneration model

A previously described mechanobiological bone regeneration

(MBBR) model, which was able to explain bone regeneration

within scaffolds in different experimental setups, was used to

predict tissue formation during the healing process (Perier-Metz

et al., 2020, 2022). It consisted in a 3D agent-based computer

model implemented in C++ and coupled with the afore-

mentioned FE model (Section 2.1). Each agent, of size

100 μm, could represent one cell of one of the following

phenotypes: progenitor cell, fibroblast, chondrocyte and

immature or mature osteoblast, with the associated

extracellular matrix: granulation tissue, fibrous tissue, cartilage

and immature or mature bone, respectively.

Progenitor cells were allowed to migrate randomly with an

average speed of 30 μm/h (Appeddu and Shur, 1994). The origin

of these cells was mimicked by initially seeding them randomly in

the bone marrow cavity and along the periosteum with a 30%

occupancy rate (Perier-Metz et al., 2020). The rest of the tissue

volume was considered cell-free at the initial time point.

Differentiation, proliferation and apoptosis of the cells

depended on a mechanoregulation stimulus S based on

octahedral shear strain γ and fluid velocity ], defined by S � γ
a +

]
b , with the empirical parameters a and b: a � 0.0375 and b �
0.03mm.s−1 (Huiskes et al., 1997; Lacroix and Prendergast, 2002).

Mechanical thresholds were defined for the stimulus (S) favoring

bone resorption (S < 0.01), mature bone (0.01 < S < 0.53),

immature bone (0.53 < S < 1), cartilage (1 < S < 3) or fibrous

tissue (S > 3) (Perier-Metz et al., 2020). Cells would proliferate

TABLE 1 Material properties (Perier-Metz et al., 2020).

Material Young’s modulus
(MPa)

Poisson’s ratio Permeability
(10−14 s.m4.N−1)

Bulk modulus
grain (MPa)

Bulk modulus
fluid (MPa)

Stainless steel 210,000 0.3 - - -

Titanium 104,000 0.3 - - -

Soft scaffold material 0.2 0.3 - - -

Cortical bone 17,000 0.3 0.001 13,920 2,300

Bone marrow 2 0.167 1 2,300 2,300

Granulation tissue 0.2 0.167 1 2,300 2,300

Fibrous tissue 2 0.167 1 2,300 2,300

Cartilage 10 0.3 0.5 3,700 2,300

Immature bone 1,000 0.3 10 13,940 2,300

Mature bone 17,000 0.3 37 13,940 2,300

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Perier-Metz et al. 10.3389/fbioe.2022.980727

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.980727


with a predefined proliferation rate (60%, 55%, 20% or 30% for

progenitor cells, fibroblasts, chondrocytes and osteoblasts,

respectively) providing that they were in the right

mechanoregulation stimulus; or would undergo apoptosis

otherwise, with a different rate (5%, 5%, 10% or 16% for

progenitor cells, fibroblasts, chondrocytes and osteoblasts,

respectively) (Perier-Metz et al., 2020). Progenitor cells

differentiated with a rate of 0.3 days−1 towards the cell

phenotype corresponding to the local stimulus. In addition,

surface-guided tissue deposition was implemented, meaning

that differentiation could happen only following existing

surfaces (tissues or scaffold), and graft was assumed to be

present in the scaffold pores where it stimulated proliferation

and differentiation, as previously described (Perier-Metz et al.,

2020).

This agent-based model was coupled with the FE model in

two ways: 1) the mechanoregulation stimulus that dictated the

cell behaviors was derived element-wise from the FE analysis;

and 2) the tissue material properties were updated in the callus of

the FE model at every iteration depending on the agent-based

model cell distribution. To do so, each element was mapped to

the agents it contained and its material properties were defined

according to a rule of mixtures: the average material properties of

the tissues predicted in the agents within each single element was

computed, and the obtained value was further averaged over the

last ten iterations to account for the time needed for tissue

deposition and maturation (Lacroix and Prendergast, 2002).

The FE analysis and agent-based simulations were run

iteratively to predict the full regeneration process, where one

iteration represented one day.

2.3 Surrogate optimization set-up

The bone regeneration model described above (Section 2.2) is

computationally intensive (it takes around 6 h on a standard

workstation to simulate one full regeneration process). However,

for the optimization process, the regeneration outcome needs to

be predicted multiple times, until the optimum scaffold is found.

Therefore, to ensure that the optimization process runs in a

reasonable time, a surrogate optimization approach was adopted.

A surrogate computer model (a simplified input-output

relationship) of the bone regeneration model described above

(Section 2.2) was built based on a set of initially sampled input

parameters obtained by a design of experiments technique. The

input parameters were the scaffold design variables (x1-x3)

whereas the output was defined as the predicted fraction of

regenerated bone volume within the scaffold pores after

24 weeks. Thereafter, the scaffold design optimization was

performed using the surrogate model. To ensure surrogate

model accuracy and optimality of the outcome, the optimum

design predicted by the surrogate model was computationally

tested for bone regeneration outcome using both the surrogate

model and the MBBR model. A first loop of the framework was

used to ensure that the difference in the regenerated bone volume

value between the surrogate and the MBBR model was below 5%

(Figure 2A); as long as the error was bigger, the input values and

the corresponding output (as simulated with the MBBR model)

were added to the dataset to compute a new surrogate model, and

a new optimum was determined based on this improved

surrogate model. The second loop consisted in building the

surrogate model with the given dataset and computing an

optimum based on this surrogate model until an optimum

was reached that was better than all previously stored values

(to avoid local optima). The output was simulated again with the

MBBR model to ensure a good confidence in the result. If a new

loop was necessary, this new data point was added to the dataset

to build the surrogate model and improve it further.

The initial dataset used to build the surrogate model was

determined using the Latin Hypercube Sampling technique

(Simon et al., 2002). Based on preliminary studies, 20 times

the number of variables was found to be sufficient to obtain

an accurate enough surrogate model, i.e, 60 samples in this set-

up. The locations of the samples are given in Figure 2B.

The surrogate model was built using the predicted

regenerated bone volume using the Matlab kriging toolbox

DACE (Lophaven et al., 2002). An exponential auto-

correlation was assumed as it gave the best results in a

preliminary study. To perform the optimization, the Matlab

Global optimization toolbox was used where different

optimization algorithms were tested: direct search, genetic

algorithm and particle swarm optimization (The MathWorks,

Inc. 2020). For the direct search, an initial guess for x1, x2 and

x3 has to be defined to initialize the optimization process: the

values 2.05, 2.05, and 1.65 mm were arbitrarily used. In all

algorithms, the default settings were used to perform the

optimization.

In summary, the surrogate optimization framework includes

the following steps (Figure 2A):

1) Run the MBBR model for a set of input parameters obtained

by Latin Hypercube Sampling technique (LHS).

2) Build a kriging surrogate model based on the initial data using

the Matlab kriging toolbox DACE.

3) Perform optimization based on the surrogate model

predictions using the Matlab Global optimization toolbox

(The MathWorks, Inc. 2020): direct search, genetic algorithm

(GA), particle swarm optimization (PSO)

4) Run the MBBR model for the optimum scaffold parameters

found in step 3 and compare the MBBR model output to the

surrogate prediction (loop 1) or current optimal value

(loop 2)

5) Repeat steps two to four to ensure model accuracy (loop 1,

allowing max 5% discrepancy between the surrogate

prediction and the MBBR model output) and optimality of

the outcome (loop 2)
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To automate the creation of the FE models for each scaffold

design, a Python script was developed for Abaqus, which allowed

to define the pore corner positions based on the pore size.

MATLAB R2018b (The MathWorks, Inc. 2020) was used to

run the actual optimization framework, including launching

Abaqus CAE for the geometry update and the C++-Abaqus

MBBR model. Pore size values (input) and corresponding

output (bone volume in the scaffold pores) were stored in a

text file for further analysis.

2.4 Analysis of the outcome

The main outcome of the MBBR simulations was the

predicted regenerated bone volume fraction in the scaffold

pores after 24 weeks. Regenerated bone volume fraction was

computed as the total amount of agents within the scaffold

pores occupied by osteoblasts divided by the total number of

agent positions within the scaffold pores.

The porosity of the resulting scaffold was computed as the

scaffold pore volume divided by the hollow cylinder volume

(outer radius 10 mm and inner radius 5 mm). The regenerated

bone volume fraction could then be related to the scaffold

macroscopic porosity.

In addition, histology-like images of bone regeneration

predictions were computed in the mid-sagittal plane of the

defect using histology-like colors, similar to the experimental

Safranin Orange/von Kossa staining: bone in black, fibrous tissue

in light red and cartilage in dark red (Pobloth et al., 2018; Perier-

Metz et al., 2020). This representation allowed a comparison

between different designs and study cases.

3 Results

3.1 Titanium scaffold optimization

The first step of the optimization process of the titanium

scaffold consisted in simulating the 60 initial designs defined

by the Latin hypercube sampling strategy (Figure 2B).These

simulations yielded a regenerated bone volume fraction in the

scaffold pores varying from 10% to 95%. The corresponding

designs had porosities ranging from 13% to 95%, with a

tendency towards a better regeneration potential for higher

porosities until ca. 90% (Figure 3A). Above this porosity, the

designs yielded very bad healing outcomes due to high

deformations stimulating fibrocartilage formation instead of

bone. Nevertheless, the porosity alone was not a good

indicator of the healing potential, as the same porosity

yielded many different healing outcomes. For instance,

50%-porosity scaffolds yielded 35%–90% regenerated bone

volume in the scaffold pores (Figure 3A).

The three tested optimization algorithms (direct search,

GA and PSO) suggested similar optimal titanium scaffold

designs yielding ca. 96% regenerated bone (Table 2). The

best design was obtained with the PSO algorithm, where

the scaffold design was defined by x1 � 3.12mm , x2 �
3.26mm and x3 � 2.6mm This scaffold had a porosity of

85% and yielded roughly 96% of regenerated bone in the

scaffold pores (Figure 4A). The optimal scaffold did not

show a clear advantage of a gradient in the scaffold pore

size for bone regeneration, since the values of x1 and x2 were

very close to each other. Interestingly, one of the very graded

designs (x1 � 1.84mm , x2 � 3.45mm , x3 � 2.26mm), that was

FIGURE 2
(A) Flow chart of the scaffold design optimization computational framework for enhanced bone regeneration. (B) Locations of the initial
samples (in the space defined by the three parameters x1, x2, x3) for which the MBBR model is run to compute the surrogate model.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Perier-Metz et al. 10.3389/fbioe.2022.980727

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.980727


part of the interpolation dataset, performed nearly as well,

with 93% regenerated bone but only 71% porosity (Figure 4B).

Compared to the optimal design, some areas of bone

resorption appeared around some scaffold walls.

3.2 Soft scaffold optimization

The predicted regenerated bone volume fractions for the

interpolation dataset using soft material properties for the

scaffold varied from 20% to 60%, thus showing a reduced

healing potential compared to the titanium scaffolds. The

corresponding designs of the interpolation dataset had the same

geometries as the ones used for the titanium scaffold optimization;

therefore, their porosities ranged from 13% to 95% as well. A

tendency towards a lower regeneration potential for higher

porosities was observed (Figure 3B). Also in this case, the

porosity alone was not a good indicator of the healing potential,

as e.g., 50%-porosity scaffolds yielded 15%–50% regenerated bone

volume in the scaffold pores (Figure 3B).

The optimal titanium scaffold design was predicted to

perform very badly when assuming that it would be made of

the very soft material with Young’s modulus 0.2 MPa: large

amounts of fibrous tissue and cartilage were predicted to

grow. As a consequence, only 27% of bone was present in the

scaffold pores after 24 weeks compared to 96% when the scaffold

was made of titanium (Figure 4C). The much softer material

yielded high strain values in the defect, thus leading to a

mechanoregulation stimulus favoring more fibrocartilage

formation.

The optimal soft scaffold was obtained with the PSO algorithm

and the scaffold design was defined by x1 � 1.9mm, x2 � 0.77mm

and x3 � 0.7mm (Table 2). This design was more graded than the

titanium optimum (larger pores close to the intact bone extremities),

but far less porous (24% porosity). It yielded only 67% regenerated

bone in the scaffold pores after 24 weeks, but large amounts of

fibrocartilage in the center of the defect (Figure 4D). The other two

algorithms (direct search, GA) converged to different optima which

were found to yield even less regenerated bone (51% and 65%,

respectively) at similar levels of porosity (Table 2).

FIGURE 3
Predicted regenerated bone volume fraction (bone volume/total pore volume) within the scaffold pores for scaffold designs with different
porosities for 60 initial scaffold designs: (A) made of titanium; (B) made of a soft material (Young’s modulus 0.2 MPa).

TABLE 2 Optimization results for both scaffold compositions using various algorithms.

Scaffold material Algorithm x1 (mm) x2 (mm) x3 (mm) Porosity Regenerated bone
volume fraction

Titanium Direct search 3.07 3.36 2.34 84% 96%

GA 3.07 3.36 2.34 84% 96%

PSO 3.12 3.26 2.64 85% 96%

Soft material Direct search 1.62 1.44 0.98 29% 51%

GA 1.9 0.50 0.70 22% 65%

PSO 1.9 0.77 0.70 24% 67%

GA, genetic algorithm; PSO, particle swarm optimization.
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3.3 Computational efficiency

The optimization processes presented in Sections 3.1 and 3.2

took ca. 2 weeks to perform, including 10 days for the simulation

of the bone regeneration process in the 60 initial scaffold

geometries used to build the surrogate model and 2–7 days for

each tested optimization algorithm (5–20 additional MBBR

simulations) on a standard desktop PC. In particular, when

using the PSO algorithm—the algorithm that performed best

in both cases—for the optimization step, 100 h (ca. 4 days) of

computation were needed for the titanium scaffold optimization

and 26 h for the soft material scaffold, in addition to the initial

10 days for the initial dataset simulations. In comparison, a

standard optimization approach would have required

thousands of simulation runs lasting 6 h each, i.e., years of

computations. Hence, the computing performance was

improved by a factor of at least 100.

4 Discussion

We propose here a computational framework for time-

dependent mechanobiological optimization of 3D-printed

scaffolds towards enhanced bone regeneration. Our method is

based on the bone regeneration outcome to optimize scaffold

design, instead of only the post-surgery mechanical stimulus or

scaffold mechanical properties. The framework uses surrogate

modelling and design of experiments methods that allow for a

FIGURE 4
Scaffold design, initial absolute principal strain distribution in the mid-sagittal plane and 24-week histology predictions in themid-sagittal plane
for different scaffold designs: (A) optimal titanium scaffold design; (B) a good titanium graded design (X1 � 1.84mm X2 � 3.45mm, X3 � 2.26mm); (C)
scaffold design optimized for titanium but now made of soft material; (D) optimal soft material scaffold design.
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set-up that can be run in a reasonable amount of time on

standard computing machines. In this study, the framework

was used to optimize a scaffold for the treatment of a large

bone defect in sheep, where scaffolds of two different material

properties were considered: titanium and a very soft material

(with a Young’s modulus similar to that of granulation tissue).

The optimization of the titanium scaffold design suggested a

very porous design with large pores (86% porosity) to be optimal

for bone regeneration, yielding 96% regenerated bone in the

scaffold pores. This result is in good agreement with an in silico

study performed by Byrne and colleagues that found higher

porosities to be more beneficial for bone regeneration (Byrne

et al., 2007). A previous pre-clinical study has also shown that a

honeycomb titanium scaffold with 84% porosity leads to bone

regeneration within the here simulated large bone defect

(Pobloth et al., 2018). For the experimental scaffold, the

computer model of bone regeneration previously predicted a

98% regenerated bone in the scaffold pores (Perier-Metz et al.,

2020). Even though the optimization was performed on a

relatively simple scaffold geometry with square-section pores,

the computed optimum proved capable of performing as good as

a more complex experimental design. This first result is therefore

very promising as the optimum of a simple parameterized

geometry is already predicted to yield very good bone

regeneration capabilities. Further studies should test the

potential of the optimization approach in other, more

complex scaffold designs, which could have a larger number

of design parameters and therefore yield even better results.

A sensitivity analysis of the optimal titanium scaffold design

to the loading conditions was further performed to assess the

validity of the optimization process (Supplementary Material).

Indeed, the optimal design was shown to still yield mostly bone

regeneration under 50% higher or lower loading conditions, what

suggested a good robustness of the design under loading

uncertainties. Other bone scaffold optimization studies have

shown that the optimal scaffold design (according to the

initial mechanical stimulus) depended on the assumed loading

conditions (Boccaccio et al., 2016a; 2016b; 2018a). Here, the

lower loading conditions decreased more strongly the

regenerated bone volume fraction within the scaffold pores

(79% compared to 96%).

The optimization of the soft scaffold (Young’s modulus of

0.2 MPa) showed a very different result, with the optimum

being far less porous (24%) and yielding less bone than the

optimal titanium scaffold (67%). Interestingly, the design was

graded, with larger pores close to the intact bone extremities

and smaller ones in the center of the defect. This result is in

line with a previous in silico study optimizing the porosity

distribution of a large bone defect scaffold (Poh et al., 2019). A

reason for this distribution of pore sizes might be the need to

sustain higher strains in the center of the defect, as bone

regenerates from the intact extremities towards the center so

that the remaining granulation tissue in the center of the

scaffold is compressed together from the bone formed above

and below. Here, the chosen material was very soft; the

experimental literature suggests intermediate material

properties as an alternative to foster bone regeneration, e.g.,

polymers and/or ceramics (Reichert et al., 2012; Reznikov

et al., 2019). Using our set-up, future studies could perform

a polymer-ceramic composite scaffold optimization for large

bone defect regeneration, including the degradable behavior of

these materials.

Two previous studies have used mechanobiological

algorithms to perform a time-dependent bone scaffold

optimization: topology optimization studies in 2D (large

defect) and 3D (partial defect) (Wu et al., 2021) and a

porosity distribution optimization study in 1D (Poh et al.,

2019). In the first case, the use of topology optimization

techniques allowed a free design, where no topology was

imposed a priori. However, Wu and colleagues did not take

into account the actual cell invasion of the scaffold pores nor the

different tissue types taking part in the bone regeneration process

(e.g., fibrous tissue, cartilage). In addition, they assumed a

periodic design and optimized only one (cubic or square)

representative volume element of this scaffold, thus not

allowing any variations between different scaffold regions (Wu

et al., 2021). The second study consisted in a very fast method as

it focused only on one dimension; however, it was strongly

limited as the optimal scaffold micro-structure could therefore

not be predicted (Poh et al., 2019). In fact, this method should be

combined with a micro-structure optimization step for a

practical usage by means of a multi-scale optimization (Dondl

et al., 2019).

This study had some limitations related to the

mechanobiological bone regeneration model.

Vascularization was not included, although it is known to

be a very limiting factor in large bone defect regeneration;

however, this limitation was mitigated by the use of large pores

to avoid impairing the re-vascularization process (minimum

300 µm) and the assumption that graft was implanted into the

scaffold, which is likely to enhance the vascularization process.

Moreover, the bone regeneration computer model used here

has been shown to have good predictive capabilities in two

independent experimental setups where different scaffolds

designs were used (Perier-Metz et al., 2020, 2022). Another

limitation was that each agent point was bigger than actual cell

sizes (Isaksson et al., 2008), so that an agent was assumed to

contain several cells and the corresponding tissue; tissue

deposition was therefore not implemented as such.

Preliminary studies showed that this simplification did not

affect much the final regeneration predictions but rather their

dynamics, what was not the focus of the present study. The

relatively coarse mesh size is a further limitation of the MBBR

model, which might in particular result in distorted

predictions of the tissue composition and material

properties due to the averaging of material properties over
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a full element; however, preliminary mesh convergence studies

performed in a previous study showed that the mesh size did

not impact the mechanoregulation stimulus prediction

(Perier-Metz et al., 2020). In this study, optimization

analyses were done for two specific scaffold materials, with

the very stiff titanium on the one hand [comparable to

(Pobloth et al., 2018)] and the very soft granulation tissue-

like material on the other (Petersen et al., 2018); future studies

should take into account degradable polymeric or composite

(polymer-ceramic) materials that are considered for clinical

usage. This would add a further dynamic aspect in the

optimization process due to the degradation of the scaffold

material. Also, it would have been possible to include the

material stiffness in the optimization process, but this might

be less realistic (only some stiffness values are possible) and

would distort the optimization results, as the variation of

material stiffness values can be of orders of magnitude

compared to the pore size values. Lastly, despite the

implementation of a surrogate modelling approach, the

computation time (a few weeks for one scaffold design

optimization set-up) is still too long for a clinical routine

usage, where an optimal design should be designed in a few

days for a patient-specific case. Future studies should take

advantage of high-performance computing technologies by

using dedicated hardware and parallelized algorithms to

further reduce the computing time.

In summary, we propose here a technological platform that

allows to optimize hierarchically-structured bone scaffold

designs not only against mechanical failure and initial in-

growth of bone but for a sustainable long-term optimized

regenerative process. With improved computational efficiency

and providing that the healing potential of an individual is

known, this method could be employed for the development

of personalized 3D-printed bone scaffolds to ensure an optimal

regeneration outcome to a given patient.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Author contributions

All authors contributed to the conception and design of the

study. CP-M and SC developed the in silico models. CP-M

collected and interpreted the data. CP-M wrote the first draft

of the manuscript. SC provided technical guidance on the project.

All authors revised and edited the manuscript and approved its

content.

Funding

This work was part of Camille Perier-Metz’ PhD project

funded by MINES Paris—PSL Research University. The authors

acknowledge funding from the German Federal Ministry of

Education and Research (BMBF) (grant number: 01ZX 1910).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fbioe.2022.

980727/full#supplementary-material

References

Almeida, H. de A., and da Silva Bártolo, P. J. (2010). Virtual topological
optimisation of scaffolds for rapid prototyping. Med. Eng. Phys. 32, 775–782.
doi:10.1016/j.medengphy.2010.05.001

Appeddu, P. A., and Shur, B. D. (1994). Molecular analysis of cell surface beta-1,
4-galactosyltransferase function during cell migration. Proc. Natl. Acad. Sci. U. S. A.
91, 2095–2099. doi:10.1073/pnas.91.6.2095

Bashkuev, M., Checa, S., Postigo, S., Duda, G., and Schmidt, H. (2015).
Computational analyses of different intervertebral cages for lumbar spinal
fusion. J. Biomech. 48, 3274–3282. doi:10.1016/j.jbiomech.2015.06.024

Boccaccio, A., Fiorentino, M., Uva, A. E., Laghetti, L. N., and Monno, G. (2018a).
Rhombicuboctahedron unit cell based scaffolds for bone regeneration: Geometry

optimization with a mechanobiology - driven algorithm. Mater. Sci. Eng. C 83,
51–66. doi:10.1016/j.msec.2017.09.004

Boccaccio, A., Uva, A. E., Fiorentino, M., Bevilacqua, V., Pappalettere, C., and
Monno, G. (2018b). “A computational approach to the design of scaffolds for bone
tissue engineering,” in Advances in bionanomaterials, bionam 2016. Editors
S. Piotto, F. Rossi, S. Concilio, E. Reverchon, and G. Cattaneo (Berlin: Springer-
Verlag Berlin), 111–117.

Boccaccio, A., Uva, A. E., Fiorentino, M., Lamberti, L., and Monno, G.
(2016a). A mechanobiology-based algorithm to optimize the microstructure
geometry of bone tissue scaffolds. Int. J. Biol. Sci. 12, 1–17. doi:10.7150/ijbs.
13158

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Perier-Metz et al. 10.3389/fbioe.2022.980727

https://www.frontiersin.org/articles/10.3389/fbioe.2022.980727/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2022.980727/full#supplementary-material
https://doi.org/10.1016/j.medengphy.2010.05.001
https://doi.org/10.1073/pnas.91.6.2095
https://doi.org/10.1016/j.jbiomech.2015.06.024
https://doi.org/10.1016/j.msec.2017.09.004
https://doi.org/10.7150/ijbs.13158
https://doi.org/10.7150/ijbs.13158
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.980727


Boccaccio, A., Uva, A. E., Fiorentino, M., Mori, G., and Monno, G. (2016b).
Geometry design optimization of functionally graded scaffolds for bone tissue
engineering: A mechanobiological approach. PLOS ONE 11, e0146935. doi:10.1371/
journal.pone.0146935

Byrne, D. P., Lacroix, D., Planell, J. A., Kelly, D. J., and Prendergast, P. J. (2007).
Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s
modulus and dissolution rate: Application of mechanobiological models in tissue
engineering. Biomaterials 28, 5544–5554. doi:10.1016/j.biomaterials.2007.09.003

Chang, C.-C., Chen, Y., Zhou, S., Mai, Y.-W., and Li, Q. (2017). “Computational
design for scaffold tissue engineering,” in Biomaterials for implants and scaffolds.
Editors Q. Li and Y. W. Mai (Berlin: Springer-Verlag Berlin), 349–369.

Chen, Y., Zhou, S., and Li, Q. (2011). Microstructure design of biodegradable
scaffold and its effect on tissue regeneration. Biomaterials 32, 5003–5014. doi:10.
1016/j.biomaterials.2011.03.064

De Witte, T.-M., Fratila-Apachitei, L. E., Zadpoor, A. A., and Peppas, N. A.
(2018). Bone tissue engineering via growth factor delivery: From scaffolds to
complex matrices. Regen. Biomater. 5, 197–211. doi:10.1093/rb/rby013

Dias, M. R., Guedes, J. M., Flanagan, C. L., Hollister, S. J., and Fernandes, P. R.
(2014). Optimization of scaffold design for bone tissue engineering: A
computational and experimental study. Med. Eng. Phys. 36, 448–457. doi:10.
1016/j.medengphy.2014.02.010

Dimitriou, R., Mataliotakis, G. I., Angoules, A. G., Kanakaris, N. K., and
Giannoudis, P. V. (2011). Complications following autologous bone graft
harvesting from the iliac crest and using the ria: A systematic review. Injury 42,
S3–S15. doi:10.1016/j.injury.2011.06.015

Dondl, P., Poh, P. S. P., Rumpf, M., and Simon, S. (2019). Simultaneous elastic
shape optimization for a domain splitting in bone tissue engineering. Proc. R. Soc. A
475, 20180718. doi:10.1098/rspa.2018.0718

Duda, G. N., Eckert-Hübner, K., Sokiranski, R., Kreutner, A., Miller, R., and Claes,
L. (1997). Analysis of inter-fragmentary movement as a function of musculoskeletal
loading conditions in sheep. J. Biomechanics 31, 201–210. doi:10.1016/S0021-
9290(97)00127-9

Hollister, S. J., and Lin, C. Y. (2007). Computational design of tissue engineering
scaffolds. Comput. Methods Appl. Mech. Eng. 196, 2991–2998. doi:10.1016/j.cma.
2006.09.023

Hollister, S. J., Maddox, R. D., and Taboas, J. M. (2002). Optimal design and
fabrication of scaffolds to mimic tissue properties and satisfy biological constraints.
Biomaterials 23, 4095–4103. doi:10.1016/S0142-9612(02)00148-5

Huiskes, R., Van Driel, W. D., Prendergast, P. J., and Søballe, K. (1997). A
biomechanical regulatory model for periprosthetic fibrous-tissue differentiation.
J. Mat. Sci. Mat. Med. 8, 785–788. doi:10.1023/a:1018520914512

Isaksson, H., van Donkelaar, C. C., Huiskes, R., and Ito, K. (2008). A mechano-
regulatory bone-healing model incorporating cell-phenotype specific activity.
J. Theor. Biol. 252, 230–246. doi:10.1016/j.jtbi.2008.01.030

Lacroix, D., and Prendergast, P. J. (2002). A mechano-regulation model for tissue
differentiation during fracture healing: Analysis of gap size and loading.
J. Biomechanics 35, 1163–1171. doi:10.1016/S0021-9290(02)00086-6

Makowski, P., and Kuś, W. (2016). Optimization of bone scaffold structures using
experimental and numerical data. Acta Mech. 227, 139–149. doi:10.1007/s00707-
015-1421-4

Metz, C., Duda, G. N., and Checa, S. (2020). Towards multi-dynamic mechano-
biological optimization of 3D-printed scaffolds to foster bone regeneration. Acta
Biomater. 101, 117–127. doi:10.1016/j.actbio.2019.10.029

Percoco, G., Uva, A. E., Fiorentino, M., Gattullo, M., Manghisi, V. M., and
Boccaccio, A. (2020). Mechanobiological approach to design and optimize bone
tissue scaffolds 3D printed with fused deposition modeling: A feasibility study.
Materials 13, 648. doi:10.3390/ma13030648

Perier-Metz, C., Cipitria, A., Hutmacher, D. W., Duda, G. N., and Checa, S.
(2022). An in silicomodel predicts the impact of scaffold design in large bone defect
regeneration. Acta Biomater. 145, 329–341. doi:10.1016/j.actbio.2022.04.008

Perier-Metz, C., Duda, G. N., and Checa, S. (2021). Initial mechanical conditions
within an optimized bone scaffold do not ensure bone regeneration – An in silico
analysis. Biomech. Model. Mechanobiol. 20, 1723–1731. doi:10.1007/s10237-021-
01472-2

Perier-Metz, C., Duda, G. N., and Checa, S. (2020). Mechano-biological computer
model of scaffold-supported bone regeneration: Effect of bone graft and scaffold
structure on large bone defect tissue patterning. Front. Bioeng. Biotechnol. 8,
585799. doi:10.3389/fbioe.2020.585799

Petersen, A., Princ, A., Korus, G., Ellinghaus, A., Leemhuis, H., Herrera, A.,
et al. (2018). A biomaterial with a channel-like pore architecture induces
endochondral healing of bone defects. Nat. Commun. 9, 4430. doi:10.1038/
s41467-018-06504-7

Pobloth, A.-M., Checa, S., Razi, H., Petersen, A., Weaver, J. C., Schmidt-Bleek, K.,
et al. (2018). Mechanobiologically optimized 3D titanium-mesh scaffolds enhance
bone regeneration in critical segmental defects in sheep. Sci. Transl. Med. 10,
eaam8828. doi:10.1126/scitranslmed.aam8828

Poh, P. S. P., Valainis, D., Bhattacharya, K., Griensven, M., and Dondl, P. (2019).
Optimization of bone scaffold porosity distributions. Sci. Rep. 9, 9170. doi:10.1038/
s41598-019-44872-2

Prendergast, P. J., Huiskes, R., and Søballe, K. (1997). Biophysical stimuli on cells
during tissue differentiation at implant interfaces. J. Biomechanics 30, 539–548.
doi:10.1016/S0021-9290(96)00140-6

Reichert, J. C., Cipitria, A., Epari, D. R., Saifzadeh, S., Krishnakanth, P., Berner, A.,
et al. (2012). A tissue engineering solution for segmental defect regeneration in
load-bearing long bones. Sci. Transl. Med. 4, 141ra93. doi:10.1126/scitranslmed.
3003720

Reznikov, N., Boughton, O. R., Ghouse, S., Weston, A. E., Collinson, L.,
Blunn, G. W., et al. (2019). Individual response variations in scaffold-guided
bone regeneration are determined by independent strain- and injury-induced
mechanisms. Biomaterials 194, 183–194. doi:10.1016/j.biomaterials.2018.
11.026

Schlundt, C., Bucher, C. H., Tsitsilonis, S., Schell, H., Duda, G. N., and Schmidt-
Bleek, K. (2018). Clinical and research approaches to treat non-union fracture. Curr.
Osteoporos. Rep. 16, 155–168. doi:10.1007/s11914-018-0432-1

Sturm, S., Zhou, S., Mai, Y.-W., and Li, Q. (2010). On stiffness of scaffolds for
bone tissue engineering - a numerical study. J. Biomech. 43, 1738–1744. doi:10.1016/
j.jbiomech.2010.02.020

The MathWorks Inc (2020). Global optimization toolbox manual. Natick,
Massachusetts, United States. Available at: https://de.mathworks.com/help/gads/
(Accessed February 18, 2021).

Wang, Y., Luo, Z., Zhang, N., and Qin, Q. (2016). Topological shape optimization
of multifunctional tissue engineering scaffolds with level set method. Struct.
Multidiscipl. Optim. 54, 333–347. doi:10.1007/s00158-016-1409-2

Wieding, J., Wolf, A., and Bader, R. (2014). Numerical optimization of open-
porous bone scaffold structures to match the elastic properties of human cortical
bone. J. Mech. Behav. Biomed. Mater. 37, 56–68. doi:10.1016/j.jmbbm.2014.
05.002

Wu, C., Fang, J., Entezari, A., Sun, G., V Swain, M., Xu, Y., et al. (2021). A time-
dependent mechanobiology-based topology optimization to enhance bone growth
in tissue scaffolds. J. Biomechanics 117, 110233. doi:10.1016/j.jbiomech.2021.
110233

Xiao, D., Yang, Y., Su, X., Wang, D., and Luo, Z. (2012). Topology optimization of
microstructure and selective laser melting fabrication for metallic biomaterial
scaffolds. Trans. Nonferrous Metals Soc. China 22, 2554–2561. doi:10.1016/
S1003-6326(11)61500-8

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Perier-Metz et al. 10.3389/fbioe.2022.980727

https://doi.org/10.1371/journal.pone.0146935
https://doi.org/10.1371/journal.pone.0146935
https://doi.org/10.1016/j.biomaterials.2007.09.003
https://doi.org/10.1016/j.biomaterials.2011.03.064
https://doi.org/10.1016/j.biomaterials.2011.03.064
https://doi.org/10.1093/rb/rby013
https://doi.org/10.1016/j.medengphy.2014.02.010
https://doi.org/10.1016/j.medengphy.2014.02.010
https://doi.org/10.1016/j.injury.2011.06.015
https://doi.org/10.1098/rspa.2018.0718
https://doi.org/10.1016/S0021-9290(97)00127-9
https://doi.org/10.1016/S0021-9290(97)00127-9
https://doi.org/10.1016/j.cma.2006.09.023
https://doi.org/10.1016/j.cma.2006.09.023
https://doi.org/10.1016/S0142-9612(02)00148-5
https://doi.org/10.1023/a:1018520914512
https://doi.org/10.1016/j.jtbi.2008.01.030
https://doi.org/10.1016/S0021-9290(02)00086-6
https://doi.org/10.1007/s00707-015-1421-4
https://doi.org/10.1007/s00707-015-1421-4
https://doi.org/10.1016/j.actbio.2019.10.029
https://doi.org/10.3390/ma13030648
https://doi.org/10.1016/j.actbio.2022.04.008
https://doi.org/10.1007/s10237-021-01472-2
https://doi.org/10.1007/s10237-021-01472-2
https://doi.org/10.3389/fbioe.2020.585799
https://doi.org/10.1038/s41467-018-06504-7
https://doi.org/10.1038/s41467-018-06504-7
https://doi.org/10.1126/scitranslmed.aam8828
https://doi.org/10.1038/s41598-019-44872-2
https://doi.org/10.1038/s41598-019-44872-2
https://doi.org/10.1016/S0021-9290(96)00140-6
https://doi.org/10.1126/scitranslmed.3003720
https://doi.org/10.1126/scitranslmed.3003720
https://doi.org/10.1016/j.biomaterials.2018.11.026
https://doi.org/10.1016/j.biomaterials.2018.11.026
https://doi.org/10.1007/s11914-018-0432-1
https://doi.org/10.1016/j.jbiomech.2010.02.020
https://doi.org/10.1016/j.jbiomech.2010.02.020
https://de.mathworks.com/help/gads/
https://doi.org/10.1007/s00158-016-1409-2
https://doi.org/10.1016/j.jmbbm.2014.05.002
https://doi.org/10.1016/j.jmbbm.2014.05.002
https://doi.org/10.1016/j.jbiomech.2021.110233
https://doi.org/10.1016/j.jbiomech.2021.110233
https://doi.org/10.1016/S1003-6326(11)61500-8
https://doi.org/10.1016/S1003-6326(11)61500-8
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.980727

	A mechanobiological computer optimization framework to design scaffolds to enhance bone regeneration
	1 Introduction
	2 Materials and methods
	2.1 Finite element model
	2.2 Bone regeneration model
	2.3 Surrogate optimization set-up
	2.4 Analysis of the outcome

	3 Results
	3.1 Titanium scaffold optimization
	3.2 Soft scaffold optimization
	3.3 Computational efficiency

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


