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Héctor Raúl Olivares-Sánchez1☯, Carlos Manuel Rodrı́guez-Martı́nezID
2☯, Héctor
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Abstract

In financial time series there are time periods in which market indices values or assets prices

increase or decrease monotonically. We call those events “price runs”, “elementary uninter-

rupted trends” or just “uninterrupted trends”. In this paper we study the distribution of the

duration of uninterrupted trends for the daily indices DJIA, NASDAQ, IPC and Nikkei 225

during the period of time from 10/30/1978 to 08/07/2020 and we compare the simple geo-

metric statistical model with p ¼ 1

2
consistent with the EMH to the empirical data. By a fitting

procedure, it is found that the geometric distribution with parameter p ¼ 1

2
provides a good

model for uninterrupted trends of short and medium duration for the more mature markets;

however, longest duration events still need to be statistically characterized. Estimated val-

ues of the parameter p were also obtained and confirmed by calculating the mean value of p

fluctuations from empirical data. Additionally, the observed trend duration distributions for

the different studied markets are compared over time by means of the Anderson-Darling

(AD) test, to the expected geometric distribution with parameter p ¼ 1

2
and to a geometric

distribution with a free parameter p, making possible to assess and compare different mar-

ket geometric behavior for different dates as well as to measure the fraction of time runs

duration from studied markets are consistent with the geometric distribution with p ¼ 1

2
and

in parametric free way.

Introduction

Financial-market analysis studies the movements of price assets and financial indices. Extract-

ing a profit from these movements is an important activity in the financial industry; a large

variety of methods that intend to predict market behavior have been developed over the years,
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ranging from complex mathematical models to even pseudo-scientific techniques [1]. An

important approach is the statistical analysis of large sets of data, now partially available to

small investors, as well, due to the increasing availability of computer power and high quality

data sets. This analysis has benefited from the contributions not only from economists, but

also from many physicists and mathematicians who have applied methods and ideas of proba-

bility theory and statistical physics to finance. As an academic result of these efforts, a set of

universal, nontrivial statistical properties of financial historical data, persistent over time, has

been observed and called “stylized facts” [2, 3].

When looking at price values of an asset on a financial time series chart, it is common to

observe “price trends” in which most of the values are larger (or smaller) than the previous ones,

these trends can be seen as composed by uninterrupted elementary trends, with periods in

which the value increases or decreases monotonically. Trends are a popular subject within the

so-called technical analysis. According to the followers of technical analysis, the chartists, pat-

terns in the trend direction of financial data are believed to be indicators of changes in market

direction and indicative of future behavior of prices. The effectiveness of this approach to finan-

cial markets is disputed and put at a stake by what is known as the Efficient Market Hypothesis

(EMH), which indicates that current prices reflect available information. Elementary uninter-

rupted trends are the main subject of the present work, where we study empirically a basic ran-

dom process consistent with the EMH allowing us to quantify trend directions in financial time

series. From now on, we call these elementary uninterrupted trends only “trends”, or more spe-

cifically, “uptrends” or “downtrends”, depending of their direction. Empirical studies of finan-

cial and economic data are becoming increasingly relevant for the following reasons:

1) Currently dozens of stylized facts have been observed and more are still being discovered.

2) The study and prediction of stylized facts by means of methodologies of multi-agents mar-

ket models is an important area of research in Finance and Econophysics. 3) Stylized facts are

an import tool to validate proposed numerical and multi-agent market models; and 4) At pres-

ent, we still lack a general, microscopic theory or model to explain the origin of stylized facts,

we think simulation methodologies using agents could be useful in the construction of such a

general theory. Some interesting references on these issues are the following: [3–10].

Before going further, it is necessary to present some preliminary and basic definitions. In

subsections Definitions and The Efficient Market Hypothesis these definitions and other use-

ful information will be presented. In section An ‘Efficient Market’ toy model for the distribu-

tion of run durations, a model for the distribution of trends duration will be developed

consistently with the EMH. Section Data sample and methodology will explain how the data

were analyzed and section Data analysis will provide an interpretation of the analysis.

Definitions

Given a financial time series of asset prices or index values, S(1), S(2), . . ., S(n), let X(t) = log S
(t) be the logarithm of its terms, where t = 1, 2, . . ., n. A common quantity used to study price

variations in financial time series is the log-return defined at time t as

rðt;DtÞ � Xðt þ DtÞ � XðtÞ ð1Þ

for a given time sampling scale Δt. If the price variation is small, the log-return is a good

approximation of the return

Rðt;DtÞ ¼
Sðt þ DtÞ � SðtÞ

SðtÞ
: ð2Þ
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In this paper, we consider Δt equal to 1 day and we use the values of the indices correspond-

ing to the close value in the investigated markets. More details on the data set will be given in

section Data sample and methodology.

An elementary trend of duration k is defined as a subseries of k + 1 values within the given

time series S(t) in which every value is greater (for an uptrend) or smaller or equal (for a down-

trend) than the preceding one, an example of which is shown in Fig 1 for the prices of the

DJIA, in a time period between October 1978 and January 1979. The duration of an elemen-

tary downward/upward trend in daily data is the number of days before the price changes

direction, as the price varies, i.e. if the price does not change sign from one day to the other,

the corresponding trend continues. In this figure and focusing our attention on red points, we

see first an uninterrupted downtrend one day long, followed by a three days long uptrend,

then a downtrend with a duration of two days, a three days long uptrend, etc. By construction,

uptrends and downtrends appear alternately in the original time series S(t).
Here, we present a detailed statistical study of these short elementary trends using market

closing price values from four different indices over a time sampling scale of Δt = 1 day for the

period between October 30, 1978 and August 07, 2020.

The Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH), first stated by Eugene F. Fama in 1970 [11], claims

that the market quickly finds the rational price for a traded asset [12], as the current value

incorporates all possible information about the price in the future. The most important conse-

quence of this hypothesis was shown by P. Samuelson [13] and it is the fact that the best

Fig 1. Elementary trends on the time series for the prices of the DJIA during the period from Oct/30/1978 to Jan/09/

1979. The dashed line segments join the starting and ending points of each elementary trend.

https://doi.org/10.1371/journal.pone.0270492.g001
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forecast for the future price of an asset is its present price.

EðSðt þ DtÞjF tÞ ¼ SðtÞ; ð3Þ

where Eð�jF tÞ is the conditional expectation with respect to the filtration F t, namely with

respect to the known history up to time t. Indeed, it is easy to derive the above form of EMH

starting from a simple statistical no-arbitrage argument. Suppose we have two assets, a risky

one, with price S(t) and a risk-free one giving a constant interest rate rF. To avoid arbitrage,

one has to require that the expected return of the risky asset is equal to the risk-free interest

rate, that is

EðRðt;DtÞjF tÞ ¼ rF; ð4Þ

where R(t, Δt) was defined in Eq (2), assuming for simplicity that no dividends are paid in the

time interval Δt. The latter equation immediately yields, for non vanishing S(t),

EðSðt þ DtÞjF tÞ ¼ ð1þ rFÞSðtÞ; ð5Þ

which reduces to Eq (3) for rF = 0. Eqs (3) and (5), jointly with the integrability of the process S
(t), are known as martingale and sub-martingale conditions (remember that, under normal

conditions rF� 0, even if interest rates can be negative), respectively. From a technical point of

view, one has to further assume integrability of the price process (E½jSðtÞj� <1), together

with Eqs (3) or (5), and Eq (5) together with integrability means that the discounted price is a

martingale when rF > 0. Please notice that Eqs (3) and (5) are not uniquely specifying a ran-

dom process for S(t), but one can prove that, if they hold, then returns must be uncorrelated.

In financial data, square returns or absolute returns turn out to be correlated (with long-range

correlations), but this stylized fact does not falsify the EMH even if it is the main reason for the

popularity of ARCH/GARCH models in financial econometrics [14, 15].

The EMH invalidates the pretence of technical analysis to predict future prices or trends; in

fact, in Samuelson’s words, “there is no way of making an expected profit by extrapolating past

changes in the futures price, by chart or any esoteric devices of magic or mathematics” [13].

An ‘Efficient Market’ toy model for the distribution of run durations

Among all the possible statistical models that can describe price fluctuations, the geometric

random walk is the simplest one. A geometric random walk is just a product of independent

and identically distributed positive random variables. If the expected value of these variables is

1, then the geometric random walk is a martingale; otherwise, if the expected value is larger

than 1, the geometric random walk is a submartingale. However, the geometric random walk

hypothesis is neither necessary nor sufficient for an efficient market, as shown by many

authors, among whom Leroy [16], Lucas [17] and Lo and Mackinlay [1]. Again, to see this

point, it is enough to consider that Eq (5) allows for any (sub)-martingale model.

To study our trends, at each step of a time series of price or index values, there are three

possible outcomes: increase, constant and decrease, but the second one does not change prices

direction. Then we consider the two possible outcomes: either the time series increases or it

does not increase. In an efficient market, the expected future price only depends on informa-

tion about the current price, not on its previous history. Therefore, it should be impossible to

predict the expected direction of a future price change given the history of the price process. In

formula, from Eq (3) (after discounting for the risk-free rate), we have

EðSðt þ DtÞ � SðtÞjF tÞ ¼ 0; ð6Þ
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therefore, if we consider the sign of the price change Y(t, Δt) = sign(S(t + Δt) − S(t)), which

coincides with the sign of returns, we accordingly have

EðYðt;DtÞÞ ¼ 0: ð7Þ

If the price follows a geometric random walk, then the series of price-change signs can be

modeled as a Bernoulli process. This process could be biased to take the presence of a risk-free

interest rate into account. To be more specific, let us consider a log-normal geometric random

walk and let us use the assumption Δt = 1. Let S0 be the initial price. The price at time t will be

given by

SðtÞ ¼ S0

Yt

i¼1

Qi ð8Þ

where Qi are independent and identically distributed random variables following a log-normal

distribution with parameters μ and σ. These two parameters come from the corresponding

normal distribution for log-returns. As a direct consequence of the EMH in the form Eq (5),

we have

EðQÞ ¼ 1þ rF; ð9Þ

whilst for a log-normal distributed random variable the expected value is

EðQÞ ¼ emes2=2; ð10Þ

by combining these two equations the following dependence between the parameters is found:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlogð1þ rFÞ � mÞ

p
ð11Þ

which allows us to compare the parameters estimated from the distributions of the index price

returns, as the values of the two parameters μ and σ come from the corresponding normal dis-

tribution for log-returns of the price or index data. Further, from the cumulative distribution

function of a log-normal random variable

FQðuÞ ¼ PðQ � uÞ ¼
1

2
þ

1

2
erf

logðuÞ � m
ffiffiffiffiffiffiffi
2s2
p

� �

; ð12Þ

we find that the probability of a negative sign of the return is given by

q ¼ FQð1Þ ¼ PðQ � 1Þ ¼
1

2
þ

1

2
erf

s

2
ffiffiffi
2
p �

logð1þ rFÞffiffiffi
2
p

s

� �

: ð13Þ

For typical markets, from 1978 to 2020, the value of the daily risk-free rate of returns oscil-

lated in the range 0< rF� 2.5 × 10−4. Eq (11) can be tested using the values of rF and the esti-

mates of μ and σ) as can be seen in Fig 2. Using these values for rF, the probability of negative

returns is found to be q = 0.5±0.02, thus the Bernoulli process seems a reasonable first approxi-

mation for the probability of a change in sign for the return data.

Under this framework, it becomes natural to use the biased Bernoulli process as the null

hypothesis for the time series of sign changes of the log-returns [18]. It is known that the distri-

bution of the number x of failures needed to get one success for a Bernoulli process with suc-

cess probability p = 1 − q is the geometric distribution GðpÞ. The number of failures is then
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given by

PðxÞ ¼ PðN ¼ xÞ ¼ pð1 � pÞx ¼ pqx: ð14Þ

The duration of an elementary downward trend in daily data is the number of days before

the price increases, so the distribution of such trend duration should follow a geometric distri-

bution. An identical argument applies to the duration of an upward trend. Note that such

sequences of identical outcomes are also known as runs or clumps in the mathematical litera-

ture. Some historical references on this subject, are [19–21]. Where chapter X of the first refer-

ence was during many years the classical textbook reference to Theory of Runs; second

reference shows an interesting statistical test based on runs properties to demonstrate that two

sets of independent observations corresponding to two independent random variables have

the same distribution and finally, the third reference presents an intensive treatment of the the-

ory of runs still of current interest.

In the next section we describe the data used for testing the model just presented, as well as

a discussion of the goodness of fit test applied to compare the observed and expected distribu-

tions, namely the geometric distribution, of the duration of the trends of upwards/downwards

price, which coincide with the sign of the log-returns.

Data sample and methodology

In this work, daily close data values of four financial indices were analyzed, namely Dow Jones

Industrial Average (DJIA), NASDAQ Composite, the Mexican Índice de Precios y Cotiza-

ciones (IPC) and Nikkei 225, during the period between October 30 1978—August 07 2020.

All data sample for the mentioned time span is available as suplementary material, see S1 Data-

set at the end of this paper. Number of analyzed records and found uninterrupted uptrends

and downtrends, as defined in subsection Definitions are displayed in Table 1.

Fig 2. For a typical time series of Qi the parameter μ is close to zero oscillating on a small interval ranging from −0.004 to 0.05. The risk-free rate

of return rF oscillates between the interval [0, 0.061). For these values the probability of a negative return is q = 0.5±0.02. Subfig 2(a) is the probability of

negative return given the risk-free interest rate rf and mean σ. The σ parameter can be estimated from the return time series Qi, and rf is estimated from

a reference asset that depends on the market being studied. Intersection with q = 0.5 is also shown. Subfig 2(b) is the daily risk-free rate of returns rF for

the US market, developed markets and emerging markets. For the period ranging from 1978 to 2020 the daily risk-free rate oscillates in the interval [0,

0.061). Data was downloaded from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

https://doi.org/10.1371/journal.pone.0270492.g002
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Remember that by construction, for each data sample, the number of uninterrupted

uptrends and downtrends are the same if the analyzed financial time series has an even num-

ber of total trends and they differ in one unity if the total number of trends is odd respectively.

The composition of trends for each data sample is described in Tables 2–5. Additional and

brief comments on the different duration of constructed uninterrupted trend data samples

may be found in section Conclusions.

Finally, in Table 6, we show the descriptive statistics of data presented in the current sec-

tion. Values of first four central moments are displayed. It can be seen that the mean value of

the observable trends duration for all studied markets is close to two, it is bigger for less mature

markets and that uptrends mean duration is slightly bigger that downtrend mean duration for

all markets.

The Anderson-Darling goodness of fit test

In order to compare the observed and expected distributions of trend durations, the Ander-

son-Darling (AD) test described in references [22, 23] was used. The AD test belongs to a fam-

ily of goodness of fit tests called the Cramér-von Mises tests, which includes the Anderson-

Darling test, Watson’s test and the Cramér-von Mises test itself. The family was originally

developed to test continuous distributions, but a generalization for discrete distributions

appeared for the first time in an article by Choulakian et.al. [23]. The Anderson-Darling test

was found to be the most suitable for this purpose because it places more weight on the tails of

a distribution than other goodness of fit tests.

Table 2. Composition of uninterrupted trends observed in the DJIA data sample.

Duration (days) 2681 Uptrends 2681 Downtrends 5362 Total

1 1262 1429 2691

2 674 673 1347

3 354 316 670

4 210 147 357

5 90 70 160

6 45 28 73

7 23 10 33

8 11 7 18

9 5 0 5

10 3 0 3

11 2 0 2

12 1 1 2

13 1 0 1

https://doi.org/10.1371/journal.pone.0270492.t002

Table 1. Numbers of total observed records and respective uninterrupted trends for all data samples of financial indices studied. The data have been filtered, e.g. by

removing null records.

Market Records Trends Uptrends Downtrends

DJIA 10571 5362 2681 2681

Nasdaq 10534 4779 2389 2390

IPC 10432 4410 2205 2205

Nikkei 10300 5167 2583 2584

https://doi.org/10.1371/journal.pone.0270492.t001
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Table 3. Composition of uninterrupted trends observed in the Nasdaq data sample.

Duration (days) 2389 Uptrends 2390 Downtrends 4779 Total

1 977 1240 2217

2 532 586 1118

3 384 300 684

4 209 128 337

5 120 71 191

6 58 36 94

7 45 13 58

8 29 10 39

9 10 4 14

10 9 1 10

11 7 0 7

12 5 0 5

13 1 0 1

14 1 0 1

15 0 0 0

16 0 1 1

17 0 0 0

18 1 0 1

19 1 0 1

https://doi.org/10.1371/journal.pone.0270492.t003

Table 4. Composition of uninterrupted trends found in the IPC data sample.

Duration (days) 2205 Uptrends 2205 Downtrends 4410 Total

1 865 981 1846

2 537 559 1096

3 320 323 643

4 192 151 343

5 111 97 208

6 74 42 116

7 45 25 70

8 22 8 30

9 16 8 24

10 10 4 14

11 5 3 8

12 3 1 4

13 0 1 1

14 1 0 1

15 3 0 3

16 0 0 0

17 0 0 0

18 0 0 0

19 0 1 1

20 1 0 1

21 0 0 0

22 0 0 0

23 0 1 1

https://doi.org/10.1371/journal.pone.0270492.t004
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The principle behind this kind of tests is defining a statistic that serves to measure the dis-

tance between a theoretical distribution function F0(k) and the empirical (cumulative) distri-

bution function for n events, Fn(k). Every value of the statistic is associated with a p-value, that

can be interpreted as the probability of obtaining a value of the statistic at least as large as the

one obtained, given that the null hypothesis.

H0 : FnðkÞ ¼ F0 ð15Þ

is true. If the p-value is smaller than a previously defined threshold value α, the null hypothesis

is rejected.

Two separate tests were applied on our data:

1. A test of whether the observed data comes from a geometric distribution with p = q = 0.5.

Based on the model outlined in section An ‘Efficient Market’ toy model for the distribution

Table 5. Composition of uninterrupted trends observed in Nikkei index.

Duration (days) 2583 Uptrends 2584 Downtrends 5167 Total

1 1253 1337 2590

2 652 644 1296

3 328 321 649

4 165 164 329

5 81 64 145

6 41 27 68

7 31 17 48

8 15 4 19

9 9 5 14

10 3 0 3

11 2 0 2

12 1 1 2

13 0 0 0

14 0 0 0

15 1 0 1

16 1 0 1

https://doi.org/10.1371/journal.pone.0270492.t005

Table 6. Descriptive statistics of data presented in Tables 2–5.

Market Mean RMS Skewness Kurtosis

DJIA overall 1.9713 ± 0.0185 1.3511 ± 0.0130 2.0215 ± 0.0334 8.9454 ± 0.9998

DJIA uptrends 2.0595 ± 0.0275 1.4298 ± 0.0194 1.9844 ± 0.0471 8.7538 ± 0.9996

DJIA downtrends 1.8375 ± 0.0229 1.1893 ±0.0162 1.8010 ± 0.0472 6.7113 ± 0.9996

Nasdaq Overall 2.2040 ± 0.0243 1.6825 ± 0.0172 2.3962 ± 0.0354 12.5405 ±0.9998

Nasdaq uptrends 2.4519 ± 0.0385 1.8884 ± 0.0273 2.1989 ±0.0500 10.9085 ± 0.9996

Nasdaq downtrends 1.9233 ± 0.0273 1.3378 ± 0.0193 2.2818 ± 0.0499 12.0090 ±0.9996

IPC overall 2.3653 ± 0.0276 1.8307 ± 0.0195 2.5248 ± 0.0369 14.8844 ± 0.9998

IPC uptrend 2.4899 ±0.0407 1.9202 ± 0.0288 2.0464± 0.0519 8.8614 ± 0.9996

IPC downtrends 2.1800 ± 0.0340 1.5995 ± 0.0240 2.4244 ± 0.0520 13.7515 ± 0.9996

Nikkei overall 1.9932 ± 0.0198 1.4214 ± 0.0140 2.2929 ±0.0341 11.3466 ± 0.9998

Nikkei uptrends 2.0735 ± 0.0304 1.5434± 0.0215 2.4070 ± 0.0481 12.0543 ± 0.9996

Nikkei downtrends 1.9094 ±0.0251 1.2774 ± 0.0178 1.9697 ±0.0482 8.4111 ±0.9996

https://doi.org/10.1371/journal.pone.0270492.t006
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of run durations and empirical evidence on data, we interpret a rejection of this null

hypothesis as evidence that the market is moving up or down in the investigated period.

2. A test of whether the observed data is drawn from a distribution belonging to a parametric

family GðpÞ. This tell us whether the up and down ticks can be modeled as a Bernoulli

process.

These two tests will allow us to assess the validity of the Bernoulli hypothesis.

For a more complete discussion on the Anderson-Darling test for discrete data, including

some comments about how it was applied to the geometric distribution case, see S1 Appendix.

Data analysis

In order to motivate our analysis, in Fig 3, for the four markets studied in this paper, we show

the ratio of the upward to total price changes in daily data plotted against time for the years

1978—2020. This ratio is calculated over an overlapping time window of 504 trading days

shifted every 5 days. It can be seen that variations of this ratio fluctuate closer to the value of 1

2

for DJIA and Nikkei, whereas for Nasdaq and IPC they are greater than those expected for the

same time windows in a Bernoulli process with parameter p = 1/2.

Hereunder, we present different detailed studies on the four markets to see whether conse-

cutive price increments/decrements with the same sign do follow a geometric distribution.

Firstly, after estimating the distributions of the duration of uninterrupted uptrends and down-

trends for all data, we separately and independently fit a geometric distribution to each one of

these distributions, where the observed sum of the same duration uptrends and downtrends is

the only constraint. For this reason, although we denote the estimated parameter p and q for

uptrend and downtrend durations respectively, this is only nominal, since we fit those

Fig 3. Ratio of upward to total price changes in daily data, plotted against time for the interval from 10–30-1978

to 08–07-2020, calculated over a time window of 504 trading days.

https://doi.org/10.1371/journal.pone.0270492.g003
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parameters separately and independently without constricting the geometric fits to comply the

constraint p + q = 1, i.e. we consider and analyze the sequences of uninterrupted uptrends and

downtrends durations separately. Due to this reason, we are sometimes prone in this paper to

refer only to the parameter p in our discussion. More on this point can be found at the end of

the current section.

Analyzed empirical data can be consulted in Tables 2–5, and their corresponding geometric

fits are displayed in Fig 4 for all probability distributions of uptrend and downtrend durations

corresponding to the four different indices studied here. A Maximum Likelihood Fit (MLF)

was applied. The results of these fits can be consulted in Table 7. In Fig 4, black solid small cir-

cles represent observations, the geometric fit corresponds to the red solid line and, as a visual

guide, blue dashed lines indicate a geometric distribution with parameter p = q = 0.5.

In order to obtain a good fit, with appropriate and correct p and χ2 values, the fitting proce-

dure was applied on the plots region where no null event gaps were observed in the trends

duration distributions, i.e. the region where trend duration showed zero events for first time

were excluded from the fit. Cut off applied are also shown in all corresponding plots of Fig 4

and are indicated by a dotted, vertical line. The only distribution that does not present any

empty value in trend duration is the one corresponding to the DJIA uptrends and therefore it

was fitted in the whole range of observed values.

From Fig 4 and Table 7, it can be seen that, although all discussed markets display some

extreme trends durations deviating in different grades from the geometric model, for the

whole of our data sample, distributions of increasing and decreasing trends durations for DJIA

and Nikkei can be fitted reasonably by a geometric distribution with p ¼ 1

2
, while the corre-

sponding empirical runs distributions of Nasdaq and IPC are also reasonably fitted by a geo-

metric distribution with parameters not necessarily equal to 1

2
. More on this facts will be

discussed below and in next sections. From above fits, we can rank markets in order of

decreasing distance from the p = 0.5 model, with Nikkei being the closest, followed by the

DJIA then the Nasdaq, and the IPC being the most distant during the analyzed time period.

Finally, although for small and medium size trends, especially for the more mature markets

DJIA and Nikkei, the geometric model with p ¼ 1

2
is a good approximation, it is not possible to

conclude that the conditions p ¼ q ¼ 1

2
and p + q = 1 are fulfilled in general for all market and

every run duration. Classical analyses [24] reported periods where for runs of the monthly

index DJIA, p = 0.57 and q = 0.43 (1897–1929) and in contrast the S&P monthly composite

index is not even consistent with the equal probability condition p ¼ q ¼ 1

2
and even with the

probability conservation condition p + q = 1, for example for the period January 1871 to

December 1917, for this index p = 0.67 and q = 0.50 and for the time span January 1918 to

March 1956, p = 0.6 and q = 0.60. These results suggest that for these cases and the financial

indices examined in [24], we are not dealing with a random process with p ¼ q ¼ 1

2
. In the

classical reference [24], p and q values are not estimated by a fit procedure as the performed

here: instead they calculate the relative frequencies of indices up and down events to different

time scales.

More deviations observed empirically of the hypothesis p ¼ q ¼ 1

2
are reported in [25–27].

For an interesting and more modern analysis on runs for high frequency financial data, see

[28].

Time variation of p and q and other estimates of these parameters

In order to gain a better insight about how our empirical trend duration distributions dynami-

cally differ from the geometric theoretical distribution, the evolution in time of p and q values

are plotted in the upper and lower left panels of Fig 5 respectively. These parameters are
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Fig 4. Subfigures 4(a), 4(c), 4(e) and 4(g) present the uptrends duration distributions and subfigures 4(b), 4(d), 4

(f) and 4(h) correspond to downtrends duration distributions. The solid lines are the fitted geometric distributions

while the dotted lines are the expected geometric distributions (p = 0.5). Parameters p and q are shown on each

subfigure. Fit results are displayed in Table 7. Fitted regions are indicated in each plot by vertical dotted lines.

https://doi.org/10.1371/journal.pone.0270492.g004
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independently calculated over a time window of 252 trading days shifted every ten days, sepa-

rately over the sequences of observed uninterrupted uptrends and downtrends durations. We

see that their corresponding values tend to oscillate around 1

2
and that markets with p and q val-

ues closer to 1

2
are DJIA and Nikkei. Empirical distributions of the calculated values of p and q

for all markets are displayed in the right, upper and lower panels of same Fig 5 respectively.

The corresponding mean and standard deviation of p and q values are displayed in Table 8,

Table 7. Fitted p and q parameters of the geometric model. DJIA and Nikkei empirical trend durations distribution are well fitted by the geometric model. Nasdaq and

IPC are not. NDF means “number of degrees of freedom”. Fits were performed on the data listed in Tables 2–5.

Market Fitted region uptrends (days) p χ2/NDF uptrends Fitted region downtrends (days) q χ2/NDF downtrends

DJIA � 13 0.4870±0.0068 8.5436/12 � 8 0.5409±0.0071 2.6636/7

Nasdaq �14 0.4160±0.0064 15.9685/13 �10 0.5180±0.0073 3.8665/9

IPC �12 0.40006±0.0066 2.0455/11 �13 0.4583±0.0071 8.5935/12

Nikkei �12 0.4886±0.0068 6.6170/11 �9 0.5248±0.0071 7.0781/8

https://doi.org/10.1371/journal.pone.0270492.t007

Fig 5. 5(a): p variation over time calculated for all data samples with a time window of 252 days shifted each 10 trading days. 5(b): Empirical

distributions of p from left subfigure. 5(c): q evolution in time for all analyzed data samples. 5(d): Empirical distributions of q from left subfigure.

https://doi.org/10.1371/journal.pone.0270492.g005
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where other size rolling time windows were also used in their calculation. It can be verified

that listed values are all consistent with those estimated by the geometric fit procedure shown

in Fig 4 with estimated fit parameters given in Table 7.

Here it is important to mention the estimate of p and q shown in Table 8, at this moment

only serves to corroborate the values obtained by the geometric fitting procedure. We mention

this, because notwithstanding the independence of both measurements and the agreement

between values displayed in both Tables 7 and 8, entries of distributions shown in the two

right histograms in Fig 5 are not all really statistically independent, since they were calculated

by using a rolling time window of 252 days as described above. In addition to this, p and q val-

ues show a certain degree of non-stationarity and finally, these results can be dependent on the

choice of the time-window size. Even considering these three facts, the agreement between the

estimates obtained by these two different procedures over different time frames is remarkable.

Taking in consideration these facts and in order to confirm the quality of our estimation, we

show in Table 9 the results obtained, this time using no overlapping time windows of again

200, 252 and 300 days.

Table 8. Mean and standard deviation values of p and q distributions shown in Fig 5, and generated with a rolling, overlapping time window of 252 days. Same values

generated for two additional overlapping time frames of 200 and 300 days are also displayed.

Market Time window (overlapping) <p> σp <q> σq

DJIA 200 0.4877±0.0017 0.0266±0.0012 0.5437±0.0017 0.0276±0.0012

252 0.4881±0.0015 0.0236±0.0011 0.5440±0.0016 0.0257±0.0012

300 0.4881±0.0014 0.0220±0.0010 0.5445±0.0016 0.0240±0.0011

Nasdaq 200 0.4210±0.0038 0.0561±0.0027 0.5198±0.0030 0.0448±0.0021

252 0.4208±0.0037 0.0543±0.0026 0.5187±0.0029 0.0427±0.0021

300 0.4207±0.0037 0.0534±0.0026 0.5177±0.0028 0.0406±0.0020

IPC 200 0.4130±0.0044 0.0629±0.0031 0.4732±0.0036 0.0506±0.0025

252 0.4129±0.0044 0.0616±0.0031 0.4741±0.0034 0.0472±0.0024

300 0.4128±0.0043 0.0600±0.0030 0.4749±0.0032 0.0450±0.0023

Nikkei 200 0.4892±0.0031 0.0486±0.0022 0.5235±0.0019 0.0295±0.0014

252 0.4895±0.0031 0.0473±0.0022 0.5233±0.0017 0.0264±0.0012

300 0.4898±0.0031 0.0463±0.0022 0.5234±0.0016 0.0243±0.0011

https://doi.org/10.1371/journal.pone.0270492.t008

Table 9. Mean values and standard deviation of p and q distributions, generated this time by using no overlapping time windows, of of 200, 252 and 300 days.

Obtained values are consistent with those shown in previous Table 8.

Market Time window (no overlapping) <p> σp <q> σq

DJIA 200 0.4874±0.0082 0.0297±0.0061 0.5436±0.0082 0.0295±0.0060

252 0.4906±0.0076 0.0240±0.0057 0.5438±0.0074 0.0234±0.0055

300 0.4867±0.0067 0.0231±0.0058 0.5427±0.0091 0.0257±0.0069

Nasdaq 200 0.4161±0.0172 0.0596±0.0127 0.5158±0.0122 0.0404±0.0090

252 0.4148±0.0205 0.0616±0.0154 0.5192±0.0152 0.0457±0.0114

300 0.4155±0.0207 0.0584±0.0156 0.5101±0.0133 0.0353±0.0102

IPC 200 0.4124±0.0200 0.0663±0.0148 0.4661±0.0179 0.0594±0.0133

252 0.4047±0.0228 0.0646±0.0173 0.4665±0.0204 0.0577±0.0154

300 0.4080±0.0252 0.0667±0.0193 0.4691±0.0237 0.0628±0.0181

Nikkei 200 0.4875±0.0145 0.0502±0.0107 0.5240±0.0091 0.0315±0.0091

252 0.4870±0.0160 0.0507±0.0120 0.5243±0.0101 0.0320±0.0075

300 0.4874±0.0178 0.0504±0.0135 0.5234±0.0095 0.0269±0.0072

https://doi.org/10.1371/journal.pone.0270492.t009
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To end this subsection, we observe that the distance from the p = 0.5 model for the different

studied markets established at the end of section Data analysis by the geometric fitting proce-

dure is again confirmed by the values of p and q showed in Table 9.

Mean value and variance of p + q distribution

Even if we calculate p and q independently and we use this notation in nominal way, in this

subsection and for completeness reasons, we carefully study the probability conservation that a

geometric stochastic process must to meet, i.e. p + q = 1; in order to see what is happening, we

show in Fig 6(a), the behavior of p + q as a function of time, calculated as explained before, by

using a 252 trading days rolling time frame shifted each 10 days. It can be seen that p + q for

DJIA and Nikkei oscillates around 1, whereas IPC and Nasdaq get closer on time to this value

and, then, after year 2000, they follow the same behavior than DJIA and Nikkei. The upper

right panel of same figure shows p + q empirical distribution for all studied markets. Non sta-

tionarity effects are observed in all of them in different degree, however mean value of p + q
are close to 1 in all those distributions. Cutting off all data previous to year 2000 and repeating

Fig 6. 6(a) is p + q vs time; 6(b) is p + q distribution for studied data; 6(c) is p + q vs time after 2000 year; and, 6(d) is p + q distribution after year

2000.

https://doi.org/10.1371/journal.pone.0270492.g006
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this analysis, it is observed that indeed p + q for all markets fluctuate closer and around the

value of 1, and that even runs of IPC and Nasdaq markets turn closer to geometric as time

passes. Distributions of these fluctuations are plotted in Fig 6(d). Corresponding mean and

standard deviation of p + q distributions for all analyzed and restricted after year 1999 data,

can be seen in Table 10, where also we have calculated these mean values for 200 and 300 trad-

ing days rolling time windows.

In the same way we proceeded in previous subsection Time variation of p and q and other

estimates of these parameters, we calculate mean values and RMS of p + q for no overlapping

time frames of 200, 252 and 300 days. Obtained values are shown in below Table 11, also calcu-

lated for all time period of the recorded data sample and for the span of time after year 2000.

For the full period of all analyzed data and from the measurements shown in Tables 10 and

11, we can rank studied markets in the following order of closeness to the geometric distribu-

tion: 1) DJIA, 2) Nikkei, 3) Nasdaq and lastly 4) IPC.

Table 11. Again, mean and standard deviation of p + q distributions, this time calculated by using 200, 252 and 300 no overlapping time frames. Displayed values are

consistent with those of Table 10.

Market Time window (no overlapping) <p + q> σ(p + q) <p + q> after 2000 σ(p + q) after 2000

DJIA 200 1.0394±0.0094 0.0678±0.0067 1.0597±0.0147 0.0750±0.0106

252 1.0355±0.0094 0.0603±0.0067 1.0574±0.0140 0.0451±0.0014

300 1.0369±0.0097 0.0573±0.0069 1.0571±0.0140 0.0596±0.0102

Nasdaq 200 0.9386±0.0150 0.1081±0.0150 1.0249±0.0107 0.0546±0.0077

252 0.9394±0.0170 0.1087±0.0122 1.0238±0.0139 0.0424±0.0013

300 0.9366±0.0170 0.1004±0.0121 1.0216±0.0113 0.0479±0.0082

IPC 200 0.8806±0.0163 0.1175±0.0116 0.9599±0.0143 0.0727±0.0103

252 0.8773±0.0184 0.1179±0.0131 0.9604±0.0129 0.0580±0.0129

300 0.8743±0.0188 0.1095±0.0134 0.9573±0.0120 0.0496±0.0088

Nikkei 200 1.0164±0.0108 0.0771±0.0077 1.0352±0.0120 0.0601±0.0087

252 1.0182±0.0121 0.0769±0.0087 1.0404±0.0108 0.0483±0.0078

300 1.0149±0.0129 0.0751±0.0092 1.0351±0.0129 0.0534±0.0094

https://doi.org/10.1371/journal.pone.0270492.t011

Table 10. Mean and standard deviation of p + q distributions, where rolling, overlapping time frames of 200, 252 and 300 trading days were set up and shifted each

10 days. Observed p + q mean values are very close to the value of 1 for Nikkei and DJIA and despite non stationarity, are also close to 1 for Nasdaq and IPC markets.

Restricting our analysis to dates thereafter year 1999, clearly p + q values are even nearest to the value of 1 for all markets.

Market Time window (overlapping) <p + q> σ(p + q) <p + q> after 2000 σ(p + q) after 2000

DJIA 200 1.0394±0.0020 0.0660±0.0014 1.0600±0.0038 0.0705±0.0022

252 1.0321±0.0018 0.0435±0.0010 1.0513±0.0020 0.0451±0.0014

300 1.0357±0.0017 0.0055±0.0013 1.0559±0.0030 0.0584±0.0018

Nasdaq 200 0.9425±0.0034 0.1080±0.0024 1.0267±0.0027 0.0612±0.0019

252 0.9340±0.0030 0.1046±0.0023 1.0180±0.0019 0.0424±0.0013

300 0.9378±0.0032 0.1023±0.0023 1.0223±0.0023 0.0521±0.0016

IPC 200 0.8830±0.0035 0.1133±0.0025 0.9621±0.0028 0.0633±0.0020

252 0.8750±0.0033 0.1092±0.0024 0.9680±0.0019 0.0425±0.0013

300 0.8792±0.0033 0.1065±0.0024 0.9592±0.0023 0.0532±0.0023

Nikkei 200 1.0199±0.0025 0.0790±0.0018 1.0390±0.0024 0.0556±0.0017

252 1.0124±0.0020 0.0620±0.0014 1.0306±0.0016 0.0350±0.0011

300 1.0163±0.0022 0.0711±0.0016 1.0359±0.0020 0.0456±0.0014

https://doi.org/10.1371/journal.pone.0270492.t010
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Estimation of <p> and σp. We have estimated p by applying the usual, one parameter fit-

ting procedure illustrated in section Data analysis. We have seen that the estimate value of p
for the different data samples, are compatible with the corresponding values of<p> obtained

by averaging data for each movable overlapping and not overlapping time windows with sizes

given in Tables 8 and 9. The above and the following is, of course, also valid for the case of q.

The process of finding the maximum likelihood estimate of the parameter p in a geometric

distribution as given by Eq (14):

PðxÞ ¼ ð1 � pÞxp; x ¼ 0; 1; . . . ð16Þ

is a well known methodology which consists of finding the value p̂, of p, which maximizes the

likelihood function. For the case of the geometric distribution, given a random sample x1, . . .,

xn, we obtain:

p̂ ¼
1

1þ �x
ð17Þ

where �x denotes the sample mean.

From the asymptotic properties of the MLE estimators, see [29, 30], p̂ has approximately a

normal distribution with mean <p> and variance n−1 p2(1 − p). Formulas to calculating the

error of the mean and variance are well known, see [31], although their estimation is usually

automatically made in the background by the scientific software used to perform the data anal-

ysis, in our case Mathematica.

To conclude this subsection, we must point out that the measurements show that p + q is

slightly greater than 1 for DJIA and Nikkei, are not contradictory with empirical experience,

since by studying runs for different time scales, a slight excess of uptrends over downtrends

has been observed in financial data at least since the 1930s [24–26]. Remember also that our

two measurements of p and q were performed in an independent way and that the early finan-

cial literature also evidences that, at least for some time spans, the evolution of runs is not well

represented by a random walk with equal probabilities of going up and down. We believe

these empirical facts are well known in financial econometrics, but may not be well-known by

physicists.

In this paper, we do not only confirm these experimental facts and show time evolution of

p, q and p + q, but in next section, we will estimate the fraction of time runs of markets follow

a geometric behavior with p ¼ 1

2
and with any p.

Anderson-Darling test in the case p = 0.5

To study dynamically how the theoretical statistical model differs from the empirical data, we

calculate the Anderson-Darling statistics for the corresponding trends durations of the

observed empirical distribution and the theoretical, geometric distribution with parameter

p = 0.5. Fig 7 display the obtained p-values of the Anderson-Darling statistic, A2
n for different

time periods (not to be confused with the p parameter of the geometric distribution). Remem-

ber that in the case we are interested, a p-value is the probability of obtaining a value of A2
n at

least as big as the one that was really obtained, given that the probability distribution is actually

geometric.

Analysis presented in Fig 7(a) shows that for the DJIA, the greatest deviations from the geo-

metric distribution with parameter p ¼ 1

2
, occurred between the years 2002–2011. Fig 7(b) for

Nasdaq, it is observed that as time goes by, p-values of the Anderson-Darling show that empir-

ical data tends to agree better with the geometric distribution Gð0:5Þ, especially after year

2000. Fig 7(c) shows that, similar to NASDAQ, the IPC index agreement between data and the
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geometric distribution increases with time. Finally, Fig 7(d) shows that for the Nikkei case, p-

values of the Anderson-Darling show a good agreement between the Geometric model with

p ¼ 1

2
and the observed trend duration distribution.

As an auxiliary analysis, Fig 8 shows the dates when the events from Fig 7 have a p-value

below the α = 0.05 significance level, or in other words, the dates for which the null hypothesis

can be rejected, with a significance level α = 0.05 and the complementary dates for which the

geometric hypothesis with p ¼ q ¼ 1

2
cannot be rejected.

The above observations are compatible with the plot shown in Fig 5 presented in subsection

Time variation of p and q and other estimates of these parameters, where it is shown that the

greatest, however diminishing deviations from the geometric distribution with p = 0.5

occurred between the years 1980–2000, especially for Nasdaq and IPC and to a lesser extent

for DJIA and Nikkei. In next subsection Anderson-Darling parametric test for the geometric

distribution, we shall show that, in all cases, still the geometric model upholds, by allowing the

parameter p to vary freely.

Fig 7. Subfigures 7(a) to 7(d) all show the p-values of the Anderson-Darling statistic evolution on time for DJIA, Nasdaq, IPC and Nikkei indices,

respectively.

https://doi.org/10.1371/journal.pone.0270492.g007
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Anderson-Darling parametric test for the geometric distribution

Let us explore the possibility that trend durations follow a geometric distribution with any

parameter p 2 (0, 1). Results of this parametric test are displayed in Fig 9. It can be observed

that, for all studied markets, the assumption of a Bernoulli process for price directions holds

reasonably well for most of the time, except for sporadic deviations that are usually related to

extreme market movements such as in the case of a financial crisis. Again Fig 10 is an auxiliary

figure that shows the dates when events from Fig 9 have a p-value below the α = 0.05 signifi-

cance level, i.e. the dates when studied markets do not follow the geometric model at the men-

tioned significance level. As it may be seen, for an important fraction of time, markets do seem

to follow the geometrical model with some parameter p.

An application of previous results will be discussed in the next section A simple application:

Assessing the fraction of time markets runs follow a geometric distribution.

A simple application: Assessing the fraction of time markets runs follow a

geometric distribution

Continuing the discussion at the end of section Data analysis, we can also use the results pre-

sented there to assess the percentage of time that the market follows the geometric model with

p ¼ 1

2
and in a p free parametric way. In order to do this we propose the following

methodology:

1. Calculate a time series of p-values from the sample of trends durations using the geometric

process with p = 0.5 as the null hypothesis.

2. Count the number of points above the significance level value α = 0.05.

3. Divide it by the length of the time series to obtain the percentage of time the market has

behaved as a market following the geometric process.

Repeat it for the case non parametric, i.e. the same null hypothesis but now with any p.

Following above criterion, we rank studied markets as follows: closest for a bigger time frac-

tion to the geometric model with p ¼ 1

2
was the DJIA, followed by Nikkei 225, then the NAS-

DAQ Composite and the end, the IPC. Here, under this criterion more mature markets runs

follow closer the geometric model with p ¼ 1

2
for a longer, but this time Nikkei 225 and DJIA

exchange rank position. Results obtained by means of this methodology, for the geometric

case with p ¼ 1

2
as well as for a parametric free way, may be consulted in Table 12.

Fig 8. Colored points represent the dates where events from Fig 7, have a p-value below the α = 0.05 significance level, i.e. dates where the

statistical behavior of the durations of the uninterrupted trends are more distant from a geometric with parameter p = 0.5. For easy reading

colored points are enlarged.

https://doi.org/10.1371/journal.pone.0270492.g008
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Conclusions

The study of runs used to be an important research area in financial econometrics [24–27].

Some interesting more modern empirical studies have been performed on daily and high fre-

quency data [28, 32, 33]; runs have been applied for example to assess market randomness [34]

and even flash crashes in high frequency data [32]. In this paper, the probability distributions

of the duration of elementary trends or price runs were studied for the market indices Dow

Jones Industrial Average (DJIA), NASDAQ Composite, the Mexican Índice de Precios y Coti-

zaciones (IPC) and for the Japanese Nikkei 225. According to the discussion of section An

‘Efficient Market’ toy model for the distribution of run durations, these distributions are

expected to be geometric, with parameter p = 0.5 and memoryless. Indeed the geometric distri-

bution with p ¼ 1

2
, provides a good model for trends of small and medium size, lets say until 10

or 12 days, for DJIA and Nikkei, and with p non necessarily 1

2
for less mature markets. On the

other side, we show that trend duration distributions in all markets display outliers, however

Fig 9. p-values of the parametric family Anderson-Darling statistic for the studied markets. 9(a) is DJIA, 9(b) is Nasdaq, 9(c) is IPC and 9(d) is

Nikkei.

https://doi.org/10.1371/journal.pone.0270492.g009
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more statistics is needed to study these extreme events that do not seem to follow the geomet-

ric model.

Additionally, by selecting overlapping and non overlapping time frames of 200, 252 and

300 trading days, we display p and q behavior over time, and the distribution of these parame-

ters, allowing us to estimate their mean and RMS values and compare the former with the cor-

responding values obtained by a fitting procedure. Agreement obtained is remarkably good.

We have shown that for all markets p and q values are evolving towards the value of 1

2
. The p +

q evolution over time is also displayed and by using same methodology we observe that <p +

q> is approaching over time to the value of one for all markets. Finally, markets with uninter-

rupted trends durations closer to follow a geometric behavior with p ¼ 1

2
may be ranked in the

following order: Nikkei, DJIA, Nasdaq and IPC, meaning more mature market are closer to

the geometric behavior with p ¼ 1

2
.

Anderson-Darling test has been used to quantify the likelihood that a series of trends dura-

tions were generated by a process compatible with the geometric model with p ¼ 1

2
; we also

employed it to assess for how long, trends durations follow the geometric distribution with

p ¼ 1

2
, as well as for any other value of the parameter p. Corresponding dates during which

markets runs do not follow the geometric behavior for p ¼ 1

2
, and in a parametric free way, are

displayed respectively in auxiliary Figs 8 and 10. Numerical time fractions displayed in

Table 12 correspond to the fraction of the time markets follow the geometric distribution with

p ¼ 1

2
and in parametric free way. First column of this table shows that for the significance

level of 5%, price runs distribution of DJIA follows a geometric distribution with p ¼ 1

2
the

84% of the time, Nikkei 81%, Nasdaq 47% and IPC 37% of the time. Ranking obtained by this

criterion, although exchange DJIA and Nikkei 225 positions, once again classifies more mature

markets at the top of the list. Second column of same Table 12 shows that the distributions of

all studied markets trends duration are close to a geometric distribution with a parameter p

Fig 10. Colored points, show dates from the parametric test where events observed in Fig 9 have a p-value below the α = 0.05 and then geometric

model for any p can not be applied to describe runs size distribution for the different analyzed markets at that significance level. Again, for easy

reading colored points are enlarged.

https://doi.org/10.1371/journal.pone.0270492.g010

Table 12. Fraction of time, the overall of the studied data trends durations follow a geometric distribution with

parameter p = 0.5, and with any p, both cases for a significance level of 5%.

Market/Case Time fraction p = 0.5 Time fraction Non Parametric

DJIA 0.84 0.9673

Nasdaq 0.47 0.9626

IPC 0.37 0.9683

Nikkei 0.81 0.9419

https://doi.org/10.1371/journal.pone.0270492.t012
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not necessarily equal to 1

2
a high fraction of all time. This fact can be supported by the quality of

fits and respective fit parameters non equal to 1

2
displayed in Fig 4 and Table 7, showing that

with the exception of the few extreme values, geometric model fits well Nasdaq and IPC runs

duration, with parameter p (and q) non necessarily close to 1

2
.

Obtained results also show us that for more mature markets runs distribution are closer for

a longer time spans to the geometric distribution with p ¼ 1

2
, and that less mature markets runs

seems to evolve on time to this same distribution. This empirical result reminds us the fact that

worldwide markets increase their efficiency with time [35–38].

In section An ‘Efficient Market’ toy model for the distribution of run durations, we state

that the geometric model with p ¼ 1

2
applied to price runs it may consistent with the EMH.

However, if the empirical analysis falsifies the process, this does not mean that the EMH is fal-

sified. In our opinion, more and deeper study should be necessary to clarify these facts, given

that market efficiency refers to returns and not to price runs.

Finally, besides the above mentioned problem of making explicit the relation between mar-

ket efficiency and the geometric behaviour of price runs, we have some additional remarks

possibly leading to future work: in this paper, we analyzed regularly sampled data i.e, daily

close price data, and although the geometric model seems well suited to model short and

medium price trends durations, this observable is really a continuous random variable and

conceivably the geometric model might not be suitable to describe non regularly sampled data

[33], as for example in tick-by-tick data. The second remark has to do with the extreme values

observed in the different trends durations distributions that occur with a higher probability

than expected from the geometric model, as can be observed for values of trend durations

above cut-off values signaled in the different panels of Fig 4 and recorded in the second and

fifth columns of Table 7. In the present analysis, we observe at most two of these extreme

events in the different panels of Fig 4, which is insufficient for saying something interesting on

the distribution of these outliers. Also it will be interesting to study the relation of these runs

extreme events with extreme returns events, particularly financial crashes; for example by

using smaller time windows in our analyses. Third, although by their construction, in any data

sample the number of downtrends and uptrends must be the same or their difference at most

of one unit; from the composition of trends shown in Tables 2–5, it can be seem that for very

short duration trends, number of downtrends predominate and for medium and long duration

trends there are more uptrends than downtrends, this asymmetry and its relation with corre-

sponding returns deserves a more detailed study.

In our opinion, and even if data analyses such as the one presented here have a long history,

we have managed to find new results of possible interest to the econophysicist and financial

communities. Specifically, apart from independent and consistently estimating the parameters

p and q, by two different methods, we show their time evolution as well as the time evolution

of their addition p + q. Moreover, we not only show that the runs distribution of the markets

studied is compatible with the geometric distribution with the estimated parameters, but we

also estimate when and the fraction of the time during which the markets follow this behavior,

parametrically for p = q = 0.5 and non-parametrically. The detection of when and for how long

the distribution of the durations of market price runs have a geometric distribution is in our

opinion our most important result and achievement of those presented here, from both, the

academic and practical points of view; it is really not obvious that the duration of ascending

and descending runs independently follow geometric distributions with for example different

parameter values respectively.

From an academic point of view, it might be interesting to see what happens to the effi-

ciency of markets when p and q differ significantly: would they adapt their price variations to
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compensate for the difference in probabilities of seeing upward or downward uninterrupted

trends? Answering this question would be material for another article. On the other hand,

obviously these results could easily be incorporated into various trading systems. In addition,

another simple application of our methodology, was ranking the different analyzed markets

according to the larger fraction of time they follow the geometric behavior for the parametric

case. Rank that, on the other hand, seems to coincide with the level of efficiency of the markets

studied, issue that, since EMH is given in terms of market prices variations and not in terms of

runs, also deserves further study.

Although discussed at last paragraph of section Introduction, we conclude this paper

remarking that empirical results as those reported herein are also important and of interest

because any adequate agents based market model or of any other kind must reproduce them.

See references [4, 9].
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Formal analysis: Héctor Francisco Coronel-Brizio, Enrico Scalas, Thomas Henry Seligman.

Funding acquisition: Thomas Henry Seligman, Alejandro Raúl Hernández-Montoya.
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PLOS ONE An empirical data analysis of “price runs” in daily financial indices

PLOS ONE | https://doi.org/10.1371/journal.pone.0270492 July 7, 2022 23 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270492.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270492.s002
https://doi.org/10.1371/journal.pone.0270492


References
1. Lo AW, MacKinlay AC. A Non-random Walk Down Wall Street. Princeton paperbacks. Princeton Uni-

versity Press; 1999. Available from: https://books.google.com.mx/books?id=fGmfQgAACAAJ.

2. Cont R. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance.

2001; 1:223–236. https://doi.org/10.1080/713665670

3. Pagan A. The econometrics of financial markets. Journal of Empirical Finance. 1996; 3(1):15–102.

https://doi.org/10.1016/0927-5398(95)00020-8

4. Ponta L, Trinh M, Raberto M, Scalas E, Cincotti S. Modeling non-stationarities in high-frequency finan-

cial time series. Physica A. 2019; 521(1):173–196. https://doi.org/10.1016/j.physa.2019.01.069

5. Maldarella D, Pareschi L. Kinetic models for socio-economic dynamics of speculative markets. Physica

A. 2012; 391(1):715–730. https://doi.org/10.1016/j.physa.2011.08.013

6. Ehrentreich N. Agent-based modeling: The Santa Fe Institute artificial stock market model revisited.

Volume 602. ISBN: 978-3-540-73879-4, Springer Science & Business Media (2007).

7. Lux T. Stochastic behavioral asset pricing models and the stylized facts. Technical report. 2008, Eco-

nomics working paper, Department of Economics. Christian-Albrechts-Universitat Kiel.

8. Farmer JD. The economy needs agent-based modelling. Nature. 2009; 460(7256):685–686. https://doi.

org/10.1038/460685a PMID: 19661896

9. Meyer M. How to Use and Derive Stylized Facts for Validating Simulation Models. In Claus Beisbart and

Nicole J. Saam (eds.), Computer Simulation Validation: Fundamental Concepts, Methodological

Frameworks, and Philosophical Perspectives. Series: Simulation Foundations, Methods and Applica-

tions. ISBN: 978-3319707655, Springer. pp. 383-403 (2019).

10. Takayasu H. (Ed), Empirical Science of Financial Fluctuations: The advent of econophysics, ISBN:

978-4431703167, Springer (2000).

11. Fama EF. Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance.

1970; 25(2):383–417. https://doi.org/10.1111/j.1540-6261.1970.tb00518.x

12. Mantegna RN, Stanley HE. An Introduction to Econophysics: Correlations and Complexity in Finance.

USA: Cambridge University Press; 1999.

13. Samuelson PA. Proof that Properly Anticipated Prices Fluctuate Randomly. Industrial Management

Rev. 1965; 6(2):41–45.

14. Engle RF. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Infla-

tion. Econometrica. 1982; 50(4):987–1002. https://doi.org/10.2307/1912773

15. Bollerslev T. Generalized Autoregressive Conditional Heteroskedasticity. J Econometrics. 1986; 31

(3):307–327. https://doi.org/10.1016/0304-4076(86)90063-1

16. LeRoy S. Risk Aversion and the Martingale Property of Stock Prices. International Economic Review.

1973; 14(2):436–46. https://doi.org/10.2307/2525932

17. Lucas RE. Asset Prices in an Exchange Economy. Econometrica. 1978; 46(6):1429–1445. https://doi.

org/10.2307/1913837

18. Scalas E. Scaling in the market of futures. Physica A. 1998; 253(1):394–402. https://doi.org/10.1016/

S0378-4371(97)00652-3

19. Wilks SS. Mathematical Statistics, ISBN: 978-4431703167, Princeton University Press (1943). Avail-

able from: https://books.google.com.mx/books?id=k38pAQAAMAAJ.

20. Wald A, Wolfowitz J. On a test whether two samples are from the same population. Ann. Math. Stat.

1940; 11:147–162. Available from: http://dml.mathdoc.fr/item/1177731909/

21. Mood AM. The Distribution Theory of Runs. Ann. Math. Stat. 1940; 11:367–392. Available from: 10.

1214/aoms/1177731825.full
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