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Abstract: The research was based on the image recognition technology of artificial intelligence,
which is expected to assist physicians in making correct decisions through deep learning. The liver
dataset used in this study was derived from the open source website (LiTS) and the data provided
by the Kaohsiung Chang Gung Memorial Hospital. CT images were used for organ recognition and
lesion segmentation; the proposed Residual-Dense-Attention (RDA) U-Net can achieve high accuracy
without the use of contrast. In this study, U-Net neural network was used to combine ResBlock
in ResNet with Dense Block in DenseNet in the coder part, allowing the training to maintain the
parameters while reducing the overall recognition computation time. The decoder was equipped
with Attention Gates to suppress the irrelevant areas of the image while focusing on the significant
features. The RDA model was used to identify and segment liver organs and lesions from CT images
of the abdominal cavity, and excellent segmentation was achieved for the liver located on the left
side, right side, near the heart, and near the lower abdomen with other organs. Better recognition
was also achieved for large, small, and single and multiple lesions. The study was able to reduce the
overall computation time by about 28% compared to other convolutions, and the accuracy of liver
and lesion segmentation reached 96% and 94.8%, with IoU values of 89.5% and 87%, and AVGDIST
of 0.28 and 0.80, respectively.

Keywords: computed tomography; hepatocellular carcinoma; attention U-Net; ResNet; DenseNet;
staging classification

1. Introduction

With the change of lifestyle, alcoholic hepatitis and nonalcoholic steatohepatitis in-
creased in Taiwan. Hepatitis B, hepatitis C, alcoholic hepatitis and nonalcoholic steato-
hepatitis often evolve from the above chronic hepatitis to cirrhosis and eventually to liver
cancer [1]. Liver cancer ranked second among the top 10 causes of cancer deaths in Tai-
wan in 2020 [2]. Early diagnosis of liver cancer can increase the survival rate. However,
physicians can only determine the stage of cancer by carefully examining the results of
magnetic resonance imaging (MRI) and computed tomography (CT), which may lead to
the possibility of incorrect judgment. Most liver tumors require tumor biopsy to confirm
the diagnosis, which is currently the most accurate method. However, tumor biopsy is an
invasive test and has unavoidable complications such as bleeding and needle tract tumor
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seeding. In addition, the abdominal cavity has multiple organs that cannot be examined for
cancer using only abdominal ultrasound, but need to be combined with CT, blood sampling
and biopsy. Computed tomography can provide continuous images in different directions
for more accurate cancer diagnosis [3]. If this method is trained with deep learning (DL), it
would be able to help physicians to achieve better results in cancer treatment and preven-
tion, as well as reduce the error rate of manual image recognition and the need for tissue
biopsy when the imaging cannot be manually recognized.

Compared to MRI, CT is more accurate for organ detection and arterial, venous, and
delayed phases. Further, CT images of tumors that cannot be identified by the naked eye
are usually used with contrast [4]. With the increase in the aging population and modern
medical advances, the number of patients being tested has increased, and the corresponding
volume of imaging data has increased exponentially, leading to a dramatic increase in the
workload of physicians, examiners, and radiologists. As a result, DL can allow physicians
to reduce the amount of time needed to examine image data. When DL is used in visual
processing, it is necessary to go through image pre-processing and image annotation
(ground truth) steps. Further, when DL is applied to medical image recognition [5], it is
difficult to identify the CT image itself. In order to ensure the benchmark of the model
training, it is necessary to use the assistance and confirmation of the professional physician
for the labeling of the lesion. In this study, the files used were images without contrast
medium, and the image contrast was improved by image processing and image equalization
to achieve the same image as the image with contrast medium, which facilitated the overall
recognition result.

Deep learning (DL) is an evolution of artificial intelligence (AI) and machine learning
(ML), which is designed to emulate the way the human brain thinks, with the expectation
that the machine would have the ability to learn as humans do. The goal of AI is to
enable computers to have the same range of cognitive capabilities as humans [6], while
ML uses large amounts of data and algorithms for training to generate models [7–11].
For DL, it is expected to simulate the operation of neural networks formed by neurons in
the human brain [12,13] for applications in visual recognition [14,15], speech recognition,
and biomedicine. The artificial neural network (ANN) used in DL is so called because its
structure resembles human neural transmission patterns, and deep learning uses training
images in the same way as human visual observation, to provide images that are easier to
distinguish and achieve better recognition results. Further, among many neural networks,
the convolutional neural network (CNN) is one of the most representative networks for
medical image related processing [16–20]. Initially, the CNN for simple recognition of
handwritten characters was proposed by LeCun et al. [21], and was re-proposed in 1998
with the LeNet-5 network architecture for handwritten digit recognition [22]. Then the
U-Net was proposed by Ronneberger et al. [23] in 2015 to solve the problem of medical
image segmentation; thus, the U-shaped structure of the U-Net is better used for the skip
connection structure. Another feature of U-Net convolution is that it can use an encoder to
extract features to reduce the output size, and then restore them to the original size by a
decoder, which can effectively retain more information of the original image.

In this study, the U-Net was used as the basis and the convolution was modified. The
encoder was integrated with the concept of residual block (ResBlock) in deep residual
neural network (ResNet) proposed by He et al. [24] in 2015 and the dense convolutional
neural network (DenseNet) proposed by Huang et al. [25] in 2018, which connects each
layer to every other layer in a feed-forward fashion. In dense block (DB), the Attention
Dense-U-Net proposed by Li Shuyi et al. [26] in 2019 was utilized. Due to the complexity
of this network structure, it takes more time to update the network parameters during
the training process. In the literature, it was chosen to increase the appropriate time cost
to improve the segmentation accuracy of the lesion. In the decoder part, the attention
gates (AGs) module in the Attention U-Net model proposed by Oktay et al. [27] in 2018
was utilized and applied to medical images. It is known that the model trained using
AGs is capable of suppressing irrelevant regions in the image while focusing on useful
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salient features. Therefore, this study combined the above algorithms and proposed the
Residual-Dense-Attention (RDA) U-Net model. This convolutional neural network (CNN)
model was trained from CT images to perform the segmentation between liver organs
and lesions.

2. Proposed Method
2.1. Data Set and Image Pre-Processing

Due to the small amount of data in medical images and the difficulty of accessing
them, it is necessary to obtain data by data enhancement [28]. In this study, a mixture
of open source data and hospital data was used to increase the diversity of the trained
images in addition to the training volume. The data from the Internet were filtered and
made public before they can be used. The current open source data are broadly divided
into two types, one is a clear liver without atrophic margins and clear lesions, and the
second is a normal liver without cancer, with these two types accounting for the majority of
training. In this study, CT images of 500 patients were provided by Kaohsiung Chang Gung
Memorial Hospital, and a variety of lesion files were selected for training (such as patients
with large tumors, small tumors, single tumors, multiple tumors, and liver atrophy). After
filtering to 100 patients, files with very small lesions, interference in the periphery of the
images, and extremely difficult to identify areas were deducted, and finally 65 patients
were used for training. The medical images were in DICOM format. For post-training and
conversion of the trained images into 3D perspective, an MRI converter [29] was used to
convert the image format to Nifti files while preserving the original data (such as thickness
per layer and spatial location). Since medical images of lesions are difficult to identify
without contrast, the Hounsfield scale, which contains Hounsfield unit (HU) information,
was adjusted by pre-processing to improve image clarity [30]. The image before and after
adjustment is shown in Figure 1. As can be seen in the figure, both lesions appeared white
after adjustment. In order to clearly show the lesions, the original CT image and the Ground
Truth were overlaid by the code for correct viewing; hence, the white or red border color
was displayed by the dazzling border.

2.2. Designed Model Framework

U-Net can be divided into two parts: encoder and decoder. The structure on the left
side of the framework is an encoder for feature interception, and a copy and crop (also
known as skip connection) splicing structure was used between the encoder and decoder
to integrate the feature information between them. The unique part of the designed model
was that the decoder used the up-convolution method, where the features were linear and
gradually increase in size. Further, the image size at the output was the same as the image
size at the input, while the information at the input gradually decreased in a conventional
convolution structure. As a result, the use of up-convolution can overcome the loss problem
that occurs during feature transfer from the encoder.

The U-Net architecture has the identical image size on the input side and the output
side, which is a promising application in medical imaging. An encoder can be used to
extract the features to reduce the output size, and then restore to the original image size by
the decoder to retain more original image information. As a result, U-Net was used as the
basis for convolutional modification in this study, and the overall framework of the model
is shown in Figure 2.

2.3. Model Encoder

ResBlock was used to connect the input side to the output side through shortcut, which
was equivalent to an equal mapping across the intermediate layers. The above approach
does not generate additional parameters and increase the complexity of the computation,
while at the same time it ensures that the performance after deepening the network is not
worse than before, as shown in Figure 3. If the original output is H(x) and the optimized
output is x at the input, the expectation is H(x) = x, and the equation F(x) = H(x) − x
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is optimized to be close to zero by ResBlock. The use of residuals on the ResBlock can
mitigate the problem of gradient disappearance in the overall neural network, which is
equivalent to crossing the intermediate layers and performing the addition of the connected
layers. Performing an equivalent mapping does not generate additional parameters and
increase the computational complexity, but the skipped approach used in this residual
block to retain features may limit the performance of the network [31,32], indicating that
this shortcut may lead to area problems and reduce the network learning capability [33].
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In order to reduce the training time of the overall model, DenseBlock was used to
chain the feature maps through concatenation, and the feature maps were merged in a
dimensional way (i.e., feature reuse), which can reduce the number of feature maps on the
input side. This method can not only reduce the amount of calculation, but also fuse the
features of each channel, which is equivalent to connecting each layer directly with input
and loss to reduce the disappearance of gradient, as shown in Figure 4.
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2.4. Model Decoder

The use of the Attention module in the image caption domain was published by
Xu et al. [34] in 2015. Attention mechanisms can be divided into two types, namely hard
attention and soft attention. Hard attention is mainly used in region iteration and cropping,
which is not differentiable; thus, the model is not easy to train and needs to be optimized
by strengthening the learning parameters. In contrast, soft attention is differentiable, so
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that gradients can be computed through neural networks, and weights can be learned
by forward propagation and backward feedback. In the right half of the model (shown
in Figure 2), where the decoder was located, the AGs module is further explained, as
shown in Figure 5. Models trained with AGs would suppress irrelevant areas of the image
while focusing on useful salient features, similar to the concept of human visual attention.
Human vision can focus on specific points or areas while suppressing surrounding areas.
The results showed that the use of AGs can maintain the computational efficiency as well as
improve the predictive performance of U-Net under different data and training. When an
AGs module was used in the U-Net architecture, a skip connection was applied in front of
the encoder on the input side for each resolution feature and the decoder on the output side
for the splicing of the corresponding feature to a significant feature. By skipping irrelevant
areas of the connection, the training accuracy problems caused by the noise component
were eliminated.
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The details of the AGs module are as follows: g was obtained from A by the con-
volution of Wg, and x was obtained from B by the convolution of Wx. The g came from
the lower layer of x, and the two images had different dimensions; thus, the x had to be
down-sampled first, and then the two images were overlapped to obtain C. Further, the C
part overlapped the A and B images, and then linearly transformed the excitation functions
such as ReLU, Ψ, and Sigmoid into D and F to mitigate the overfitting of the network.

3. CT Images of the Liver

The CT images used in this study consisted of the LiTS dataset [35], a web-based
open source data set provided by medical institutions worldwide, which contained CT
images of 131 patients. A total of 43 patients were selected from the LiTS dataset, including
28 patients with a left-sided liver and 15 patients with a right-sided liver, and 48 patients
from Kaohsiung Chang Gung Memorial Hospital (KCGMH) were trained to form a dataset
with a total of 91 patients. This dataset was converted into a total of 19,514 images,
which were divided into a training set and a validation set according to the ratio of
8:2. In order to accommodate the model size and to avoid exceeding the GPU memory,
the original 512 × 512 pixel-valued images were reduced to 224 × 224 to improve the
computational efficiency.

4. Results and Discussion
4.1. Training Environment and Parameter Setting

The original CT, liver region mask, and tumor location mask were used for each
training image set. The parameters of the convolutional network used in this study were set
to 100 and 8 for epoch and batch, respectively. The initial learning rate was set to 10−6, and
the ADAM optimizer was used to update the parameters of the overall network. During
the training process, the images were randomly assigned to 80% for training set and 20%
for verification set, which was the optimal allocation to achieve the best training results.
The completed training network was further tested on the new data to confirm the test
results. The models were trained and tested in the following environments: Intel® Core™
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i7-9700KF CPU, RTX 2080 Ti GPU, DDR4 128GB memory, and Windows 10. The software
was used with Keras 2.3.0, Tensorflow-gpu1.14, and Python 3.7.7.

4.2. Evaluation Metrics

The performance of the proposed model was evaluated using the following metrics:
Accuracy (ACC), Dice coefficient, Intersection over Union (IoU), and Average Hausdorff
Distance (AVGDIST) [36]. Those metrics could be computed by four measures: TP (true
positive), TN (true negative), FP (false positive), and FN (false negative). Since the accuracy
is calculated by taking the TN and the black part without lesions or liver, the result of
accuracy is generally better than other calculation methods (IoU, DSC, and AVGDIST). For
more detailed description, TN adds the correct black part to the calculation, while the black
part in Ground Truth accounts for the majority. The accuracy is expressed by:

Accuracy =
TP + TN

TN + FP + TP + FN
. (1)

The standard for image segmentation is often calculated using the Dice coefficient
(DSC), as shown in Equation (2), which indicates the similarity of two samples in the range
of 0 to 1. The best result for segmentation is 1 and the worst value is 0.

DSC =
2TP

2TP + FP + FN
. (2)

IoU is to divide the prediction result into 0 for the black part and 1 for the white part.
Then, the prediction result will be overlapped with Ground Truth, and the intersection and
union of the overlapped images will be calculated. The IoU formula calculated for medical
images with more black areas is as follows:

IoU =
TP

FP + TP + FN
, (3)

The Hausdorff Distance is sensitive to the segmented boundary range. This equation
can compare the boundary range distance between the training result and the actual result
of the image, and thus is mainly used for image segmentation. The formula is shown below:

Average Hausdorff Distance =

(
GtoS

G
+

StoG
S

)
/2 (4)

4.3. Comparison of Training Time and Convolution Parameters

In Attention Dense-U-Net proposed by Li et al. [26] in 2019, the associated network
structure was more complex, and thus more time was required to update the network
parameters during the training process. The work mainly focused on increasing the time
cost in exchange for improving the accuracy of tumor segmentation. In our study, the
designed convolutional network can achieve the accuracy of the network with less time
cost compared to the Attention U-Net and Attention Dense-U-Net convolutional networks.
Further, the convolutional parameters of the designed model are higher (total value)
than those of the Attention Res-UNet. By hopping connection of ResBlock, the overall
network training time can be reduced, and the accuracy of the overall model convolutional
parameters can be maintained by DenseBlock. A comparison of the model parameters and
training time is shown in Table 1.
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Table 1. Comparison of model parameters and training time.

Method Parameter Training Time for Tumor (s) Training Time for Liver (s)

Proposed Work (RDA U-Net) 13,053,861 437 375

Attention U-Net [27] 35,238,293 615 530

Attention Dense-U-Net [26] 14,374,021 607 556

Attention Res-UNet [37] 12,981,573 408 360

4.4. Identification Results of Liver and Lesions

The performance of segmentation was compared using the above indicative evaluation
for our convolution and the three associated convolutions namely Attention U-Net [27],
Attention Dense-U-Net [28], and Attention Res-UNet [37]. The evaluation results of ACC,
DSC, IoU and AVGDIST for liver segmentation are presented in Table 2. In terms of ACC,
since the ACC method mentioned above includes the accurate black part in a large area
compared to other methods, the result of the ACC calculation is better. Further, comparing
the other computation methods, it can be observed that the proposed convolution (RDA U-
Net) gives better results in DSC and IoU computations than Attention U-Net and Attention
Res-UNet, and the calculation of AVGDIST for distance is also more accurate. In terms
of Attention Dense-U-Net, due to the fully connected approach, it has more feature reuse
than other convolutions, resulting in more GPU memory and computation time required
to obtain higher ACC, DSC, IoU, and AVGDIST. That is, although the overall results of
Attention Dense-U-Net are the best, the computation time of our proposed convolution
(RDA U-Net) can be reduced by 28% and meanwhile good computation results can also
be obtained.

Table 2. Results of different models for evaluation of liver segmentation.

Method ACC DSC IoU AVGDIST

Proposed Work (RDA U-Net) 0.9600 0.8945 0.8113 0.2723

Attention U-Net [27] 0.9030 0.8437 0.7466 0.4141

Attention Dense-U-Net [26] 0.9721 0.9021 0.8236 0.2120

Attention Res-UNet [37] 0.9709 0.8696 0.7729 0.3427

The evaluation results of ACC, DSC, IoU, and AVGDIST for lesion segmentation are
presented in Table 3. It can be found that although our convolution was slightly lower than
Attention Dense-U-Net in the ACC, DSC, and IoU, the Attention Dense-U-Net took 607 s
to train one turn of liver image [26] while our proposed convolution (RDA U-Net) only
took 437 s. After comparing the training time and the results, it is believed that the results
obtained using our proposed convolutional network (RDA U-Net) are in a good range.
Specifically, for the distance comparison of AVGDIST, it was observed that our convolution
results were higher than the Attention Res-UNet results for liver segmentation due to the
fact that the Attention Res-UNet uses a hopping connection, which would lead to poor
learning results for small lesions. The average distance was calculated by overlaying the
prediction results with Ground Truth and then calculating the distance between the two
edges. If the distance between the two is closer, there is a lower value, which means a
more accurate prediction. In this case, our proposed convolutional training distance of
0.8058 is better than the Attention Res-UNet value of 9.3871, which indicates that Attention
Res-UNet is not suitable for lesion segmentation.
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Table 3. Results of different models for evaluation lesion segmentation.

Method ACC DSC IoU AVGDIST

Proposed Work (RDA U-Net) 0.9477 0.8703 0.7714 0.8058

Attention U-Net [27] 0.9227 0.7588 0.6187 1.2789

Attention Dense-U-Net [26] 0.9582 0.9011 0.8204 0.3429

Attention Res-UNet [37] 0.9323 0.7310 0.6245 9.3871

The segmentation results of our proposed model (RDA U-Net) after training on the
liver are shown in Figure 6. It can be observed that both the normal liver (Figure 6a)
and the patient with the liver located on the right side (Figure 6b) can be accurately fit
for segmentation. Further, although the liver near the heart position (Figure 6c) was
successfully captured, the small segmentation on its right side was not completely captured.
The location of the liver can be ideally distinguished and segmented (Figure 6d), where
there are many organs close to the lower abdomen, and the results showed that our
proposed model (RDA U-Net) has a good segmentation effect on the location of the liver.
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Figure 7 shows the segmentation results of our proposed model (RDA U-Net) after
training at the lesion site. It can be seen that both small tumors (Figure 7a) and large tumors
(Figure 7b) can be successfully captured, even for those small tumors contained in them.
Further, the ideal segmentation results were also obtained for the locations of multiple
small tumors in Figure 7c. Several large tumors in Figure 7d were successfully captured, but
the separate tumors in the image could not be fully captured. For the subsequent training,
more lesions with irregular margins can be used for training to improve the results.
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Figure 8 shows the training results of 91 patients with mixed LiTS and KCGMH, for
liver and lesion, respectively. A total of 19,514 images were used with image pre-processing
to convert image values from 512 × 512 to 224 × 224 pixel values and also restricted HU
values. Then, our convolutional RDA U-Net with optimized learning rate was used for
random mixing and subsequent training of 100 epochs. It can be found that excellent
learning results (curve fitting) were obtained with ACC values of 0.9600 for the liver and
0.9477 for the lesion.
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Figure 8. Results of training in 91 patients with mixed LiTS and KCGMH: (a) liver and (b) lesions.

Figures 9 and 10 show the IoU and AUC values for the four cases using Attention
U-Net, Attention Res-UNet, Attention Dense-U-Net and our RDA U-Net. For the four cases
in Figure 9, our convolutional network was only slightly lower than Attention Dense-U-
Net, and the results were better than the other two convolutional networks. Further, the
segmentation of small tumors and multiple small tumors was better than the Case 3 of
Attention U-Net and the Case 4 of Attention Res-UNet, respectively. The AUC in Figure 10
is the area calculated under the ROC curve. When the AUC value is higher, which implies
that the area under the ROC is larger, and the curve is closer to the upper left, this indicates
better performance. From both results, it can be observed that our convolutional RDA
U-Net maintained better segmentation performance for the four cases.

In Figure 11, the AVGDIST, also known as average distance between, was compared
for four cases using Attention U-Net, Attention Res-UNet, Attention Dense-U-Net, and our
RDA U-Net. The calculation was based on the average distance between Ground Truth
and the edge of the predicted result; thus the lower the value, the better the result. The
accuracy, IoU and AUC results of Attention Res-UNet were not much different from the
others as shown in Table 3, Figures 9 and 10. However, the results in Figure 11 showed that
the discrimination results of Attention Res-UNet for small tumors were much worse than
the others. Although the results for multiple mixed tumors in Case 2 were slightly higher
than those for Attention U-Net, the results for single small tumors in Case 3 showed that
our RDA U-Net convolutions were better than those for Attention U-Net convolutions.
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5. Conclusions

With the advancement of medical science and technology, imaging examinations
nowadays account for a large proportion of the total number of examinations. Trained
models can reduce the labor cost through the artificial intelligence of image recognition and
the assistance of professional physicians in liver and lesion delineation. In this paper, RDA
U-Net model architecture was proposed for the automatic segmentation of lesions in CT
images. This model used ResBlock and DenseBlock in the coder so that the overall network
had sufficient feature images and parameters without requiring long computation time. In
the decoder part, Attention Gates was used to improve the prediction performance under
different data and training by helping the model to suppress image irrelevant regions while
focusing on useful salient features. The results of CT image training for 91 patients using
mixed LiTS and KCGMH showed ACC values of 0.9600 and 0.9477 for the liver and lesions,
respectively, with an overall reduction in computation time of about 28% compared to other
convolutions. The IoU values were 89.5% and 87%, and the AVGDIST values were as low
as 0.28 and 0.80, respectively. From the results, it is clear that the accuracy of our proposed
convolution was higher compared to other convolutions, although it was slightly lower
compared to the Attention Dense-U-Net value; however, less time was used to complete
the training and obtain the approximate accuracy.
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segmentation of urinary bladder cancer masses from ct images: A transfer learning approach. Biology 2021, 10, 1134. [CrossRef]
[PubMed]

4. Yasaka, K.; Akai, H.; Abe, O.; Kiryu, S. Deep learning with convolutional neural network for differentiation of liver masses at
dynamic contrast-enhanced CT: A preliminary study. Radiology 2018, 286, 887–896. [CrossRef] [PubMed]

5. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to
deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef] [PubMed]

6. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.
7. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine learning for medical imaging. Radiographics 2017, 37, 505. [CrossRef]

[PubMed]
8. Giger, M.L. Machine learning in medical imaging. J. Am. Coll. Radiol. 2018, 15, 512–520. [CrossRef]
9. Robinson, K.R. Machine Learning on Medical Imaging for Breast Cancer Risk Assessment. Doctoral Dissertation, The University

of Chicago, Chicago, IL, USA, 2019.
10. Wernick, M.N.; Yang, Y.; Brankov, J.G.; Yourganov, G.; Strother, S.C. Machine learning in medical imaging. IEEE Signal Process.

Mag. 2010, 27, 25–38. [CrossRef]
11. Pratondo, A.; Chui, C.K.; Ong, S.H. Integrating machine learning with region-based active contour models in medical image

segmentation. J. Vis. Commun. Image Represent. 2017, 43, 1–9. [CrossRef]
12. Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221. [CrossRef]
13. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
14. Yu, N.; Jiao, P.; Zheng, Y. Handwritten digits recognition base on improved LeNet5. In Proceedings of the 27th Chinese Control

and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 4871–4875.
15. Shan, H.; Padole, A.; Homayounieh, F.; Kruger, U.; Khera, R.D.; Nitiwarangkul, C.; Kalra, M.K.; Wang, G. Can deep learning

outperform modern commercial CT image reconstruction methods? arXiv 2018, arXiv:1811.03691.
16. Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine learning and deep learning methods for

cybersecurity. IEEE Access 2018, 6, 35365–35381. [CrossRef]
17. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications.

Neurocomputing 2017, 234, 11–26. [CrossRef]
18. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]
19. El Adoui, M.; Mahmoudi, S.A.; Larhmam, M.A.; Benjelloun, M. MRI breast tumor segmentation using different encoder and

decoder CNN architectures. Computers 2019, 8, 52. [CrossRef]
20. Guo, P.; Xue, Z.; Long, L.R.; Antani, S. Cross-dataset evaluation of deep learning networks for uterine cervix segmentation.

Diagnostics 2020, 10, 44. [CrossRef] [PubMed]
21. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995,

3361, 1995.
22. LeCun, Y. LeNet-5, Convolutional Neural Networks. 2015. Available online: http://yann.lecun.com/exdb/lenet20.5 (accessed on

11 August 2021).
23. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Cham, Switzerland; pp. 234–241.

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

26. Li, S.; Dong, M.; Du, G.; Mu, X. Attention dense-u-net for automatic breast mass segmentation in digital mammogram. IEEE
Access 2019, 7, 59037–59047. [CrossRef]

https://www.mohw.gov.tw/cp-5256-63399-2.html
http://doi.org/10.3390/biology10111134
http://www.ncbi.nlm.nih.gov/pubmed/34827126
http://doi.org/10.1148/radiol.2017170706
http://www.ncbi.nlm.nih.gov/pubmed/29059036
http://doi.org/10.1038/s41591-018-0316-z
http://www.ncbi.nlm.nih.gov/pubmed/30617335
http://doi.org/10.1148/rg.2017160130
http://www.ncbi.nlm.nih.gov/pubmed/28212054
http://doi.org/10.1016/j.jacr.2017.12.028
http://doi.org/10.1109/MSP.2010.936730
http://doi.org/10.1016/j.jvcir.2016.11.019
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/ACCESS.2018.2836950
http://doi.org/10.1016/j.neucom.2016.12.038
http://doi.org/10.1109/TPAMI.2016.2644615
http://doi.org/10.3390/computers8030052
http://doi.org/10.3390/diagnostics10010044
http://www.ncbi.nlm.nih.gov/pubmed/31947707
http://yann.lecun.com/exdb/lenet20.5
http://doi.org/10.1109/ACCESS.2019.2914873


Diagnostics 2022, 12, 1916 15 of 15

27. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.
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