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Abstract

The development of cortical functions and the capacity of the mature brain to learn are largely determined by the
establishment and maintenance of neocortical networks. Here we address the human development of long-range
connectivity in primary visual and motor cortices, using well-established behavioral measures - a Contour Integration test
and a Finger-tapping task - that have been shown to be related to these specific primary areas, and the long-range neural
connectivity within those. Possible confounding factors, such as different task requirements (complexity, cognitive load) are
eliminated by using these tasks in a learning paradigm. We find that there is a temporal lag between the developmental
timing of primary sensory vs. motor areas with an advantage of visual development; we also confirm that human
development is very slow in both cases, and that there is a retained capacity for practice induced plastic changes in adults.
This pattern of results seems to point to human-specific development of the ‘‘canonical circuits’’ of primary sensory and
motor cortices, probably reflecting the ecological requirements of human life.
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Introduction

The development of cortical functions and the capacity of the

mature brain to learn are largely determined by the establishment

and maintenance of neocortical networks. The specification of

long-range connectivity within larger inter-areal and more local

intra-areal networks is a basic architectural requirement of cortical

processing. Long-range lateral intralaminar connections between

pyramidal cells (Figure 1A) seem to be a ubiquitous feature of the

superficial cortical layers in, e.g., cats [1–3]; tree shrews [4]; and

monkeys [4–5]. It has been suggested that these long axonal

projections shape the neocortex into ‘‘canonical circuits’’ serving

spatiotemporal integration within the functional maps [6–7]. The

specificity of long-range connections has been extensively studied

in primary sensory and motor cortices of different mammalian

species. With respect to the primary visual cortex (V1 or

Brodmann area 17, see Figure 1A), it has been shown that

clusters of layer II/III long-range horizontal connections connect

neuronal columns with similar orientation specificity in cats and

monkeys [8–9], assumedly mediating object-related processing

and visual perceptual learning in humans as well [10–11].

With respect to the primary motor cortex (M1; Brodmann area

4, see Figure 1A), pyramidal cells with same or similar output

properties are accumulated in columns, forming elementary

movement representations [12–14]. Collaterals of the pyramidal

cells in layer II/III project horizontally as far as 3 mm long and

terminate in columns with similar output to that of the original

column [5]. These intrinsic connections are thought to be

important in the selection and coordination of different movement

representations [13,15], in the control of different muscles around

a given joint [16–17], or neighboring joints of the same extremity

[18]. It has been proposed that the intrinsic long-range

connections also mediate motor map plasticity and the learning

of new motor skills in rats [19–21], cats [22] and primates [23].

Rough clusters of horizontal connections in V1 are present in

cats and ferrets before eye opening, become refined soon

thereafter [24–25], and the adult pattern of connections is there

at birth in primates [26]. With respect to movement representation

in M1, it seems to develop after the somatosensory representations

and corticospinal terminations develop mature topography in cats

[22], however, information is lacking with respect to the postnatal

development of horizontal connectivity.

Is it a possible scenario that these ‘‘canonical circuits,’’

mediating basic perceptual and motor function and learning,

develop similarly in different mammals, including humans? Or,

alternatively, based on the obviously increased demand for human

learning capacity, shall we assume that this type of long-range

cortical connectivity has a human-specific developmental trend?

The development of horizontal connections in layer II/III of the

primary visual cortex of humans has been indicated to extend into

childhood [27], corresponding to behavioral findings on the late

maturation of V1-related contour integration abilities, improving

until the teenage years [28–29]. Although little is known about the

characteristics of the M1 motor representation in infants and
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young children, there are studies investigating the postnatal

development of motor responses induced by transcranial magnetic

stimulation (TMS). Motor-evoked potentials produced by TMS

occur only at maximal currents in 2-year-old humans, and

stimulation thresholds decrease until the age of 15 [30–31]. These

suggest a protracted development of both sensory and motor long-

range intra-areal connectivity, with the possibility of M1 ‘wiring’

taking a longer time than V1 ‘wiring.’ However, to tackle the

functional development of long-range lateral intralaminar con-

nections in humans is an intricate issue, considering the necessity

to apply non-invasive measurements, and the fact that even the

finest brain imaging techniques are orders of magnitude below the

spatial resolution needed for such estimations.

Here we address the human development of long-range

connectivity in primary visual and motor cortices, using well-

established behavioral measures that have been shown to be

related to these specific primary areas, and the long-range neural

connectivity within those. The visual paradigm is a Contour

Integration task (CI, see Figure 1B), and the motor paradigm is a

sequential finger-tapping task (FT, see Figure 1C). CI has

originally been developed to test the spatial integration properties

of neurons with conjoint orientation preference in the primary

visual cortex [32–33]. The presence of global, shape-dependent

contextual processes at this early cortical level has been

demonstrated [32,34–36], indicating that long-range connectivity

might contribute to object related processing, and that even

primary visual processing is well beyond local feature analysis.

Neural correlates, involving the correspondence between neuronal

and behavioral responses in monkeys [35], direct architectural

data in monkeys [9], optical imaging of contextual interactions in

monkeys [37], human neuropsychology [38] and human fMRI

[39–40] indicate the relevance of low-level visual areas integrating

Figure 1. Summary of the methods and results. (A) Sideview of the human brain with the primary visual cortex (V1, Br 17) in blue, and the
primary motor cortex (M1 or Br 4) in red. The cerebral cortex is generally divided into six functionally distinct layers, and the principal source of long-
range lateral intralaminar connections is layer II and III, as shown in the insets corresponding to V1 and M1. (B) Contour Integration (CI) stimuli,
addressing long-range connections in the primary visual cortex. The collinear chain of oriented elements forming a horizontally placed egg-shape is
hidden in the background of randomly positioned and oriented elements. The panels show three levels of difficulty in the CI task. Practice and
development leads to improved performance. (C) Movement-sequence in the Finger-tapping (FT) task addressing long-range connectivity of the
primary motor cortex. Accuracy and speed of carrying out this sequence improves following practice and during the course of development. (D)
Developmental curves in CI (blue) and in FT (red). Day 2 performance of each age-group was normalized to that of the adult performance in each
task. Small symbols: individual data; large symbols: age-group average. Curve fitting was done on the age-group average values. The horizontal lines
at the bottom connect two age-groups (15 and 21 y), and significance levels of the difference in performance in the two tasks, respectively, are
denoted.
doi:10.1371/journal.pone.0025572.g001
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the contour-in-noise stimulus. Based on these studies, the possible

candidate for assembling local orientation information in CI is the

plexus of long-range horizontal connections in V1. The well-

defined nature of stimulus processing in CI guarantees that it is a

good tool to probe the development of long-range neural

interactions in V1. FT is a motor coordination paradigm, where

participants touch the thumb with the other fingers in a given

order as quickly and precisely as possible. Combined with imaging

and electrophysiological techniques, it has been an important tool

to study motor learning in the last two decades. Training in FT

leads to experience specific changes in M1, revealed by fMRI [41–

42], TMS [43] and electrophysiology [44] in humans. M1

subregions contain multiple overlapping motor representations

that are functionally connected through an extensive horizontal

network [16–17,45–46]. Suggested mechanisms for functional

reorganization involve activity-driven synaptic strength changes in

these networks [45,47]. It is important to mention that FT

performance is affected by conduction velocity of the corticospinal

tract due to myelination (see the Results section). To eliminate the

effect of age-related corticospinal tract conduction velocity

changes, we measured maximum finger tapping speed and

subtracted it from the FT data. This procedure ensured that the

corrected results reflect cortical plasticity.

In addition to finding the suitable behavioral paradigms to

establish maturational trajectories, comparison between the two

domains requires particular consideration. Even in well-estab-

lished behavioral tasks (such as CI and FT) clearly addressing long-

range connectivity within primary visual and motor areas,

performance might depend on a number of factors that are

irrelevant in terms of the comparison of developmental rates across

the two modalities. It would be precarious to directly contrast

performance of different age-groups in CI and FT as there might

be differences in terms of task difficulty and a potentially different

impact of both subcortical mechanisms and higher level cognitive

processes across modalities and across different age-groups. In

order to deal with latent confounding factors we relied on a

training-based design in both tasks. All observers practiced over

the course of five days, allowing us to establish learning curves for

each studied age-group. It has been indicated that both in CI [48]

and in FT [42,49,50], there is an initial fast phase of learning that

might be less specific in terms of its transfer properties, and involve

higher level cognitive processes. Our rationale is to find the

beginning of the second, more specific phase of learning where the

initial familiarization with the task is finished, and learning mostly

relies on activity and plasticity in the primary cortices. Compar-

ison of performance levels (normalized to that of the adult

performance) at the beginning of this second phase of learning in

CI and FT should provide us with comparable maturational

trajectories of long-range connectivity within primary visual and

motor areas.

We find that there is a temporal lag between the developmental

timing of primary sensory vs. motor areas; we confirm that human

development is very slow in both cases, and that there is a retained

capacity for practice induced plastic changes in adults.

Materials and Methods

Participants
Subjects were recruited from kindergartens, primary schools

and universities in Budapest, Hungary. Relevant features of the

subject pools in CI and FT are summarized in Table 1. Those with

a history of neurological or psychiatric illness were excluded. All

observers in the CI task had normal or corrected to normal vision,

and those who had skeletal disorders or were professional

musicians were excluded from the FT task. Written informed

consent was obtained from adult subjects and the parents of

participating children. Subjects were not paid for their participa-

tion. During the course of the experiment, participants were asked

to report the amount of their night sleep. Those with less than

6 hours of sleep on a particular night, or those with sleep-wake

cycle disruptions were also excluded from the study.

Ethics statement
This study was approved by the Social Sciences Ethical review

Board of the Budapest University of Technology and Economics.

Written informed consent was obtained from adult subjects and

the parents of participating children.

Contour Integration Task
Stimuli. The contour integration paradigm was originally

introduced and presented in greater detail by Kovacs & Julesz

[32]. In this altered version of the task (see also [51]) images were

composed of collinear chains of Gabor elements forming a

horizontally positioned egg shape (target) on a background of

randomly positioned and oriented Gabor patches (noise). The

carrier spatial frequency of the Gabor patches was 5 c/deg and

their contrast was 95%. The spacing between the contour

elements was kept constant (8l; where l is the wavelength of

the Gabor stimulus) as was the average spacing between the

background elements. The signal-to-noise ratio as defined by a D

parameter (D = average background spacing/contour spacing) of

each image was 0.9. By keeping D at a constant level, the

orientation jitter of the contour elements was varied between 0u to

24u across six difficulty levels (0u, 8u, 12u,16u, 20u, 24u, see

examples in Figure 1B). A set of 40 images was presented at each

of the six difficulty levels, a new shape and background were

generated for each stimulus, but all of the contours had the same

general size and egg-like shape.

Procedure. Each participant was trained in the contour

integration task over five days, with an approximately twenty-four

hour shift between the practice sessions. The images were

presented in blocks of 10 trials, 40 stimuli at each of the six

difficulty levels, in an increasing order of orientation jitter. One

session lasted about 20–30 minutes. In a two-alternative forced-

choice (2AFC) procedure, subjects had to indicate which direction

the narrower part of the egg pointed to. Stimulus onset was 2000

milliseconds, with a fixation cross between stimuli (500 ms, or

shorter if the subject responded faster). Subjects were tested

binocularly, and were seated at about 0.7 m away from a 17 in.

HP monitor in a normally lit testing room. Monitor resolution was

Table 1. Age groups of participants in the CI and FT tasks.

Age-
group CI task FT task

Age (mo) M F
Age
(mo) M F

R/L
handed

7 years 89,4 5 5 84,9 6 4 9/1

9 years 103,6 4 6 100,8 4 5 7/2

11 years 132,5 5 5 132,6 5 5 9/1

13 years 153,6 6 4 150,5 5 5 9/1

15 years 176,1 5 5 173,2 4 5 7/2

21 years 249,6 5
30

5
30

246,5 5
29

5
29

9/1
50/8

doi:10.1371/journal.pone.0025572.t001

Vision First?

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e25572



set to 128061024. Images subtended 19.93u of visual angle

vertically and 26.57u of visual angle horizontally from the testing

distance. The mean luminance of the monitor was 21.5 cd/m2.

Psychometric functions for each subject were plotted using

mean scores for each of the six levels of jitter, and threshold

performance was calculated by fitting a Weibull function on the

data points. Threshold was defined by orientation jitter at 75%

correct performance.

Finger-tapping Task
In the Finger-tapping task (FT) participants were asked to touch

the thumb with the other fingers in a given order as quickly and

precisely as possible. They were instructed not to correct errors

and continue with the task without pause as smoothly as possible.

Participants were asked to close their eyes, thus visual feedback

was not allowed. Data acquisition started when participants were

able to produce three correct sequences successively, with eyes

closed. The beginning and the end of a practice block was signaled

by a ‘beep’ sound from the computer The practice sequence was a

four element sequence of 1-3-2-4 (1: index finger; 2: middle finger;

3: ring finger; 4: little finger). Ten blocks of 16 sequences were

performed each day, with self-paced rest periods between them.

The practice sessions were conducted approximately at the same

time of the day through five consecutive days. On the fifth day,

transfer of the practice sequence to the dominant hand (Transfer

1), and transfer to a new sequence (4-2-3-1) in both hands were

also tested (Transfer 2 and Transfer 3). The three transfer tests

were randomly ordered. Transfer tests are very relevant to carry

out in FT in order to see whether prolonged or multisession

learning involves use-dependent changes in connectivity within the

neuronal populations in the primary motor cortex, in which case,

lateralized motor representation results that is specific to task

parameters with little or no transfer to the non-trained hemisphere

or for a novel task involving the same movement elements [41–

42,50]. We introduced three transfer tests in order to see whether

lateralized, task-specific representations have developed in M1.

A maximum motor speed task was also carried out with a new

sample of participants of the same age-groups by a non-serial

finger-tapping task (n = 60). In this task subjects had to touch the

thumb with the index finger of the non-dominant hand as fast as

possible. Blocks of 64 index finger taps were repeated three times

with an at least two-minutes rest between them. Maximum motor

speed was defined as the number of index finger taps/s.

Data acquisition. Finger-tapping data were obtained in an

improved version of the original finger-tapping paradigm. Since

subjects in different age-groups might have considerably varying

motor abilities, we developed a data acquisition method that

enables precise and automated measurement of performance

without using external equipments, such as a computer keyboard.

A custom-made ‘data glove,’ consisting of metal rings was placed

on the participants’ fingertips. Each metal ring electrode

corresponded to a given finger and was connected to a laptop

computer through a USB-Serial converter. The ‘data glove’

enabled participants to use their hands freely, and to close their

eyes during the task. A task sequence was identified from the first

element of the sequence to the next first element. For example,

when a sequence of 1-3-2-4 was the task, sequences are identified

and separated as follows: 1-3-2-4 – 1-3-2-4 – 1-3-2-2-4 – 1-3 – 1-3-

2-4 – 1-3-2-4). Motor performance of groups with different motor

abilities can only be compared by taking the speed/accuracy

trade-off into account. A combined measure of speed and accuracy

parameters might bring a diplomatic balance into this trade-off.

Inconsistent performance also alters the length of the FT

sequences, so it may vary from trial to trial, e.g., an incorrect

sequence can be either two- or eight-element long. It has influence

on speed and accuracy measures. Therefore, instead of using

sequence based performance measures such as number of

sequences in a given time, we introduced performance measures

based on finger taps. In order to eliminate the speed-accuracy

trade-off in the raw data, a combined index of performance rate

(PR) was calculated. It is defined as the product of speed and

accuracy, where speed is defined as the number of finger taps in a

second (taps/s) and accuracy is defined as the ratio of the number

of finger taps in correct sequences and the number of finger taps in

all sequences.

When comparing perceptual and motor data, we wanted to

eliminate the influence of corticospinal tract myelination level on

motor speed at different ages. Corticospinal myelination level

shows close correlation with maximum motor speed (see the

Results section). Therefore, PR was corrected by maximum motor

speed in the following way: first, we calculated FT intertap interval

as 1/PR (ms); after that we subtracted the minimum intertap

interval gained as 1/maximum motor speed (ms). Thus, we gained

a corrected intertap interval index that is corrected both for the

speed-accuracy trade-off and for the myelination effect of the

corticospinal tract. These corrections led to a more precise

measure of motor cortex related changes during motor learning.

Data analysis
Developmental data in CI and FT. We determined

perceptual and motor development based on 2nd day performance

in the two tasks in order to avoid confounding cognitive effects (see

the section on ‘‘Finding comparable regions in the learning curves in

CI and FT’’ in the results section). Performance of each age-group

was normalized to that of the adult performance level within each

task (z score) and two-way ANOVA (learning condition6age) was

performed on the records. Multiple comparisons were performed by

LSD. We also conducted independent-t tests on the developmental

data to compare the average performances of the age-groups.

Practice induced learning in CI and FT. We analyzed the

learning rates in four periods (1: from Day 1 to Day 2; 2: from Day 2

to Day 3; 3: from Day 3 to Day 4; 4: from Day 4 to Day 5) in the two

learning conditions. Day 1 performance was considered 100%, and

performance on subsequent days was expressed relative to that.

Three-way mixed ANOVA (learning condition6age6learning

period) was performed on the learning data. Multiple comparisons

were performed by LSD. Significance level was set at p,0.05.

Results

Developmental and practice-induced learning curves are

presented in the joint-spaces of Figure 2A and 2B for vision and

movement, respectively. The data in Figure 2A represent the

assessment of both perceptual learning capacity and developmen-

tal trajectories in CI in a sample of 60 subjects (7 to 21 years of

age, 5 days of practice; see Methods). Visual CI performance

increases both as a function of age (ANOVA F(5,54) = 5.41,

p,0.01) and practice-days (ANOVA F(4,216) = 156.43, p,0.01).

These data confirm that contour integration has a slow

developmental course as it has been indicated earlier [28]. It is

also confirmed that practice leads to enhanced performance levels

even in adults (see also 48, 51). Although the interaction between

age and practice was not significant (ANOVA F(20,216) = 1.53,

p,0.1), further analysis revealed a significant main effect of age for

days 1 and 2 (p,0.01), indicating that there is a faster progression

of learning in the younger age-groups at the beginning of practice.

However, in the later phases of training, all age-groups learn at the

same rate.

Vision First?
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Developmental and practice induced improvements of motor

performance in the FT task are shown in Figure 2B (n = 58; 7 to 21

years of age, 5 days of practice; see Methods). FT performance

rate (as measured in terms of the correct taps per second) increases

both as a function of age (ANOVA F(5,52) = 10.76, p,0.01) and

practice (ANOVA F(4,208) = 248.05, p,0.01). These results are in

accordance with previous findings, where a developmental a

trajectory was found in FT learning between the ages of 9 and 17

years [52]. While earlier studies indicated that the capacity to

improve is preserved in adults [41,42], the extremely slow

developmental curve from childhood to adulthood in FT is

reported here for the first time. We found a superior learning

capacity in the younger age-groups across all 5 days of practice, as

it is shown by the significant interaction between age and practice

(ANOVA F(20,208) = 1.81, p,0.05).

This pattern of results indicates that both visual (CI) and motor

(FT) performance improves throughout an extended developmen-

tal period in humans, and that practice induced improvements of

performance are significant in all studied age-groups in both tasks.

However, as indicated above, a direct comparison between the

two surfaces of Figure 2 will not provide a clear view on the

comparative maturational trajectories of visual and motor cortices.

As discussed in the introduction, neural correlates indicate the

role of lower level visual areas in integrating the contour-in-noise

stimulus a [39,38,40,53,54], in addition to its specific design that

addresses the primary visual cortex. The design of the motor task

allows less control over the involved cortical areas than the design

of the visual task. One of the important factors affecting

performance in FT is maximum finger tapping speed (FTS) that

is determined by conduction velocity of the corticospinal tract due

to myelination [55]. Maximum FTS shows a lifespan trajectory

reaching a peak around the age of 40 years ([52,55–56] see

Figure 3A). Consequently, it is likely that maximum FTS has an

effect on motor performance throughout the age range of the

present study in a serial FT task as well. To eliminate the effect of

age-related corticospinal tract conduction velocity changes, we

measured FTS within the same age range as in the learning task

(Figure 3A). Then we subtracted FTS from the developmental

learning surface (see Methods), ensuring that such a corrected

developmental-learning surface reflects cortical plasticity

(Figure 3B). The role of M1 in FT was also tested by the transfer

tests (the same task carried out by the non-trained hand (Transfer

1); a novel task carried out by the trained (Transfer 2) and the non-

trained (Transfer 3) hand, Figure 3C). Transfer performance did

not exceed Day 2 performance in any of the groups (p,0.05). The

lack of learning-transfer clearly indicates that processing and

learning involve use-dependent changes in connectivity within the

neuronal populations in the primary motor area.

The comparability of the two tasks is a challenging issue,

especially in terms of task complexity and potential cognitive load.

In order to reveal differences in these, we employed learning

paradigms. It has been suggested in both cases [42,48–50] that the

initial faster and less specific phase of learning might be related to

task familiarization and higher-level cognitive processes, while in

the second, slower and more specific phase, performance and

improvements might be more related to primary sensory or motor

cortices. In order to discern these two phases and find the second

phase that would serve our perceptual and motor comparison

better, here we calculate and compare session-by-session learning

speed in the two tasks for all age-groups. While Figure 2 presents

developmental and practice-induced learning curves in CI and FT

in separate graphs, we plot learning speeds (Learning rate) within

the same graph in Figure 4. As it is clearly shown in Figure 4, the

two tasks are different in terms of the initial speed of learning.

There is a much faster improvement from the first to the second

session in FT than in CI across all age-groups (7y: t = 24,18,

df = 17, p,0,01; 9y: t = 24,17, df = 17, p,0,01; 11y: t = 27,2

df = 17, p,0,01; 13y: t = 25,24, df = 17, p,0,01; 15y: t = 24,41,

df = 17, p,0,01; 21,5y t = 26,06, df = 17, p,0,01). However, this

large difference seems to diminish and disappear later. Improve-

ment from the second to the third session is the same in FT and in

CI, except for some relatively small differences in 9–11 year olds

(9y: t = 22,29, df = 17, p,0,05; 11y: t = 22,78, df = 17, p,0,05).

Learning rates become nearly equivalent in the two tasks across all

ages from the third session. Different initial learning speeds can be

interpreted as a difference in task complexity and/or cognitive

load, while similar speeds in the later phase indicate a higher

degree of comparability between task performances. Since

learning rates are reasonably similar from the second day on, we

propose that second day performance in CI and FT is the most

Figure 2. Developmental-learning surfaces. (A) Developmental-learning surface in CI. Performance threshold of each age-group is expressed in
degrees of orientation jitter along the contour as a function of age and practice. Performance in CI increases as a function of age, suggesting that
contour integration has a slow developmental course. Performance also increases as a function of practice, with a faster progression of learning in the
younger age-groups at the beginning of practice. However, in the later phases of training, all age-groups learn at the same rate. (B) Developmental-
learning surface in FT. Performance rate (number of taps/second) is expressed as a function of age and practice. Performance in FT increases both as a
function of age and practice, similarly to CI.
doi:10.1371/journal.pone.0025572.g002

Vision First?

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e25572



advantageous for the comparison between the maturational

trajectories of primary visual and motor areas using behavioral

measures. Second day performance seems to satisfy both relevant

conditions: (1) the second phase of learning has begun; and (2) we

are still assessing maturational trajectories which are not

confounded by the capacity to learn at different ages.

Comparing Developmental trajectories of V1 and M1
In order to compare the developmental curves in FT and CI we

expressed Day 2 performance of the participants in z score

(Figure 1D). Performance of younger age-groups was standardized

to that of the adult group. Two-way mixed ANOVA (age6learn-

ing condition) showed significant main effect for both age

(F1,5 = 14.74, p,0.01) and learning condition (F5,108 = 30.45,

p,0.01) with significant age6learning condition interaction

(F5,108 = 6.13, p,0.05). We found significant differences between

CI and FT performance at age 7 (CI z-score = 21,264, FT z-

score = 25,2852, t = 25,150, df = 18, p,0.01), at age 9 (CI z-

score = 20.767, FT z-score = 22,360, t = 22,3515, df = 18,

p,0.05) and at age 15 (CI z-score = 20.2998 FT z-

score = 20.9728, t = 22.09, df = 17, p = 0.052). In order to see

whether there is a difference in the performance of adults and 15-

year-old children, we employed an independent t-test. There was

no significant difference in CI (t = 20,775, df = 18, p = 0,449),

however 15-year-old children performed significantly below the

adult level in FT (t = 22,415, df = 17, p = 0,027). These results

imply that fine motor functions are not operating at the adult level

in terms of speed and accuracy at the age of 15, while contour

integration reaches the adult level at this age. Since CI and FT

both address long-range connectivity in primary visual and

primary motor cortices, respectively, we suggest that the functional

development of long-range lateral intralaminar connections in

humans is slower in the primary motor cortex than in the primary

visual cortex.

Discussion

We employed behavioral paradigms, a Contour Integration test

and a Finger-tapping task, to assess the functional maturity of long

range horizontal cortico-cortical connections in primary visual and

primary motor areas. Several earlier studies revealed that these

tasks require long-range integration within the primary cortices. In

Figure 3. Correction of Finger-tapping data. (A) Variation of maximum finger tapping speed (FTS = finger taps/s) as a function of age. Maximum
FTS is affected by corticospinal tract conduction velocity due to myelination [55] and likely has impact on developmental motor performance. (B)
Developmental learning surface corrected by maximum FTS. Data are expressed as the interval between finger taps (s) in correct sequences in the
serial FT task after subtraction of maximum FTS. Correction with maximum motor speed ensures that the developmental-learning surface reflects
cortical plasticity with no effect of corticospinal myelinization on performance. After correction, there is a marked initial improvement at the age of 7
with no significant learning effect after the 3rd day in any age-group (p,0.05). (C) Performance in transfer tests compared to Day 1 and Day 2
performance in the learning task. Transfer 1 refers to practice effects with the non-trained hand. Transfer 2 is a new task performed with the trained,
and Transfer 3 with the non-trained hand. Transfer performance did not exceed Day2 performance in any of the groups (p,0.05). The lack of
learning-transfer clearly indicates that processing and learning involve use-dependent changes in connectivity within the neuronal populations in the
primary motor area.
doi:10.1371/journal.pone.0025572.g003
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addition to applying these well-established methods, we carefully

eliminated possible confounding factors, such as different task

requirements (complexity, cognitive load) by using these tasks in a

learning paradigm. We have shown that initial performance levels

might not be appropriate for comparisons since the rate of

performance improvement is significantly different from the first to

the second practice session (Day 1 to Day 2) across tasks and across

age-groups. However, this first, and highly variable phase of

learning, probably involving higher level cognitive processes,

seems to be over by the second session (Day 2), and performance

improvement proceeds at the same rate in both tasks and all age-

groups. Therefore, it appeared reasonable to use Day 2 data in

deriving and comparing the two developmental curves. In the case

of the Finger-tapping task, the impact of myelination and age-

related changes in corticospinal tract conduction had to be

considered as well. To this end, we registered the maximal speed

in a single finger-tapping task (determined mainly by corticospinal

tract conduction velocity) in each age-group, and deduced it from

the sequential finger-tapping data. The resulting values are

believed to reflect cortical network functioning.

Following the above mentioned corrections, our results show

that the developmental curves in the perceptual (CI) and in the

motor (FT) tasks are not overlapping. Although both curves are

demonstrating protracted development, extending well into the

teenage years, motor development, as measured by the FT task, is

relatively more delayed: fine motor coordination is not reaching

adult levels in terms of speed and accuracy by age 15, while

perceptual integration is adult like at this age.

Greater capacity to cortical plasticity in M1 may stem from the

more distributed organization of M1. While M1 consists of distinct

representations of larger body parts (e.g., the hands), within these

functional subregions, a widely distributed and overlapping

representation system exists, involving horizontal connections

[46]. It has been suggested that such an organization is more

advantageous to provide greater capacity for storage and to

contribute to flexibility [17,46]. Flexibility is crucial in generating a

wide repertoire of movements, including ones not performed

previously. Maintaining this repertoire requires the ability to have

access to a large number of combinations of muscle contractions.

Similarly, during the acquisition of new skills this aforementioned

distributed type of network in M1 could be reorganized to

represent new combinations more rapidly, while a discrete

somatotopic representation would limit this capacity [45–46].

The extremely extended temporal window, during which

experience can shape the fine functional connections, might be

explained by the fact that the size of various body parts and the

proportion of body parts are exposed to enormous alterations.

Furthermore, daily motor performance in our continuously

changing physical environment puts a permanent constraint on

the motor system. To adjust to these constraints, the system has to

continuously create novel movements. The prolonged time course

of the maturation of the primary motor connections might be

necessary to maintain a higher capacity of the system to meet these

requirements mentioned above.

Our behavioral data, suggesting that the functional maturation

of long-range lateral intralaminar connections and the refinement

of these neocortical networks in primary motor cortex are slower

than that of the primary visual cortex in humans, are in line with

histological (e.g. pruning or GABAergic network properties [57–

58]), and psychophysiological (e.g. synchronized oscillations [59])

accounts indicating that changes incidental to development occur

earlier in the primary visual than in the primary motor region.

Studies of developing horizontal connections often emphasize that

collateral pruning and selective synapse elimination are important

for achieving functional maturity (e.g. [60]). Synapse production

continues postnatally, and after an initial overproduction, synaptic

density reaches its peak in infancy [61]. Following this peak, there

is a prolonged selective elimination of the connections, resulting in

a structural and functional alteration in neuronal circuits. Synaptic

density decreases to adult values during late childhood and early

adolescence, however, synaptic elimination and network refine-

ment occurs in a hierarchical pattern in the human cortex:

primary sensory areas develop first, followed by the maturation of

the motor and association cortices, while the prefrontal cortex

develops last [57]. Synaptic density in V1 decreases to adult levels

by 10 years of age [57]. With respect to M1, synaptic density

remains elevated until the age of 10 and decreases to adult values

in late childhood and early adolescence [62].

The development and maturation of cortical networks strongly

depends on neuronal activity, whereby synchronized oscillations

play an important role in the stabilization and pruning of

connections. There are significant oscillations during childhood

and adolescence, e.g. there is a reduction in the amplitude of

oscillations that is predominantly pronounced for delta and theta

activity [63]. This developmental change occurs more rapidly in

posterior than in frontal regions [59], and takes place earlier in the

primary visual than in the primary motor area.

In addition to the number of connections, the types of

connections are equally important in the functioning of cortical

networks. An appropriate balance between excitatory and

inhibitory synaptic inputs appears to be necessary. GABAergic

interneurons play a pivotal role in establishing neural synchrony in

local circuits. It was demonstrated that a single GABAergic neuron

might be sufficient to synchronize the firing of a large population

of pyramidal neurons [64]. In the human visual cortex, studies on

the developmental changes in GABAergic mechanisms in

postmortem tissues have shown that the relevant changes start to

occur between the ages of 10 and 13 years of age [58]. Although

there are no postmortem studies on GABAergic mechanisms in

the motor cortex, it has been shown that both N-methyl-

Figure 4. Comparison of learning rates in Contour Integration
and Finger-tapping. Day 1 performance is considered 100%, and
performance in subsequent days is expressed relative to that.
Improvements are calculated by taking the difference between
thresholds in consecutive days of practice (such as, Day 1–Day 2, Day
2–Day 3, Day 3–Day 4, Day 4–Day 5). There is a larger improvement
from Day 1 to Day 2 in FT than in CI across all age-groups. This
difference vanishes from Day 2 to Day 3, and learning rates become
nearly equivalent in the two tasks after Day 3.
doi:10.1371/journal.pone.0025572.g004
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Daspartate receptor activation and GABAergic inhibition play a

crucial role in use-dependent plasticity in the human motor cortex

[65]. Furthermore, in a TMS study it was confirmed that the

GABAergic interneuron system does not function at an adult level

even in adolescence in the motor cortex [66].

In conclusion, we confirm that human development is very slow

both in the primary visual and motor domains, and we find a

retained capacity for practice induced plastic changes in adults.

Based on the temporal lag between the developmental timing of

primary sensory vs. motor functions, we suggest that the

ontogenetic maturational rate of the intracortical horizontal

connections in the primary motor cortex is slower than that of

the primary visual cortex, providing a wider temporal window for

experience-dependent plasticity in the motor system. Our results

seem to be in strong correlation with anatomical and physiological

data on the developmental order of different cortical areas. This

pattern of results also raises the possibility of human-specific

development of the ‘‘canonical circuits’’ of primary sensory and

motor cortices, perhaps reflecting the ecological requirements of

human life.
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