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Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease characterized by severe joint injury. Recently,
research has been focusing on the possible identification of predictor markers of disease onset and/or progression, of joint
damage, and of therapeutic response. Recent findings have uncovered the role of white adipose tissue as a pleiotropic organ not
only specialized in endocrine functions but also able to control multiple physiopathological processes, including inflammation.
Adipokines are a family of soluble mediators secreted by white adipose tissue endowed with a wide spectrum of actions. This
review will focus on the recent advances on the role of the adipokine network in the pathogenesis of RA. A particular attention
will be devoted to the action of these proteins on RA effector cells, and on the possibility to use circulating levels of adipokines as

potential biomarkers of disease activity and therapeutic response.

1. Introduction

An emerging body of evidence suggests that the white adipose
tissue (WAT) plays more than just the role of energy storage
compartment and thermal and mechanical insulator. WAT
is now recognized as a pleiotropic organ specialized in
endocrine functions being able to produce several hormones
and other proteins involved in both physiological and patho-
logical processes, including immunity and inflammation [1].
The biological active substances secreted by WAT contribute
to the systemic “low-grade inflammatory state” associated
with obesity [2, 3]. Indeed, increased circulating levels of
several markers of inflammation occur in obese subjects, such
as IL-6, TNF-«, C-reactive protein (CRP), and plasminogen
activator inhibitor I (PAI-I) [4, 5]. It should be also considered
that infiltrating macrophages represent an important source
of inflammatory mediators which further promote and sus-
tain inflammation [6]. The term “adipokines” is applied
to all the biological active substances synthesized by WAT
which function as regulators of energy homeostasis and
metabolism; the same mediators are also involved in chronic
inflammation and metabolic dysfunctions [7].

Rheumatoid arthritis (RA) is a chronic systemic autoim-
mune disorder characterized by synovial inflammation, car-
tilage damage, and bone erosion, with 1% prevalence world-
wide [8]. Although the pathogenesis of this disease is poorly
understood, several observations indicate that adipokines
affect tissues and cells involved in RA, including synovium,
cartilage, bone, and immune cells [9]. In the present review
we will describe the information available on the role of
adipokines in RA pathogenesis, focusing on the role of
adiponectin, leptin, chemerin, visfatin, resistin, lipocalin 2,
SAA3, and a few others, in light of their possible consid-
eration as new potential circulating biomarkers of disease
activity and therapeutic response.

2. Adiponectin

Adiponectin (also called GBP28, AdipoQ, ApMlI, and
Acrp30) is a collagen-like protein with a structure similar
to the complement factor Clq. Adiponectin is mainly pro-
duced by adipocytes and is present, in different molecular
isoforms, at high levels (3-30 yg/mL) in the blood [10, 11].
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Two adipokine receptors were recently identified, AdipoRl,
mainly expressed in skeletal muscles, and AdipoR2 which
is expressed in the liver [12]. The signaling transduction
pathways of adiponectin receptors involve the activation
of the adaptor protein APLLI [13] and many signaling
molecules, including AMPK, p38 MAP kinases, and PPAR-
a and PPAR-y [10, 14]. The main functions of adiponectin
are, in the muscle, the increase of fatty acid oxidation and
glucose uptake and, in the liver, the reduction of glucose
synthesis.

Low levels of circulating adiponectin, as those observed
in obesity, type 2 diabetes, atherosclerosis, vessel inflam-
mation, and metabolic syndrome, suggest a protective
function. Accumulating evidence supports a potential role
of adiponectin in controlling inflammation. For instance,
adiponectin was reported to inhibit the transformation of
macrophages into foam cells [15], to stimulate the pro-
duction of the anti-inflammatory cytokine IL-10 [16], to
reduce the production of TNF-« [17], to induce tolerance
in response to TLR ligands [18], and to promote the anti-
inflammatory M2 macrophage polarization (Figure1) [19].
The anti-inflammatory effects of adiponectin have been,
to some extent, ascribed to its capacity to alter ceramide
metabolism and to promote sphingosine-1-phosphate syn-
thesis [20]. However, evidence that adiponectin may act as
a proinflammatory mediator promoting extracellular matrix
degradation and joint disruption is also available. Indeed, in
cultured chondrocytes, adiponectin increases the expression
of MMP-3 [21] and the secretion and activity of proin-
flammatory mediators, such as nitric oxide synthase type
II (NOS2/iNOS), MMP-9, IL-6, MCP-1, and IL-8 [22, 23].
Similarly, adiponectin is able to stimulate the production
of PGE2, IL-6, IL-8, vascular endothelial growth factor
(VEGF), MMP-1 and MMP-13, cyclooxygenase 2 (COX-2),
and microsomal prostaglandin E synthase 1 (mPGES-1) [24,
25] in RA synovial fibroblasts (Figure 1). In RA, the cellular
targets of adiponectin may also include lymphocytes and
endothelial cells, further supporting the role of adiponectin
in this pathology [26].

In RA patients, the serum/plasma levels of adiponectin,
as well as the levels in the synovial fluid, are associated
with radiographic damage [27] and are increased compared
to osteoarthritis patients (OA) and healthy donors [28, 29].
Increased adiponectin levels positively correlate with the
disease activity score 28 (DAS28), the erythrocyte sedimen-
tation rate (ESR), and the rheumatoid factor (RF) [30].
Recently, Klein-Wieringa et al. reported that the baseline lev-
els of adiponectin can also predict radiographic progression
over a four-year period independently of the presence of
anticyclic citrullinated peptide (CCP) antibodies and body
mass index (BMI) [31]. In addition, the elevation of total
and high molecular weight adiponectin was described in
patients with RA treated with anti-TNF agents (e.g., inflix-
imab and etanercept) [32, 33] (Table 1). Finally, considering
the detrimental effects of this adipokine in perpetuating
joint inflammation, the use of adiponectin as a potential
therapeutic target of blocking therapies has been proposed
[34].
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3. Leptin

Leptin, the product of ob gene, is a 16 kDa nonglycosylated
hormone peptide [35] which binds the OB-Rb long form
leptin receptor coupled to a JAK/STAT signaling pathway
[36, 37]. Leptin is considered the major regulator of body
weight, since it induces the decrease of food intake and
increases energy consumption [38]. Leptin is mainly pro-
duced by WAT and the circulating levels of leptin correlate
positively with the amount of adipose tissue and BMI [39].
However, leptin synthesis is also regulated by the action of
inflammatory mediators [40]. Leptin is generally considered
a proinflammatory adipokine. In fact, leptin stimulates the
production of proinflammatory cytokines, such as TNF-«
and IL-6, and reactive oxygen species in cultured monocytes.
In addition, it induces the production of CC-chemokines by
macrophages and alters the Th1/Th2 balance favoring the Thl
phenotype (Figure 1) [41-43]. Moreover, leptin null mice are
protected in experimental models of T cell mediated hepatitis
and experimental autoimmune encephalomyelitis [44, 45].
Leptin has been associated with autoimmune diseases,
in particular with RA. However, there are conflicting obser-
vations concerning the circulating levels of leptin in RA
patients, since some studies suggested a correlation between
leptin levels and disease activity [28, 46, 47], while others
failed to detect changes in circulating leptin levels [48]; inter-
ference of concomitant pharmacological treatments might be
responsible for these apparently contrasting results. In exper-
imental models of arthritis, leptin deficient mice showed
a milder form of antigen-induced arthritis associated with
the reduction of IFN-y production and the increase in IL-
10 secretion by in vitro reactivated lymph node cells [49].
In contrast, leptin-deficient and leptin receptor-deficient
mice exhibited a delayed resolution of the disease [50]; the
administration of leptin ameliorated disease activity [51].
These conflicting results do not allow coming to a clear
conclusion on the role of leptin in RA. To note, leptin
circulating levels apparently are not modulated in patients
treated with anti-TNF-« therapy [52-54] (Table 1). Recently,
the serum/synovial fluid ratios of leptin levels were associated
with disease duration and erosion [55]. In addition, several
in vitro studies sustained the pathogenic role of leptin in
RA. In human and murine chondrocytes, leptin synergizes
with IL-1$3 and IFNy for the activation of type 2 nitric oxide
synthase (NOS) and the induction of IL-8 and metallo-
proteinases via a JAK2, PI3K, and MAP kinase-dependent
signaling pathway [23, 56-58]. Leptin also induced IL-8 in
human synovial fibroblasts with a NFxkB-dependent pathway
[59]. Furthermore, leptin can also modulate the activities of
several immune cells [60]. For instance, in murine dendritic
cells, leptin increases CD40 expression and T cell priming
(Figure 1) [61]. Matarese et al. showed that leptin-null and
leptin receptor-null mice have increased levels of Treg cells
and are protected in experimental models of autoimmune
diseases [45]. In keeping with this observation, high leptin
levels are associated with a reduction of Treg and with
the activation of proinflammatory effector T cells [62-64].
Recently, it was shown that the leptin-induced state of overex-
pression of the mTOR pathway, in freshly isolated Treg cells, is
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FIGURE I: Role of adipokines on RA effector cells. The role of different adipokines on RA target cells is illustrated in the figure. WAT:
white adipose tissue, SAA3: serum amyloid A3, FLS: fibroblast-like synoviocytes, AC: articular chondrocytes, PMN: neutrophils, MMP:
metalloprotease, COX-2: cyclooxygenase 2, ROS: reactive oxygen species, iNOS: inducible nitric oxide synthase, CC-CK: CC-chemokines,
TG2: transglutaminase 2, and TERA: transitional endoplasmic reticulum ATPase.

responsible for their state of hyporesponsiveness. Therefore,
it is conceivable that Treg activation is dependent on the
dynamic regulation of mTOR activity by the composition of
the extracellular milieu, such as the concentrations of leptin
and cell nutrients [65]. These results clearly depict leptin as
a pleiotropic molecule placed at the crossroads of immune
tolerance, metabolism, and autoimmunity. Further studies
are needed in order to clarify whether leptin might represent a
new disease activity biomarker and to explore its therapeutic
potential in autoimmune diseases.

4. Chemerin

Chemerin is a 16 kDa protein, originally described as the
product of the Tazarotene-induced gene 2 (Tig2) [66] and
purified from ascitic fluids of ovarian cancer patients and
synovial exudates of rheumatoid arthritis patients [67].
Chemerin is secreted as an inactive precursor protein which is

subsequently converted into a bioactive protein following the
proteolytic removal of the last six or seven amino acids from
the C-terminal end [68]. Chemerin was first described as
the functional ligand of the chemotactic receptor ChemR23.
Dendritic cells, macrophages, and NK cells express ChemR23
and a role for chemerin in their recruitment into inflamma-
tory sites was described in lupus erythematosus, oral lichen
planus, and psoriasis [69-72]. More recently, the adipokine
function of chemerin was proposed, since chemerin is mainly
produced by WAT and plays important regulatory role in
adipogenesis in vitro [73]. In addition, chemerin is con-
sidered a biomarker of adiposity, because chemerin levels
strongly associate with BMI [74], markers of inflammation
(e.g., TNF-q, IL-6, and CRP) [75], and metabolic syndrome
[76]; chemerin circulating levels decrease with weight and fat
loss [77]. Human articular chondrocytes express chemerin
and its receptor ChemR23 and secrete proinflammatory
cytokines, such as IL-6, IL-8, and TNF-a, and metallopro-
teases, in response to chemerin stimulation (Figure 1) [78].
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TaBLE 1: Correlation of adipokines with disease activity parameters and therapeutic response.

Adipokine Correlation with

DAS28 BMI IL-6/TNF/ESR Anti-CCP Radiographic progression Therapeutic response
Adiponectin  pos [30] neg [31] pos [30] neg [31] pos [27, 31] Anti-TNF: pos [32, 33]
Leptin pos [46] neg [46] neg [31] no [31] neg [98] Anti-TNE: neg [52]
Chemerin pos [80]  neg, pos [80] pos [78] ND ND Anti-TNF: pos [81]
Visfatin neg[102]  neg [149] pos (31l pos [31], neg [102] pos [100] Ant;ifc: II)‘;% :[g’oli’[ll’(;’;][%]
Resistin pos[30]  pos[3l]  pos [3L, 118] I‘;’Oisniiesrgﬁﬁ?t ND Anti-TNE: pos [118]
Lipocalin 2 ND ND ND ND ND ND
SAA3 ND ND ND ND ND ND
Vaspin SF pos [150]  pos [147] SF neg [150] SF neg [150] ND ND
Omentin  SF neg [150]  neg [152] SF neg [150] SF pos [150] ND ND
Apelin ND ND ND ND ND DMARD:s: neg [158]
Adipsin ND pos [31] pos [31] ND neg [31] DMARDs: pos [160]

Abbreviations: pos: positive; neg: negative; SF: synovial fluid; ND: not determined. Where not specified, the correlations are referred to serum levels. Positive
correlation with therapeutic response is assumed when the adipokine levels are modified (either they increase or decrease) by the treatment.

In RA patients the expression of chemerin and ChemR23
in fibroblast-like synoviocytes (FLS) was found increased
compared to OA patients. Chemerin was reported to mediate
direct proinflammatory and stimulatory effects on the RA-
FLS [79], suggesting a pivotal role of the chemerin/ChemR23
axis in the pathogenesis of RA. A recent study reported that
RA patients have increased levels of circulating chemerin
and chemerin levels positively correlated with disease activity
(DAS28, ESR, and CRP) [80]. Circulating chemerin levels are
negatively regulated by the anti-TNF therapy (adalimumab)
in parallel with the reduction of disease activity markers,
such as DAS28, ESR and CRP, and IL-6, and the macrophage
migration inhibitory factor (MIF) levels [81] (Table 1). These
results nominate chemerin serum levels as a biomarker for
disease activity and therapeutic response.

5. Visfatin

Visfatin, also known as pre-B-cell colony-enhancing fac-
tor (PBEF) and nicotinamide phosphoribosyltransferase
(Nampt), was originally described as a cytokine involved
in early B-cell development and was later renamed vis-
fatin since it is secreted mainly by visceral fat [82]. In
addition, leukocytes, in particular granulocytes and mono-
cytes/macrophages, from obese patients produce high levels
of visfatin [83-85]. Visfatin is also produced by endotoxin-
challenged neutrophils, where it functions as an antiapoptotic
molecule acting at level of caspases 3 and 8 [86]. Visfatin
was also suggested to have insulin-like functions [87, 88].
A specific receptor for visfatin has not been identified yet.
Nevertheless, the proinflammatory action of visfatin was
described to be mediated by the insulin signaling pathway
through Akt phosphorylation [89].

Circulating levels of visfatin correlate with obesity and
type 2 diabetes and are reduced after weight loss [90]. Visfatin
was also proposed to promote atherosclerosis and to cause
plaque destabilization through the induction of proinflam-
matory mediators and adhesion molecules in endothelial
cells [91-93]. Several observations sustain the hypothesis
that visfatin may play a major role in the pathogenesis of
RA. Recent studies reported the upregulation of visfatin in
activated RA-SFs in response to proinflammatory stimuli,
such as IL-6 and the activation of TLR3 [94, 95] with visfatin
acting as an autocrine positive feedback mechanism for IL-
6 production [96]. In RA synovium, visfatin was predomi-
nantly expressed in the lining layer, lymphoid aggregates, and
interstitial vessels. In RA-SFs, visfatin induced high amounts
of chemokines such as IL-8 and CCL2, proinflammatory
cytokines (i.e., IL-6), and matrix metalloproteinases (i.e.,
MMP-3) (Figure1). Visfatin promoted fibroblast migration
and induced phosphorylation of p38 MAPK; of note, inhi-
bition of p38MAPK strongly reduced visfatin effects [97].
Finally, visfatin inhibition significantly reduced the severity
of the disease and TNF-« circulating levels in the experimen-
tal model of collagen-induced arthritis [98, 99].

In RA, circulating levels of visfatin are increased [28], as
well as its expression in synovial fluids and inflamed syn-
ovium [94-96]. Visfatin serum and synovial fluid levels cor-
related with the degree of inflammation, with the severity of
the disease, and with joint damage [31, 95,100]. Contradictory
results are available on visfatin levels in patients undergoing
anti-TNF-« therapy. In one study no significant changes were
observed [101], while in others a negative correlation with
therapy was found [91]. In general, visfatin serum levels better
correlated with the number of circulating B cells rather than
with the disease activity and were profoundly affected after B-
cell depletion therapy with rituximab. The lack of change in
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serum visfatin levels is suggested to predict worsening disease
activity [102] (Table 1).

6. Resistin

Resistin is a cysteine-rich protein of 12.5kDa also known as
adipocyte-secreted factor (ASF) or “found in inflammatory
zone 3” (FIZZ3) [103]. In RA experimental models, resistin
promotes insulin resistance, while the function in humans is
still unclear [104]. Even if resistin was originally described to
be produced only by WAT, subsequent studies demonstrated
that, in humans, resistin mainly derives from circulating
monocytes and macrophages [105]. The resistin receptor is
still unknown and recently TLR4 was proposed to mediate
resistin proinflammatory functions in human cells [106].
Resistin has a strong impact on immune functions. It can
enhance the expansion of Treg cells through an effect on
dendritic cells (Figure 1) [107]. Proinflammatory mediators
increase resistin expression; in turn, resistin induces TNF-q,
IL-12, IL-6, and IL-18 production [108, 109]. These findings,
together with the observation that the intra-articular injec-
tion of resistin in the knee joints induces arthritis, sustain
the involvement of resistin in RA pathogenesis [110]. Several
reports have demonstrated that serum resistin levels are
significantly higher in RA than in OA patients or healthy
controls [111-113]. The increased serum levels of resistin cor-
related with markers of inflammation, such as CRP, ESR, IL-
1Ra, and total leukocyte count [47, 114-117], disease activity
(DAS28), and joint destruction [112]. However, these results
were not confirmed by other groups [111], and conflicting
results were reported on the association between resistin and
radiographic progression signs [27, 31, 100]. Recently, the
anti-TNF-« therapy was reported to modulate resistin levels
in RA patients [118, 119] (Table 1). Resistin levels in synovial
fluids and in the sublining layer are higher in RA than in
OA patients [29, 110, 112]. These results strongly suggest that
resistin production is elevated at the site of inflammation and
accumulates in the synovial fluid of RA patients. In anti-CCP
positive patients, synovial fluid resistin levels, but not serum
levels, correlated with disease progression suggesting resistin
as a disease progression marker [111].

7. Lipocalin 2

Lipocalin 2 (LCN2), also known as siderocalin, 24p3, utero-
calin, and neutrophil gelatinase-associated lipocalin (NGAL),
is a recently identified glycoprotein stored in neutrophil
granules [120] but mainly produced by WAT [121, 122]. LCN2
has been isolated in different isoforms and its functions are
carried out by the activation of the cellular receptor megalin
[123]. LCN2 binds and transports small lipophilic substances,
such as retinoids, arachidonic acid, steroids, iron, and fatty
acids [124-126]. Other functions that have been attributed
to LCN2 are the induction of apoptosis in hematopoietic
cells [127], the inhibition of bacterial growth [128, 129],
regulation of iron metabolism [130], and insulin resistance
[131]. LCN2 is induced by inflammatory stimuli through

the activation of the NFkB pathway [132]; however dexam-
ethasone promotes LCN2 production in chondrocytes [133,
134]. LCN2 is involved in the allosteric activation of MMP-
9 [135] and levels of MMP-9 are higher in the serum and
synovial fluid of RA patients [136]. Recently, LCN2 synovial
fluid levels were found to be increased in RA compared
to OA patients [137]. Through a proteomic approach, GM-
CSF was found to induce LNC2 upregulation in neutrophils,
which in turn can influence synoviocyte behavior through the
release of several enzymes, such as transglutaminase 2 (TG2),
cathepsin D, and transitional endoplasmic reticullum ATPase
(TERA) (Figure 1), which contribute to both inflammation of
synovium and proliferation of synovial cells, promoting the
RA state [137].

8. SAA3

The serum amyloid A3 (SAA3) belongs to the family of acute
phase serum amyloid A proteins produced by hepatocytes
[138] and other cell types, including adipocytes [139, 140].
SAA3 was associated to altered metabolic and immunocom-
promised conditions [141, 142]. Several stimuli, such as TNF-
«, IL-1/3, dexamethasone, IL-6, and LPS, can increase SAA3
expression [139, 140, 143]. Recently, SAA3 was suggested to
directly activate the MyD88-dependent TLR4/MD-2 pathway
[144].

In a rabbit Ag-induced arthritis model, upregulation of
SAA3 transcripts was detected in cells infiltrating into the
inflamed joint, in the area where pannus formation starts and,
most notably, also in chondrocytes. In vitro, recombinant
human SAA induces matrix metalloproteinase transcription
in human chondrocytes (Figure 1). Further, SAA is highly
expressed in human RA synovium [145]. Recently, Geurts et
al. proposed that a SAA3-promoter report may have a diag-
nostic value in the classification of RA molecularly distinct
forms with different degree of synovial tissue inflammation
[146].

9. Other Adipokines

Vaspin, visceral adipose tissue-derived serine protease
inhibitor, is expressed predominantly in visceral adipose
tissue [147]. Expression of the vaspin gene positively
correlates with BMI and administration of the protein
to obese mice improved glucose tolerance and insulin
sensitivity [147, 148]. Vaspin levels are increased in the serum
and synovial fluid of RA patients [149, 150] (Table 1).
Omentin, also known as intelectin, is a protein secreted
by omental adipose tissue and highly abundant in human
plasma [151]. Both circulating protein levels and mRNA levels
in adipose tissue decrease in obese subjects and correlate
negatively with markers of obesity, such as BMI, waist cir-
cumference, and circulating leptin [152] (Table 1). Expression
of the omentin gene was reported in omental adipose tissue
of patients with Crohn’s disease, suggesting a role in chronic
inflammatory diseases [151]. The levels of omentin were found
significantly reduced in the synovial fluid of patients with RA
compared to OA patients [150]. On the contrary, circulating



levels of omentin were significantly higher in patients with
juvenile idiopathic arthritis compared to healthy controls
[153].

Apelin is a bioactive peptide, originally identified as the
endogenous ligand of the G-protein coupled receptor APJ
[154]. Apelin is mainly produced by adipocytes, its expression
is upregulated by insulin, and TNF-« and its levels are
increased in obesity [155, 156]. Apelin has been implicated
in the pathogenesis of OA, since high circulating levels are
increased in the sera and synovial fluids of OA patients [157].
In early-stage RA patients serum apelin levels were found
to be decreased but were insensitive to pharmacological
treatment [158] (Table 1).

Adipsin, also known as complement factor D, is highly
expressed in adipose tissue and in activated monocyte/
macrophages [159]. Circulating levels of adipsin did not
predict the radiographic progression of early-stage disease
[31]; however, increased adipsin levels were found to be
associated with a higher remission rate in early RA patients
treated with DMARD [160] (Table 1).

10. Conclusions

The discovery of adipokines has profoundly changed our
understanding of the functions of adipose tissue. The
adipokine network is involved in the interplay between
WAT, metabolic disorders, and immune-mediated diseases.
Adipokines have shown to be able to modulate several aspects
of inflammation as well as both innate and adaptive immune
responses. Although in the past few years the implications of
the adipokines in autoimmune diseases, including rheuma-
toid arthritis, have greatly increased, a clear picture of the role
of these proteins in the pathogenesis and in the progression
of this disease is still missing. Nevertheless, accumulating
evidence on the modulation of serum and synovial fluid levels
of many adipokines encourages their future exploitation
as soluble biomarkers of disease activity and therapeutic
response. Further studies are needed in order to translate the
increasing number of experimental and clinical observations
to the use of adipokines as clinical diagnostic markers.
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