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Abstract
Patterns of disease co-occurrence that deviate from statistical independence may represent

important constraints on biological mechanism, which sometimes can be explained by

shared genetics. In this work we study the relationship between disease co-occurrence and

commonly shared genetic architecture of disease. Records of pairs of diseases were com-

bined from two different electronic medical systems (Columbia, Stanford), and compared to

a large database of published disease-associated genetic variants (VARIMED); data on 35

disorders were available across all three sources, which include medical records for over

1.2 million patients and variants from over 17,000 publications. Based on the sources in

which they appeared, disease pairs were categorized as having predominant clinical,

genetic, or both kinds of manifestations. Confounding effects of age on disease incidence

were controlled for by only comparing diseases when they fall in the same cluster of simi-

larly shaped incidence patterns. We find that disease pairs that are overrepresented in both

electronic medical record systems and in VARIMED come from two main disease classes,

autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared

within these disease groups.

Author Summary

Diseases do not always occur together at random, and patterns of disease association may
reflect important biological constraints on disease mechanism. When a disease pair occurs
more (or less) often than would be expected by chance given the frequencies of each dis-
ease separately, that may signal the presence of shared causal factors. These shared factors
may be genetic, environmental, or interactions of the two. To characterize the kinds of
possible disease causes, we compared data from electronic medical records, which record
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disease manifestations, with information about genetic variants of disease. In particular,
we find pairs of diseases that occur more or less often than expected by chance for patients
in two electronic medical record systems, and compare them to disease pairs sharing a sta-
tistically significant number of genes in a database of disease-associated genetic variants.
Overrepresented pairs appearing in both source types come from two main disease classes,
autoimmune and neuropsychiatric.

Introduction
When two diseases occur together in the same individuals more or less often than would be
expected by chance, this may signal the operation of important biological processes. Pairs of
diseases occurring more than expected are called synergistic; such interactions are familiar
from clinical practice when the occurrence of a disease may raise the risk of a second disease.
Pairs occurring less than expected are called protective; these interactions, sometimes called
“inverse comorbidities,” are less common, but intriguing. Disease pairs which consistently
diverge from independence in either direction may provide clues towards identifying core
genetic, pathway, physiological, or environmental constraints that alter disease risk and repre-
sent an important starting point for elaborating a mechanistic understanding of disease and for
locating possible drug targets. Because discovery of disease patterns has been haphazard, it is
attractive to systematically search for these patterns across a wide range of diseases, without
adhering to prior conceptions of disease class, associated features, or expected comorbidities.
In this work, we integrate clinical and genomic data across diseases to systematically assess
their co-occurrence.

Consistent co-occurrence and conditional dependence in disease phenotypes arises from
multiple, non-exclusive, factors: (1) shared genetics, including causal effects of single genes and
effects of neighboring genes in linkage disequilibrium, (2) shared environmental exposures, (3)
complex interactions in which a phenotype enhances or moderates the risk of another, (4)
ascertainment, selection, or referral bias, (5) artifacts of the diagnostic system, where two puta-
tively separate diseases are linked via large overlap of shared features, and (6) random varia-
tion. Untangling these factors requires use and integration of both phenotypic and genetic
data.

Historically, non-independent phenotype associations are noticed in an opportunistic way
when the effect size is large, and otherwise they are detected more accurately through observa-
tional studies and meta-analyses [1], or via comprehensive epidemiologic surveys. However,
such studies and surveys are expensive to conduct and therefore often do not methodically
examine disease combinations. In contrast, electronic medical records (EMR) represent a
source of coded medical data that is typically large and, because these records are routinely col-
lected to support clinical and administrative operations, the marginal cost to researchers is
small; EMR data may therefore facilitate systematic comparison of disease co-occurrence [2].

Complementary information about disease relationships can be drawn from genomic stud-
ies. In particular, VARiants Informing MEDicine, or VARIMED [3], is a hand-curated data-
base of published disease-associated (primarily common) genetic variants. Although it is
limited to known genetic variants, it is large and provides an opportunity for detecting the
overlapping and shared genetic bases of diseases.

We combine EMR data with genetic data to compare and contrast disease co-occurrence
patterns, systematically comparing statistically significant disease comorbidity patterns in
EMR data with disease pairs having statistically significant genetic overlap in VARIMED, and
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characterize the pairs by the predominant influence as (1) clinical and genetic if they both co-
occur in the clinical data and share a significant genetic component, (2) clinical without genetic
if they co-occur only in the clinical records, or (3) genetic without clinically observable effect if
we find only a significant genetic overlap without a corresponding EMR result.

There are several important assumptions to consider here including the penetrance and cau-
sality of the genetic relationships that we examine as well as interactions between the genetics
and the environment. Furthermore, EMR data are prone to selection and ascertainment bias,
and errors from inaccuracies in chart coding. The lifetime of the EMR induces an observation
window on the patients represented there, underrecording data from patients for disease pairs
with widely separated ages of disease onset, and generating false inverse comorbidities. In
order to avoid the confounding effect of age on the pair occurrence counts, we introduce a
method for clustering diseases through similarity of their incidence pattern by age.

Other researchers have explored similar ideas. Patterns have been detected using linked
administrative and clinical databases. Goldacre and colleagues [4] used data from the Oxford
Record Linkage Study to find disease associations, such as an expected association between
schizophrenia and lung cancer, and a protective association between schizophrenia and rheu-
matoid arthritis. A later study using similar data [5] found inverse associations between Par-
kinson’s disease and several kinds of cancer. Rzhetsky et al. [2] developed a mathematical
model of ICD9-coded data from a single EMR to infer genetic overlap. Using genomics data
from early GWAS studies, Sirota et al. [6] used summary data to define a signed genetic varia-
tion score and cluster autoimmune disorders. Jung et al. [7] applied a similar method to study-
ing autoimmune disorders when paired with autism. Li et al. [8] used data from several EMRs
and from VARIMED to identify the genetic architecture of novel risk factor-disease associa-
tions. Ibáñez et al. [9] compared gene expression profiles for previously identified inversely
comorbid neuropsychiatric/cancer disease pairs, and found corresponding up- and down-regu-
lation patterns. Melamed et al. [10] used data from a large database of insurance claims in com-
bination with known genetic associations for Mendelian disorders to identify cancer driver
genes. Glicksberg et al. [11] compared the overlap in disease pairs using EMR data and a data-
base of genetic variants, retaining those pairs where both diseases appeared together in
PubMed articles.

In this paper, we present a framework for integrating clinical and molecular data to study
disease co-occurrence. Because disease risk varies with patient age, and because the co-occur-
rence of disease is therefore confounded by age, we introduce a method to define age-specific
disease clusters and carry out pairwise comparisons of disease co-occurrence. We explicitly
model disease pair under and overrepresentation. To reduce bias, we conduct the analysis in
two independent clinical databases, and require statistically significant deviation from indepen-
dence in both. We identify a highly significant group of autoimmune disorders, a set of diseases
with known environmental triggers, and some results which question the clinical manifestation
of previously described disease associations.

Results
Data on disease pairs were drawn from Columbia and Stanford electronic medical record sys-
tems, and compared to data on disease pairs with genetic overlap from the VARIMED data-
base. The overall information flow is shown in Fig 1.

Disease comorbidities were assessed for significance using a conventional 2 × 2 table record-
ing the presence or absence of each disease; a patient contributes a count to one of the four
cells (Table 1.) In aggregate, there are three possibilities: (1) independence, where the value of
d follows proportionally from the marginal sums, (2) synergistic interactions, where d is larger
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than predicted from independence, and the pairs are overrepresented, or (3) protective interac-
tions, where d is smaller than predicted, and the pairs are underrepresented.

Disease pairs were collated by the sources in which they were found to be significant: (1) sig-
nificant in both EMRs and significant in VARIMED, or “clinical and genetic,”, (2) in both
EMRs but not in VARIMED, or “clinical without genetic,” and (3) in VARIMED but not in
both EMRs, or “genetic without observed clinical effect.” (See Table 2.) Appearance in a clinical
database represents the interaction between genetic predispositions, environmental exposures,
and socioeconomic and phenotypic factors that lead to presentation for evaluation and
treatment.

Fig 1. The overall information flow. Clinical data on disease co-occurrence from the Columbia and Stanford EMRs were compared to the literature-mined
gene and disease relationships in the VARIMED database.

doi:10.1371/journal.pcbi.1004885.g001

Table 1. Conventional 2 × 2 table for counting the presence/absence of a disease pair.

not Disease 2 Disease 2

not Disease 1 a b

Disease 1 c d

doi:10.1371/journal.pcbi.1004885.t001
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We start with 161 disorders in the available EMR data, of which 35 disorders appear in both
EMRs and also in VARIMED; these are listed in Table 3, along with disease counts and fre-
quencies for each EMR, and the gene counts from VARIMED.

To avoid the confounding effects of age on disease incidence, we form age-incidence clus-
ters, where cluster members have similar age-incidence patterns, and only analyze disease
pairs where both members of the pair fall in the same cluster. We use a data-driven method
to compute cluster size, finding a locally optimum size of five. For visualization, each cluster
is processed by forming the average of the incidence vectors in that cluster; these averages,
along with a loess smoother, are shown in Fig 2. Plots of all the data points for all examined
cluster sizes appear in the Appendix. Conveniently, four of the clusters correspond to differ-
ent life-stages (neonate, youth, adulthood, and aged) and were assigned those names by hand
for ease of reference and to aid interpretation; the names are also listed in the final column of
Table 3. The fifth cluster contains data from predominantly younger patients, but is noisier
and less consistent than the other clusters; it is labelled “other.” No significant results were
found for diseases in the “neonate” cluster, so that cluster does not appear in the tables
below. A complete list of all EMR disorders appearing in each cluster appears in the
Supplement.

Significant disease pairs are presented in overview here and described in detail in the
following sections. For each of the two EMRs, a significant disease pair is either under or
overrepresented. We consider only those results that show concordant results, either both
underrepresented, or both overrepresented, in the two EMRs. The structure of the overrepre-
sented disease pairs is seen in the network diagram in Fig 3; this figure uses data from the
larger EMR (Columbia) to set the node size from disease frequency. There are three large
components in the network, which have been coded by the color of the age-incidence cluster
that forms each component; all have a compact, densely connected structure with only a few
sparse ties, in spite of coming from an arbitrarily chosen list of common and rare diseases.
The strongest effect is shown with thick link, marking the connection between lipid metabo-
lism disorders and type 2 diabetes. The small light-green cluster (middle of lower row in fig-
ure) highlights the connections between autism, pervasive developmental disorder, attention
deficit, and cerebral palsy.

The set relationship of disease-pairs from the EMR data compared to the genetic variants is
shown in the Venn diagram (Fig 4). For the underrepresented disease pairs, four are shared
between Columbia and Stanford, but none appear in the intersection with VARIMED. For the
overrepresented disease pairs, 186 are shared between Columbia and Stanford, and five of
those remain when intersected with VARIMED.

Table 2. Informal names for each combination of statistically significant results from EMRs and
VARIMED.

EMR VARIMED Interpretation

+ + “Clinical and genetic”

+ − “Clinical without observed genetic effect”

− + “Genetic with no observed clinical effect”

+ = significant,

− = not significant.

doi:10.1371/journal.pcbi.1004885.t002
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“Clinical and genetic” results
In this section we report the results that are significant in both EMRs (Columbia and Stanford)
and in VARIMED. We refer to these as “clinical and genetic.” For disease pairs significant in
Columbia, Stanford, and in VARIMED, none were protective, and five were synergistic. The
results, which fall into two classes, autoimmune and neuropsychiatric, are shown in Table 4.
Information about the genes and gene overlap for the five overrepresented pairs appears in
Table 5.

Table 3. Counts and frequencies (as percent) for diseases that occur in both EMR data sets and in VARIMED.Number of genes is from VARIMED.
Cluster names were assigned by hand to facilitate comprehension, as described in the text.

Columbia Stanford

Disease name Count Percent Count Percent Number of genes Cluster name

1 Alcoholism 27638 2.82 11363 4.10 81 adulthood

2 Allergic rhinitis 19216 1.96 22523 8.12 5 other

3 Alopecia areata 821 0.08 632 0.23 75 other

4 Alzheimer’s 9073 0.93 2444 0.88 179 aged

5 Amyotrophic lateral sclerosis 2182 0.22 276 0.10 70 aged

6 Ankylosing spondylitis 510 0.05 532 0.19 38 adulthood

7 Aortic aneurysm 2990 0.31 5401 1.95 22 aged

8 Attention deficit 6964 0.71 5043 1.82 93 youth

9 Autism 481 0.05 2423 0.87 218 youth

10 Behcet’s s. 53 0.01 82 0.03 42 other

11 Bipolar disorder 12373 1.26 7179 2.59 185 adulthood

12 Cardiomyopathy 11457 1.17 8212 2.96 4 aged

13 Celiac sprue 1954 0.20 1267 0.46 45 other

14 Cholelithiasis 15353 1.57 8095 2.92 5 aged

15 Depression 27085 2.77 8283 2.99 155 adulthood

16 Diabetes type 1 19372 1.98 5116 1.84 323 other

17 Diabetes type 2 60815 6.21 40176 14.49 254 aged

18 Epilepsy 12099 1.24 12095 4.36 9 neonate

19 Goiter 10820 1.11 9201 3.32 5 adulthood

20 Gout 192 0.02 106 0.04 12 aged

21 HIV 6138 0.63 1073 0.39 92 adulthood

22 Hepatitis B 5757 0.59 3212 1.16 14 adulthood

23 Hepatitis C 18421 1.88 6583 2.37 40 aged

24 Hypertrophic cardiomyopathy 603 0.06 831 0.30 4 adulthood

25 Kawasaki’s d. 495 0.05 328 0.12 66 youth

26 Migraine 8049 0.82 12593 4.54 18 adulthood

27 Moyamoya 130 0.01 557 0.20 8 other

28 Multiple sclerosis 14979 1.53 1685 0.61 261 adulthood

29 Parkinson’s d. 6116 0.62 2839 1.02 151 aged

30 Psoriasis 4577 0.47 3249 1.17 104 adulthood

31 Rheumatoid arthritis 7333 0.75 4775 1.72 348 aged

32 Schizophrenia 11256 1.15 1935 0.70 208 adulthood

33 Sjogren’s s. 348 0.04 893 0.32 7 aged

34 Systemic lupus erythematosus 3194 0.33 2090 0.75 175 adulthood

35 Tuberculosis 66569 6.80 912 0.33 32 adulthood

doi:10.1371/journal.pcbi.1004885.t003
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Prior work has found considerable genetic sharing between many autoimmune diseases [6],
[12]; specific results include, ankylosing spondylitis and psoriasis [13]. The association between
ankylosing spondylitis and lupus has been reported, but is extremely rare [14]. Rheumatoid
arthritis and secondary Sjogren’s syndrome have a well-known association. The other two
results are previously identified associations between neuropsychiatric disorders; bipolar disor-
der and schizophrenia [15], and bipolar disorder and depression, although there may also be
diagnostic overlap, as depression and bipolar disorder can be confused clinically.

We furthermore identify specific genes which are common to these two groups (Table 5). In
the autoimmune subgroup those include well known associations in the HLA region such as
HLA-DRA,HLA-E[16], interleukin receptors (IL13, IL23R and IL2RA) [17, 18], [19], BTNL2
[20] andMICA[21]. Interleukins are any of a class of glycoproteins produced by leukocytes for
regulating immune responses. While these genes have been previously associated with autoim-
mune diseases, they provide an interesting opportunity to explore shared therapeutic targets
and diagnostic markers across these phenotypes.

In the neuropsychiatric subgroup some genes that are of interest include ANK3, CACNA1C,
CDH13, ITIH4 and PDE7B. Ankyrins are a family of proteins that are believed to link the inte-
gral membrane proteins and play key roles in activities such as cell motility, activation, prolifer-
ation, contact, and the maintenance of specialized membrane domains. Ankyrin 3 is an
immunologically distinct gene product from ankyrins 1 and 2, and was originally found at the
axonal initial segment and nodes of Ranvier of neurons in the central and peripheral nervous
systems. CACNA1C is a voltage-dependent calcium channel and has been previously linked to
several neurodegenerative diseases [22], [23]. CACNA1C is also an associated gene of the one
of the most highly significant SNPs for both bipolar disorder and schizophrenia in a cross-dis-
order genome wide analysis [15]. Cadhedrin, CDH13, is a known ADHD-susceptibility gene
that has been investigated in other neuropsychiatric disorders [24], [25], [26]. Some of the

Fig 2. The incidence-by-age patterns of the five clusters identified. Using data from Stanford’s EMR,
each graph shows the incidence at each age, averaged over all disorders in the cluster. The loess smoother
marks the overall trend with a colored band. The same cluster colors are used throughout this paper. See the
text for description of the cluster names.

doi:10.1371/journal.pcbi.1004885.g002
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Fig 3. Network structure of the significant disease pairs that occur in both EMRs. Each node represents a disease, with the node size scaled to the
disease frequency in the Columbia EMR. Each edge connects statistically significant pairs, with the edge width scaled to the effect size (observed number
divided by expected number). Node color corresponds to the cluster colors in Fig 2.

doi:10.1371/journal.pcbi.1004885.g003
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other shared genes such as ITIH4, inter-alpha-trypsin inhibitor heavy chain family, member 4,
and PDE7B, phosphodiesterase 7B do not have clearly known links to the neuropsychiatric
phenotypes and might be interesting to explore further.

“Clinical without observed genetic effect” results
In this section we report disease pairs that are significant in both EMRs, but not significant in
VARIMED (“clinical without observed genetic effect”). One protective interaction was found:
alcoholism and goiter. This pair in the Columbia dataset has an observed/expected ratio of

Fig 4. Venn diagrams showing the overlap of the disease pairs from the two electronic medical records and from VARIMED. At the top, the leftmost
diagram shows the overlap of statistically significant disease pairs that are underrepresented in Columbia and in Stanford; the rightmost diagram is for
overrepresented pairs. The bottom diagram shows the overlap between the conjunctions (overlapping regions) of the upper diagrams and the disease pairs
in VARIMED. Arrows show how the results from the EMR sources were combined with the VARIMED results. The counts of disease pairs shown do not
correspond exactly to those in Tables 6 and 7 because the VARIMED results here include discordant pairs, underrepresented in one EMR and
overrepresented in the other.

doi:10.1371/journal.pcbi.1004885.g004
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0.501 (p< 1.55 × 10−22); in the Stanford dataset, 0.297 (p< 6.16 × 10−61). Table 6 shows the 23
overrepresented interactions.

As expected, disorders with clear environmental triggers are apparent in both lists: alcohol,
injection drug use (HIV, hepatitis B and C), and diet (diabetes type 2, and gout). Of the protec-
tive pairs, alcoholism and goiter have been previously noted to be underrepresented [27].

Most of the detected synergistic interactions are well-known. These include: alcoholism and
bipolar disorder, alcoholism and depression, alcoholism and schizophrenia, depression and
schizophrenia, and the alcoholism and injection drug-associated pairs. Of those less familiar,
references are provided here: depression and migraine [28], migraine and lupus [29], cardio-
myopathy and diabetes [30], aortic aneurysm and cardiomyopathy [31], diabetes type 2 and
gout [32], attention deficit and autism [33]. The association between alzheimer’s and parkin-
sonism is very likely due to diagnostic overlap, given known differences in mechanism but dif-
ficulties in the clinical diagnosis of dementia subtypes. Lack of clear genetic signal for all these
pairs does not completely rule out any genetic connection, as some disorders may have not yet

Table 4. Results for overrepresented (synergistic) disease pairs that are significant in Columbia and Stanford EMRs and in VARIMED.Results are
sorted by cluster and by Obs/Exp within each cluster.

Columbia Stanford

Disease 1 Disease 2 Cluster name Obs/Exp P-value Obs/Exp P-value

1 Ankylosing spondylitis Psoriasis adulthood 7.13 6.22E-10 2.57 6.85E-04

2 Ankylosing spondylitis Systemic lupus erythematosus adulthood 46.88 3.13E-102 3.24 2.56E-04

3 Bipolar disorder Depression adulthood 16.27 0.00E+00 7.07 0.00E+00

4 Bipolar disorder Schizophrenia adulthood 22.34 0.00E+00 10.16 0.00E+00

5 Rheumatoid arthritis Sjogren’s s. aged 35.29 2.33E-111 10.92 1.51E-117

Obs/Exp = Observed/Expected.

doi:10.1371/journal.pcbi.1004885.t004

Table 5. Results of overrepresented disease pairs that are significant in Columbia and Stanford EMRs and in VARIMED, showing the genetic infor-
mation from VARIMED. disease1/2 genes = number of genes for each disease, gene overlap = number of shared genes, pvalue = pvalue from Fisher exact
test, OR = odds ratio, gene names = the gene symbols for the shared genes. Colons connect groups of genes all mapped from the same variant.

disease1 disease2 disease1
genes

disease2
genes

gene
overlap

pvalue OR gene names

1 Ankylosing
spondylitis

Psoriasis 38 104 9 0.00 55.60 CAST:ERAP1, ERAP1, HCP5, HLA-E, IL23R,
MICA, MUC22, PSORS1C3, PTPN1

2 Ankylosing
spondylitis

Systemic lupus
erythematosus

38 175 9 0.00 32.96 ABCF1, BTNL2, GPSM3, HCG23, HCP5, IL23R,
MSH5:MSH5-SAPCD1, MUC22, TRIM31

3 Bipolar
disorder

Depression 185 155 40 0.00 33.11 ANK3, ANKS1B, BBS1, BCL11B, C11orf80,
C15orf53, CACNA1C, CDH13, CNNM4, CNNM4:
MIR3127, CNTNAP5, DDN, FER1L5, GLT8D1,
GLT8D1:GNL3, GLT8D1:SPCS1, GNL3:PBRM1,
GNL3:PBRM1:SNORD19, GNL3:SNORD69, ITIH1,
ITIH3, ITIH4, KMT2D, LMAN2L, MACROD2,
MAPK10, MUC22, NEK4, NFIX, PBRM1, PDE7B,
PELI3, PRKAG1, REV1, SPCS1, SVEP1, SYNE1,
TENM4, TMEM132D, ZNF804A

4 Bipolar
disorder

Schizophrenia 185 208 10 0.00 5.10 ANK3, CACNA1C, CDH13, GPM6A, ITIH4,
MAD1L1, MYO5B, PDE7B, PTPRG, ZNF804A

5 Rheumatoid
arthritis

Sjogren’s s. 348 7 4 0.00 31.15 LOC100287329:LTA, LST1, LST1:NCR3, TNF

doi:10.1371/journal.pcbi.1004885.t005

Constraints from Disease Comorbidity from EMRs and Genetic Variants

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004885 April 26, 2016 10 / 18



been subject to scrutiny through GWAS studies, or have only modest effect sizes not reaching
statistical significance.

“Genetic without observed clinical effect” results
In this section we report disease pairs that have significant overlap of genetic variants in VAR-
IMED, but are not significant in both EMRs. There are 17 such pairs, shown in Table 7; when
the disease pair was significant in one EMR, that was recorded in the “EMR” column.

The group of “genetic without observed clinical effect” are those which have significant
genetic overlap in VARIMED, but not in both EMRs. Nearly all are autoimmune disorders,
and may represent pairs with sharing detected at the level of genes that do not produce path-
way interactions leading to disease phenotypes, or rare interactions that do not achieve statisti-
cal significance.

Discussion
In this paper we present a method to identify statistically significant disease pairs which display
significant comorbidity in two EMRs and share common genetic background in a large data-
base of disease-associated variants; we explicitly model the under and overrepresentation of
disease pairs, and control for the confounding effects of age on disease incidence by only

Table 6. Results for overrepresented disease pairs that are significant in Columbia and Stanford EMRs but not in VARIMED.

Columbia Stanford

Disease 1 Disease 2 Cluster name Obs/Exp P-value Obs/Exp P-value

1 Alcoholism Bipolar disorder adulthood 7.40 0.00E+00 3.32 1.55E-239

2 Alcoholism Depression adulthood 5.80 0.00E+00 2.80 1.28E-179

3 Alcoholism HIV adulthood 5.38 0.00E+00 1.89 6.96E-08

4 Alcoholism Hepatitis B adulthood 3.45 3.71E-138 1.56 9.53E-10

5 Alcoholism Schizophrenia adulthood 6.82 0.00E+00 3.93 1.74E-94

6 Alzheimer’s Parkinson’s d. aged 15.91 0.00E+00 6.95 8.46E-88

7 Aortic aneurysm Cardiomyopathy aged 4.54 3.14E-54 1.51 4.81E-10

8 Aortic aneurysm Cholelithiasis aged 2.73 3.65E-23 1.44 1.02E-07

9 Attention deficit Autism youth 31.86 6.52E-126 7.35 2.03E-172

10 Bipolar disorder Migraine adulthood 3.46 3.56E-86 1.69 2.58E-32

11 Cardiomyopathy Diabetes type 2 aged 4.61 0.00E+00 1.29 2.89E-26

12 Cholelithiasis Diabetes type 2 aged 3.04 0.00E+00 1.31 1.23E-29

13 Cholelithiasis Hepatitis C aged 3.19 5.65E-203 2.81 3.47E-101

14 Depression HIV adulthood 6.57 0.00E+00 1.72 1.44E-04

15 Depression Migraine adulthood 4.14 9.28E-286 2.09 1.27E-83

16 Depression Schizophrenia adulthood 11.74 0.00E+00 3.89 1.89E-66

17 Diabetes type 2 Gout aged 3.44 3.32E-12 2.80 5.46E-11

18 Diabetes type 2 Hepatitis C aged 4.92 0.00E+00 1.46 2.92E-48

19 Goiter Tuberculosis adulthood 1.66 1.17E-65 1.78 5.86E-05

20 HIV Hepatitis B adulthood 9.56 1.46E-213 4.67 1.76E-21

21 HIV Tuberculosis adulthood 6.03 0.00E+00 3.12 1.03E-03

22 Hepatitis B Tuberculosis adulthood 4.28 0.00E+00 4.07 2.83E-14

23 Migraine Systemic lupus erythematosus adulthood 3.96 5.45E-31 1.75 9.76E-12

Obs/Exp = Observed/Expected.

doi:10.1371/journal.pcbi.1004885.t006
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comparing diseases when they fall in the same cluster of similarly-shaped incidence patterns.
The method is fast, easy to interpret, and can be extended in a straightforward manner to other
EMRs, data from national health systems, and large insurance databases.

Our primary aim is to identify disease pairs which might share a common mechanism or
treatment option for further exploration and research. We link disease pairs that are under
or overrepresented in EMR data to statistically significant overlapping genes sets for the
same pairs. The genetic variants are known to have phenotypic effects, while EMRs capture a

Table 7. Results for disease pairs that are significant in VARIMED after removing pairs that are significant in both Columbia and Stanford EMRs.

Disease 1 Disease 2 Cluster
name

Disease 1
genes

Disease 2
genes

Gene
overlap

P-value OR EMR

1 Alopecia areata Behcet’s s. other 75 42 6 3.47E-
08

38.73

2 Alopecia areata Celiac sprue other 75 45 7 1.37E-
09

42.79

3 Alopecia areata Diabetes type 1 other 75 323 40 4.36E-
49

65.18

4 Alzheimer’s Diabetes type 2 aged 179 254 12 8.84E-
06

5.24 C

5 Ankylosing
spondylitis

HIV adulthood 38 92 7 9.93E-
10

45.80

6 Ankylosing
spondylitis

Multiple sclerosis adulthood 38 261 10 1.08E-
10

25.32 C

7 Behcet’s s. Diabetes type 1 other 42 323 18 6.74E-
21

42.80

8 Celiac sprue Diabetes type 1 other 45 323 16 3.46E-
17

31.49 S

9 HIV Multiple sclerosis adulthood 92 261 26 4.00E-
26

27.90

10 HIV Psoriasis adulthood 92 104 15 1.74E-
17

34.94 C

11 HIV Systemic lupus
erythematosus

adulthood 92 175 27 7.99E-
32

44.09

12 Multiple sclerosis Psoriasis adulthood 261 104 28 1.60E-
25

21.56 C

13 Multiple sclerosis Schizophrenia adulthood 261 208 14 2.47E-
06

5.06 C

14 Multiple sclerosis Systemic lupus
erythematosus

adulthood 261 175 47 1.92E-
42

23.34 C

15 Parkinson’s d. Rheumatoid arthritis aged 151 348 15 2.22E-
07

5.84 C

16 Psoriasis Systemic lupus
erythematosus

adulthood 104 175 26 1.06E-
28

35.40 C

17 Schizophrenia Systemic lupus
erythematosus

adulthood 208 175 10 3.84E-
05

5.37

Disease 1/2 genes = number of genes for each disease in VARIMED,

Gene overlap = number of shared genes,

OR = Odds ratio,

EMR = which EMR had result,

C = Columbia,

S = Stanford.

doi:10.1371/journal.pcbi.1004885.t007
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broad collection of diseases states that are severe enough to require diagnosis and treatment,
and represent a constellation of genetic predispositions, environmental influences, and
social and economic factors that affect when diseases are detected. Many of the predisposing
factors in EMRs are not measured, but we can find pairs that have known genetic associa-
tions and also find pairs that do not. As always for candidate generation or prioritization
methods, the question arises of how to validate novel results, given that validating experi-
ments have not yet been conducted. By contrasting results in two EMRs and in a database of
genetic variants, we have reduced the chance that the same biases are operating across all
data sources.

There are several limitations of our approach which should be recognized. Our method only
compares diseases when they fall in the same cluster. This is a simple, but conservative, match
on age patterns, and should enrich results for true positives at the expense of missing other true
positives that would only be found in cross-cluster comparisons. For example, because autism
and Alzheimer’s disease would fall in different age-incidence clusters and would not be com-
pared, possible interactions between those disorders would not be detected. VARIMED, while
large, contains only published results, reflecting investigators’ choices of important areas of
study, including, as we found, autoimmune disorders and neuropsychiatric disorders. Also,
VARIMED focuses primarily on common variation as most genetic association has been based
on genotype-based GWAS. VARIMED (and other databases) are not randomly sampled from
the space of biological phenomena, and the absence of a genetic variant may only mean that
such have not yet been investigated. It is likely that our method will fail in such circumstances
to identify comorbid pairs using the conjunction of data from EMRs and from VARIMED,
which is a source of bias. In addition, we link to EMR records on the basis of a straightforward,
but necessarily imprecise, mapping through a disease name. We restrict the genetic analysis to
the genes and do not consider the allele-specific relationships (risk-enhancing or risk-moderat-
ing). Although both gender and ethnicity are known to be important covariates for the preva-
lence of disease, because the available Columbia data were not stratified by gender or ethnicity,
neither were used in this study. This would be particularly important for autoimmune disor-
ders with their known gender dependence; combining the genders for analysis, as we had to
do, may have diluted statistical signal, and would explain the appearance of results in Table 7.
Finally, the set of diseases examined was restricted to the 161 in the original Rzhetsky study,
and further restricted by the limited overlap with VARIMED; although drawing from both
common and rare diseases, the set is small compared to the full range coded by ICD9. Prior
studies have found multiple protective interactions between CNS disorders and cancers [34]
but, unfortunately, few cancers were in the list of disorders analyzed here. In spite of these limi-
tations, we hope this study can serve as a proof of principle for integrating EMR and genetics
data to uncover relationships between diseases. Using larger data sets, and incorporating
important covariates and the direction of allele-specific risk would important validating exten-
sions of the current work. Furthermore, text mining of EMR clinical notes and other databases
of environmental exposures could represent an opportunity for identifying non-genetic causes
of diseases.

In conclusion, we have presented a method integrating clinical EMR and genetics data in
order to elucidate disease comorbidity. We identify a set of disease pairs which deviate from
the independence assumption in their co-occurrence in two different EMR systems. By inte-
grating the clinical observations with genetics, we are further able to categorize which of the
disease pairs might be explained by the shared genetics and which might have more of an envi-
ronmental component.
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Materials and Methods

Ethics statement
Our validation data set used patient records from Stanford’s electronic medical record system,
STRIDE (Stanford Translational Research Integrated Database Environment). The data
request was judged to be exempt from human subject concerns by the Stanford Institutional
Review Board, and was also approved by its Data Privacy Office. The Stanford data were
retrieved June 6, 2013. Encounter records contained a masked patient identifier, current age,
gender, ethnicity, icd9, and age at visit. (Gender was not used because gender information was
not generally available for the Columbia data. Ethnicity was not used for the same reason.)
Because of small numbers of very old patients, ages were censored at 90 years for privacy rea-
sons by STRIDE staff prior to our use.

Clinical data analysis
For the electronic medical record data, the discovery data set comes from the composite data
for the Columbia EMR, published as an online appendix of [2], which lists counts of diseases
and disease pairs for a total of 161 disorders. As described in the original article, “We selected
disorders that represent a broad spectrum of maladies, from common to rare, affecting diverse
physiological systems, yet we also placed special emphasis on neurological phenotypes.”

The total number of patients was 1,478,976, however because these records include data on
healthy hospital employees, the total was lowered by 500,000 as described in their Appendix 2,
p 19. Disease count data were extracted from their Appendix 3, and disease-pair count data
were extracted from Supplemental Information Data Set 1. Separately, the mapping from ICD9
codes to disease names was taken from their Appendix 3; a small number of mapping errors
were corrected by hand.

For validation, patient-level data were retrieved from STRIDE (Stanford Translational
Research Integrated Database Environment) [35] for the same 161 diseases to allow for direct
comparison with the Columbia data. The raw data contained 1,057,132 records for 397,474
patients. We focus our analysis on data starting in the year 2008, which was the year of compre-
hensive EMR rollout. When there were fewer than 50 patients with a disease, that disease was
judged too rare to contribute to the incidence frequencies in a meaningful way, and was
removed. This left data for 277,290 patients. Also, disease pairs were removed if any of the cells
in the 2 × 2 table had observed or expected values less than 5.

The EMR records were aggregrated and processed to retain the earliest occurrence of each
ICD9 code for each patient, which were then consolidated using the ICD9-to-disease mapping
from [2] to produce a table of patient counts for each disease name. A similar procedure was
used to count disease pairs.

Correcting for age bias through clustering
Biases arise from EMR data not being a random sample of diseases in the population. For
example, autism and Alzheimer’s disease have very different incidence patterns. (See Fig 5.) It
would be unlikely for a patient to have this disease pair in their records, even if they were ulti-
mately afflicted by both disorders, because young patients at risk for autism would not also be
at risk for Alzheimer’s until many years in the future, and those at risk for Alzheimer’s would
have been at risk for autism in an era when the EMR did not exist, even if autism had then
been a clearly defined syndrome. This will lead to systematic undercounting of these and simi-
lar disorder pairs.

Constraints from Disease Comorbidity from EMRs and Genetic Variants
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To control for the confounding effects of age, disease pairs were analyzed only when both
diseases could be put in the same age-incidence cluster. Clusters were formed so as to be as
large as possible (to maximize the number of subsequent disease comparisons), while simulta-
neously imposing within-cluster homogeneity, so that each cluster had similar age-incidence
patterns. The age-incidence clustering used from patient-level data for Stanford; corresponding
details for the Columbia data were not available.

Each disease was represented as a 91-dimensional vector containing counts of the number
of patients whose earliest onset of that disease occurred for each of the ages 0 years through 90
years. For normalization, each vector was divided by its length to produce unit vectors. Hierar-
chical clustering with Ward’s method for linkage was chosen to produce clusters that were
compact and of similar size.

Cluster size was determined in a data-driven manner by systemically searching through
possible clustering methods and cluster scoring measures. The methods and measures were
taken from those provided by the R package COMMUNAL and are listed in the Supplemental
Material. The cluster measures (also known as cluster indices) provide scores for each method
and each cluster size. The measures were combined into a composite score by standardizing
each measure (zero mean, unit variance) and then averaging. All measures were converted to
have the same sense, so that larger values were associated with more desirable clusters. Any
measure with a monotonic function (either increasing or decreasing) of cluster size for all
methods and measures was removed because such a measure would be minimized or maxi-
mized at the extremes of the search range for cluster size, and thus not be responsive to pat-
terns in the data.

Pairs of diseases that showed significant comorbidity pairs were identified in the Columbia
data and verified in the Stanford data, so all pairs reported here were statistically significant in
both. In addition, only pairs that were underrepresented in both EMRs or overrepresented in
both EMRs were retained, ensuring consistent directionality; discordant pairs were not ana-
lyzed. Statistical significance was computed using the Fisher exact test. Bonferroni correction
was applied using the number of diseases in each cluster. The conventional level of significance,
0.05, was used for all tests.

Fig 5. Incidence-by-age graphs for autism and Alzheimer’s disease. Because of the gross disparities in
these patterns, patients at risk for one disorder would be a low risk for the second disorder at any given age,
reducing the observed comorbidity.

doi:10.1371/journal.pcbi.1004885.g005
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Genetic analysis
Genetic associations came from VARIMED, a hand-curated database of published phenotype-
associated genetic variants [3]. As of May, 2015, this database contained variants from 17,088
publications, with 466,890 SNPs associated with 2,992 diseases or traits. SNPs were mapped to
genes using the dbSNP annotation database. Sometimes, a variant maps to more than one
gene. In such cases, we use colons to separate the genes in a single group; this notation is used
in Table 5. Phenotype descriptions were mapped by hand to the set of 161 disease names used
for the Columbia and Stanford data. There were 35 diseases that appeared in Columbia, Stan-
ford, and in VARIMED (Table 3). Because VARIMED is proprietary, the relevant subset of 35
diseases, with associated genes, chromosome number, and PubMed ID of the source of each
association were extracted and used for the analysis we report here. This dataset is included in
the Supplement.

Genetic variants that were significantly associated with each phenotype of interest were
obtained from VARIMED and mapped to gene names. In this study, we used significant dis-
ease-SNP associations (p< 10−6) with known risk alleles and published odds ratios. The num-
ber of genes associated with each of the 35 diseases of interest are shown in Table 3. We
furthermore focus our analysis on the gene level, specifically calculating enrichment of the
number of overlapping genes between two phenotypes of interest. We report the number of
genes shared by the disease pair if the overlap was determined as significant by the Fisher exact
test using Bonferroni correction for the number of tests.

A network diagram (Fig 3) showing the structure of the disease pairs and their clusterings
was created using the Cytoscape software tool. In the network diagram, a node represents a dis-
ease. Two nodes are connected if that disease pair is statistically significant in the EMR data
and appears in the same age-incidence cluster. The size of a node represents the frequency of
that disease in the larger EMR (Columbia). The edge width represents the effect size for that
pair (observed number divided by expected number). The node color indicates cluster mem-
bership, using the same colors as in Fig 2.

Supporting Information
S1 Appendix. Contains information about the Columbia and Stanford EMR data sets, and
details on the age-incidence clustering method.
(PDF)

S1 File. Subset of VARIMED used in our analysis, with disease name, gene name, chromo-
some, and PubMed ID.
(CSV)

S2 File. Diseases and disease clusters.
(CSV)

S3 File. Disease pairs from Columbia EMR with statistically significant under or overrepre-
sentation.
(CSV)

S4 File. Disease pairs from Stanford EMR with statistically significant under or overrepre-
sentation.
(CSV)

S5 File. Disease pairs in intersection of Columbia and Stanford EMRs.
(CSV)
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