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Abstract
Microbial population responses to combined effects of chronic irradiation and other stress-

ors (chemical contaminants, other sub-optimal conditions) are important for ecosystem

functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathe-

matical modeling can improve our understanding of these phenomena. To identify general

patterns of microbial responses to multiple stressors in radioactive environments, we ana-

lyzed three data sets on: (1) bacteria isolated from soil contaminated by nuclear waste at

the Hanford site (USA); (2) fungi isolated from the Chernobyl nuclear-power plant (Ukraine)

buildings after the accident; (3) yeast subjected to continuous γ-irradiation in the laboratory,

where radiation dose rate and cell removal rate were independently varied. We applied gen-

eralized linear mixed-effects models to describe the first two data sets, whereas the third

data set was amenable to mechanistic modeling using differential equations. Machine

learning and information-theoretic approaches were used to select the best-supported for-

malism(s) among biologically-plausible alternatives. Our analysis suggests the following:

(1) Both radionuclides and co-occurring chemical contaminants (e.g. NO2) are important for

explaining microbial responses to radioactive contamination. (2) Radionuclides may pro-

duce non-monotonic dose responses: stimulation of microbial growth at low concentrations

vs. inhibition at higher ones. (3) The extinction-defining critical radiation dose rate is dramat-

ically lowered by additional stressors. (4) Reproduction suppression by radiation can be

more important for determining the critical dose rate, than radiation-induced cell mortality. In

conclusion, the modeling approaches used here on three diverse data sets provide insight

into explaining and predicting multi-stressor effects on microbial communities: (1) the most

severe effects (e.g. extinction) on microbial populations may occur when unfavorable envi-

ronmental conditions (e.g. fluctuations of temperature and/or nutrient levels) coincide with

radioactive contamination; (2) an organism’s radioresistance and bioremediation efficiency

in rich laboratory media may be insufficient to carry out radionuclide bioremediation in the

field—robustness against multiple stressors is needed.
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Introduction
Understanding radionuclide effects on non-human biota is important for environmental pro-
tection and bioremediation after accidental (e.g. from nuclear power plants or waste storage
facilities) or malicious (“dirty bomb” attacks) radionuclide releases [1–7]. Microbial population
responses in radionuclide-contaminated environments can differ from those measured experi-
mentally because the biological effects of radionuclides are modulated by other stressors (e.g.
chemical contaminants, starvation) which the target organisms are subjected to [8].

The objective of this paper is to use quantitative mathematical modeling to identify general
patterns of microbial responses to radioactive contamination. Understanding and predicting
such patterns can guide research on environmental protection and bioremediation after radio-
nuclide releases [5, 6, 8]. In particular, study results could be useful in identifying which micro-
bial taxa are most sensitive to radioactive pollution and, conversely, which are most robust and
could, therefore, be considered as bioremediation agents [7, 9].

Unfortunately, data on multi-stressor combinations involving chronic ionizing radiation
exposure are limited [2, 10, 11] and extrapolation from acute to chronic irradiation can be
unreliable [8, 12]. We searched the literature for published data sets on microbial populations
subjected to chronic irradiation, which met the following conditions: radiation had to be com-
bined with other stressors (e.g. chemical toxicants, oligotrophic conditions, and/or high cell
removal rates), and the publications had to contain enough information to conduct a thorough
mathematical/statistical analysis. The search was not intended to be exhaustive. Instead, we
sought to use data sets on different microbial groups (e.g. bacteria and fungi) and exposure
conditions (e.g. field and laboratory), so that integrating the analysis results from all these data
sets would help to form a general picture of how microbial communities respond to chronic
irradiation combined with other stressors.

The first data set was generated by bacteriological analysis of vadose sediments located
under a high-level radioactive waste storage tank at the Hanford site, near Richland, Washing-
ton [13]. We selected it as an informative example of bacterial population responses, under
field conditions, to combined stresses from radiation, chemical toxicants, and unfavorable
environmental factors (limited soil water content, oligotrophic conditions, high temperature).
Sixteen samples were collected at various depths beneath the tank 40–50 years after it leaked,
releasing radionuclides and chemical contaminants [13]. Unfortunately, only one contami-
nated site was sampled, but we believe that it is sufficiently representative to support a
modeling analysis. Two control samples were obtained from a nearby unpolluted location.
Temperature, pH, water content, conductivity, concentrations of 137Cs, 99Tc, Cr, NO3 and
NO2, and the identities of detected bacterial taxa were recorded for each sample [13]. 137Cs is a
high energy beta and gamma emitter with a relatively long physical half-life of 30 years. Its
salts are easily soluble in water and it is present in the solution as a monovalent cation which
can pollute the ground waters and in vivo mimics potassium behavior. 99Tc is a weak beta emit-
ter with a long physical half-life of 105 years, it primarily exists in its two most stable and chem-
ically inert forms - 99TcO2 oxide and

99Tc-perrhenate. Cr (in its chromate form), NO3 and
NO2 are powerful chemical oxidants. The radiation dose rate from 137Cs (the predominant
radionuclide) reached 24–370 mGy/h (using mean energy/decay coefficients from reference
[14]) in the three most radioactive samples from which viable bacteria were isolated.

We used this information (presented mainly in Tables 1 and 3 and in Figs. 1 and 2 of refer-
ence [13], and combined in our S1 Appendix) to compile a data set which consisted of binary
(1 = presence, 0 = absence) values for each taxon in each soil sample. The bacteria were isolated
by cultivation which focused on aerobic chemoheterotrophic bacteria, but also included
enrichments for select physiological groups of anaerobic bacteria [13]. Some taxa were
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identified to the species level, whereas for others only a broad taxonomic category was assigned.
We chose genus as the most representative category. The most frequently detected genus was
Arthrobacter, which is often common in soil [15], but many other genera, e.g. Deinococcus [16,
17], were also identified [13].

Using this data set we sought to evaluate whether the toxicity of nuclear waste to soil bacte-
ria was driven mainly by radionuclides (137Cs, 99Tc), or whether chemical toxicants (Cr, NO3,
NO2) were also important. In addition, we sought to evaluate how variability of responses to
the various toxicants among different bacterial taxa could affect community composition in
contaminated soil: for example, would the most radioresistant taxa gain a competitive advan-
tage over radiosensitive ones.

The second data set was generated by mycological analysis of 24 samples collected within
the Chernobyl nuclear power plant buildings 11–12 years after the accident [18]. It is an exam-
ple of how fungi (37 species) are affected by severe radioactive contamination under oligotro-
phic conditions. Samples were collected by sterile cotton swabs and stamped onto solid agar
growth medium. The samples were separated into two groups based on radioactive contamina-
tion levels: low dose rate (1.5–25 mR/h of γrays, 15 samples) and high dose rate (40–220 mR/h,
9 samples). The γ-ray measurements were only a surrogate for the higher total dose rate,
mainly generated by α- and β-emitting radionuclides [18]. The proportions of samples at low
and high dose rate locations in which each fungal species was detected are presented in Table 1
of reference [18] and in our S1 Appendix.

Using this data set, we sought to evaluate how the approximately 10-fold difference in radia-
tion dose rate within the reactor buildings affected fungal community composition. Specifi-
cally, we intended to identify which fungal taxa are most robust under chronic irradiation
and oligotrophic conditions, and would therefore be potentially useful as radioactive waste
bioremediators.

The third data set was produced by continuous 60Co γ-irradiation of diploid yeast (Saccha-
romyces cerevisiae, strain 211) in a laboratory chemostat for multiple generations [19]. This
data set (presented in Tables 1–2 of reference [19] and in our S1 Appendix) qualitatively differs
from the previous two because it was generated under laboratory, rather than field, conditions.
Consequently, the specifics of culturing in the laboratory may exert their own effect, different
from the effects of radiation. However, we selected this data set because laboratory studies have
the advantage that the investigated stressors are more easily controlled and quantified, than in
field studies, and there is less potential for confounding by unknown factors.

In this third data set we sought to investigate how the critical radiation dose rate, above
which population extinction occurs, is modulated by an experimentally-controlled adverse fac-
tor–the cell removal rate. The liquid culture medium flowed through the chemostat at a con-
stant rate (the dilution rate) fixed by the experimenters. The dilution rate thus represented the
cell removal rate, which acted as an additional stressor–an example of unfavorable conditions
which increase mortality in the population. Since dilution rate and dose rate were varied inde-
pendently, the effects of each stressor could be readily assessed and disentangled.

The three data sets were purposely selected to be diverse and to include a wide range of
microbial taxa, exposure conditions, and stressors. Our goal was to integrate the analysis results
from each data set by formulating general conclusions with potentially broad applicability to
environmental protection and radioactive waste bioremediation. We used descriptive and
(whenever possible) mechanistic mathematical modeling, which involved machine learning
and/or information theoretic model selection, to analyze the three data sets and provide insight
into environmental effects of radionuclides combined with other stressors [11, 20–22].
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Materials and Methods

Data Set One: Bacteria at the Hanford Nuclear Waste Site
Wemodeled the probability of detecting a given bacterial taxon in each soil sample using logis-
tic regression, where the radionuclides, chemical toxicants and measured soil properties (e.g.
conductivity) were the predictor variables. To account for potential differences in how strongly
different taxa respond to particular stressors (e.g. 137Cs), we used generalized linear mixed-
effects models (GLMMs), which extend logistic regression to include both fixed and random
effects. Using matrix notation, GLMM structure is summarized as follows, where logit(x) = 1/
(1+exp(x)):

logitðoÞ ¼ a� V þ b� φþ ε ð1Þ

Here, o is a vector of outcome variables: predicted probabilities of isolating a given genus in
a given sample. V is a matrix of predictor variables: sample-specific concentrations of radionu-
clides (137Cs, 99Tc) and chemical contaminants (Cr, NO3 and NO2), and environmental condi-
tions (depth below the soil surface, temperature, pH, water content, conductivity). α is a vector
of fixed-effect regression coefficients. φis a matrix of random effects, which model differences
between genera in baseline abundance (intercepts) and responses (slopes) to variables of inter-
est. These random effects represent genus-specific deviations from the corresponding fixed
effect (e.g. variations in sensitivity to radiation from 137Cs). They are normally distributed with
a mean of zero and an adjustable variance. β is a vector of random effect coefficients, and ε is a
vector of binomially-distributed errors.

Because the measured radionuclides (137Cs, 99Tc) and chemical contaminants (Cr, NO3,
NO2) were released from the same source (the ruptured nuclear waste tank), their distributions
in soil were correlated (e.g. the correlation coefficient of Cr with NO2 was 0.83). Consequently,
several different combinations of variables could potentially describe the outcome equally well,
and multi-collinearity was a potentially important problem. To identify those variables with
the strongest main effects, we employed a customized approach (called, for convenience, the
“filter procedure”). This procedure, described in detail in the S2 Appendix, used machine
learning and information theoretic methods implemented in R software (version 3.2.2).

Data Set Two: Fungi in Chernobyl Reactor Buildings
Wemodeled the probability for detection of each fungal species in each sample using the same
GLMM approach as described above. Since only one environmental variable–radiation dose
rate–was reported, there was no need for the filter procedure. Oligotrophic conditions, which
probably had an important impact on fungal growth, were not described in quantitative terms
and therefore could not be modeled. Unfortunately, there was no information provided in ref-
erence [18] about the spatial locations of samples and about randomness of their collection,
but we made efforts to mitigate this by assessing the effects of potential correlations between
samples as described in the S3 Appendix.

We used a GLMM with a fixed effect of radiation (coded as a binary variable: 0 = low and
1 = high dose rate) and random effects (intercepts and slopes) for two taxonomic variables:
order and species. The sum of fixed and random effects for each species produced the net
model coefficient for radiation effect on the given species. This coefficient was converted to the
odds ratio for detection of a given species in high vs. low radiation locations. This predicted
odds ratio was compared to the observed odds ratio (with 95% confidence intervals estimated
by Fisher’s exact test with Type I error threshold of 0.05). Absolute goodness of fit (GOF) for
the GLMMs was assessed by marginal R2, which represents the variance explained by fixed
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effects, and conditional R2, which represents variance explained by both fixed and random
effects (i.e. by the entire model) [23, 24].

We also investigated whether the lethal dose of acute irradiation, taken from reference [25],
is associated with detection of a given taxon in the reactor buildings–e.g., if more radioresistant
fungi are more likely to have been found in these heavily contaminated structures. We created
a data set consisting only of those species for which the lethal dose of acute irradiation was
reported in reference [25], and manually added this lethal dose (in kGy), and the interaction of
the lethal dose with the binary radiation dose rate category, as additional predictors in the
GLMM.

Since the GLMM analysis does not explicitly account for inter-specific interactions, we cal-
culated the bias-corrected Chao2 species richness estimator [26, 27] for the low and high dose
rate locations separately. Significant differences between the values of this estimator could
result from phenomena such as elimination of radiosensitive species and selection of radiore-
sistant ones in the most contaminated areas [28].

Data Set Three: Continuously Irradiated Yeast
The endpoints of interest in this data set were: (1) the equilibrium cell concentration, i.e. the
number of cells per ml of growth medium when a steady-state of the system has been achieved
and no further changes were detectable; and (2) the critical dose rate above which population
extinction occurred (i.e. no steady-state could be achieved). To model these endpoints, we used
mechanistic approaches, which provides important advantages over purely descriptive ones
[29, 30]. We were able to do so for this data set because only one taxon and only two predictor
variables (radiation and chemostat dilution) were involved. Although the presence of only one
taxon is a limitation because interactions (e.g. competition) between taxa cannot be studied,
the simplicity of this system also provides an advantage because stressor effects on the single
taxon can be examined without confounding. Twenty distinct formalisms (M1-M20), which
modeled the rate of change of the cell concentration over time using differential equations,
were tested. These equations contained terms representing cell proliferation, death, intra spe-
cific competition, and the effects of radiation and dilution rate. S4 Appendix describes the pro-
cedure applied to a fully worked example using M1.

Results

Data Set One: Bacteria at the Hanford Nuclear Waste Site
This data set provides detailed information on how a bacterial community, which exists under
harsh conditions (in sub-surface sediments with low water content and nutrient concentra-
tions), responded to severe contamination with radionuclides and chemical toxicants [13].
There was no evidence that the composition of bacterial taxa detected in any two samples was
correlated with the depth of soil separating the samples: the Mantel test for spatial auto-correla-
tion using 9999 random permutations produced a correlation of only -0.02 with a p-value of
0.81. Consequently, we proceeded to treat the samples collected at different depths as statisti-
cally independent.

Eight potential predictor variables for the probability to detect each bacterial taxon (water
content, conductivity, temperature, 137Cs, 99Tc, Cr, NO3 and NO2) were identified as having
important main effects using machine learning methods implemented as part of the filter pro-
cedure described in S2 Appendix. In contrast, the remaining two variables (depth below the
soil surface and pH) demonstrated low importance for describing the data and were excluded
from further analysis. The low importance of pH was somewhat surprising because the effect
of pH on bacterial diversity is well known. Therefore, we checked this finding by manually
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including pH in the logistic model. The regression coefficient was not statistically significant:
0.246 (SE: 0.433, P = 0.57), confirming that this variable was unimportant. Consequently, pH
was not used for further analysis.

The variance inflation factors (VIF) were high (>5) for temperature, Cr and NO3. Conse-
quently, these three variables were removed from the model to alleviate multi-collinearity.
The resulting confidence set of fixed-effect models contained only water content, conductivity,
137Cs, 99Tc, and NO2, with VIFs of 1.12, 1.09, 1.10, 1.79, and 1.79, respectively. Multi-model
inference (MMI, described in S2 Appendix) suggested that all of these variables exhibited com-
parable importance (Table 1). For example, the ratio of importances for the most important
variable (137Cs) to the least important (water content) was only 0.99/0.57 = 1.7.

These results suggest that conductivity had a marginally positive effect on bacteria
(Table 1), which may reflect a correlation between conductivity and nutrient concentrations.
Water content had a non-significant negative effect. The radionuclides 137Cs and 99Tc had neg-
ative effects, which reached statistical significance for 137Cs (Table 1). NO2 also had a non-sig-
nificant negative effect (Table 1), which may reflect its own toxicity as well as correlations with
other chemical toxicants which were not retained in the model as independent predictors.

The best-supported fixed effect model contained only conductivity, 137Cs and NO2 as pre-
dictors. The VIFs for these variables were 1.04, 1.04 and 1.08, respectively. Eight observations
(out of 460) exceeded the Cook's distance threshold for outlier data points (defined in S2
Appendix), but their effects were minor: the comparison of robust vs regular logistic regression
demonstrated that model coefficient values hardly changed and none of them changed sign.
There was no evidence of overdispersion: logistic regression with a quasibinomial error distri-
bution produced a dispersion parameter of 0.95, and the p-value of the X2 test comparing the
fits of quasibinomial and binomial regressions was 0.79. There was also no evidence of autocor-
relation of residuals: the Durbin Watson test p-value was 0.49.

Even though the best-supported fixed-effect model assumes that the responses of all taxa to
a given predictor are identical, it achieved fair GOF (R2 = 0.512) and predictive accuracy: area
under the Receiver Operating Characteristic (ROC) curve [31] and adjusted error rate from
10-fold cross-validation [32], respectively equal to 0.66 and 8.5%.

A refined modeling approach, which allowed different taxa to respond differently by adding
random intercepts and slopes for each predictor, one at a time, produced the best-fitting
mixed-effect model. This model, with random effects for 137Cs and baseline abundance
(Table 1), achieved higher GOF: conditional R2 = 0.657, suggesting that genus-specific
responses to 137Cs helped to explain a lot of the variance. A visual comparison of model predic-
tions with the data is shown in Fig 1 for two genera: Arthrobacter, which is common at

Table 1. Summary of quantitative models used to describe the data on bacteria at the Hanford nuclear waste site (data set one, reference [13], S1
Appendix). Cond = conductivity. SE = standard errors of the model coefficients. NA = non-applicable. Details are provided in the main text and in S2
Appendix.

Variable (units) MMI using confidence set of fixed-effect models Best-fitting mixed-effect model Standard deviation of random effect

Impor- tance Coeffi- cient SE p-value Coeffi- cient SE p-value

Water content (%) 0.57 -0.0301 0.037 0.418

Cond (mS/cm) 0.85 0.0167 0.010 0.107 0.0215 0.008 0.008 NA
137Cs (μCi/g) 0.99 -0.0763 0.033 0.023 0.0247
99Tc (μCi/L) 0.62 -0.0046 0.005 0.363

NO2 (mg/L) 0.70 -0.0118 0.011 0.273 -0.0160 0.007 0.021 NA

Intercept NA –1.9122 0.505 1.6×10−4 -2.8369 0.337 2×10−16 0.6181

doi:10.1371/journal.pone.0147696.t001
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Hanford and is radiosensitive, and Deinococcus, which was isolated only from one sample with
high 137Cs levels and is radioresistant [13].

In the best-fitting mixed-effects model, the net regression coefficient for 137Cs (i.e. the sum
of fixed and random effects) was negative for most bacterial genera (e.g. -0.0548 g/μCi for
Arthrobacter), but positive (0.00878) for Deinococcus. Agrococcus, Bacillus andMicrococcus
also had positive coefficients for 137Cs, although with smaller values than those for Deinococ-
cus. These results imply that the most radioresistant taxa gained a competitive advantage over
more radiosensitive ones in samples with high radioactivity levels.

Data Set Two: Fungi in Chernobyl Reactor Buildings
This data set shows that multiple fungal taxa colonized the reactor buildings despite severe
radioactive contamination and limited nutrient concentrations [18]. The bias-corrected Chao2
species richness estimator [26, 27] was essentially the same for low vs. high dose rate locations
within the buildings: 44.3 (95% CI: 31.3, 108.7) and 44.8 (30.7, 113.4), respectively. Therefore,
there was no evidence that the 15-fold increase in dose rate between the low and high dose rate
locations [18] reduced species richness (for example by eliminating radiosensitive species and
allowing radioresistant ones to fill vacated niches). This result suggests that even though the
dose rate within the buildings was> 105-fold higher than the natural background [18], it
remained well below the critical value for population extinction for most/all of the 37 detected
species.

Analysis of detection probabilities for each fungal species supported the same conclusion.
These probabilities [18] were not significantly different (using Type I error threshold of 0.05)
between low vs. high dose rate locations for any species, except for Penicillium hirsutum. This
species was found in 8 out of 9 high dose rate samples and in only 1 out of 15 low dose rate

Fig 1. Comparison of best-fitting mixed-effect model (Table 1, S2 Appendix) predictions with the data
on bacteria at the Hanford nuclear waste site (data set one, reference [13], S1 Appendix). The y-axis
represents: (1) the values of various stressors (bars), normalized (for convenience of presentation) by the
maximummeasured value within the data set; and (2) presence/absence data (points and lines) for bacterial
genera. Two genera were selected in this illustration: Arthrobacter, which is common in vadose sediments at
Hanford and sensitive to radiation, and Deinococcus, which was isolated only from one sample with high
137Cs levels (indicated by the arrow) and is known to be radioresistant [13]. Closed symbols represent
observations, and open symbols and lines represent best-fitting mixed-effect model predictions.
Cond = conductivity.

doi:10.1371/journal.pone.0147696.g001
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samples. Therefore, the odds ratio for detection at high vs. low dose rates was 112 (95% CI:
4.61, 5290, P = 0.0001), suggesting that increased radiation (within the studied range of dose
rates) made conditions more (rather than less) favorable for the growth of P. hirsutum.

Analysis of the data for all species using a GLMM suggested that most species isolated from
the reactor buildings were more (rather than less) abundant in locations with high dose rates.
This can be visualized by examining the observed and best-fit model-predicted odds ratios for
detection of each species in high vs. low radiation locations (Fig 2). The predicted odds ratios
were consistent with observed values/error bars and were> 1 for 32 out of 37 species (Fig 2).

The best-fit model coefficient for the fixed effect of increased radiation was positive, rather
than negative, but not significantly different from zero: 0.35 (SE: 0.29, P = 0.23). This fixed
effect explained very little of the variance: marginal R2 was 0.007. Random effects of radiation
explained more, bringing conditional R2 to 0.285. However, this low value suggests that most
of the variance remained unexplained and probably resulted from unmeasured factors: e.g.
environmental variables other than radiation, interactions between fungal species, etc.

These results were not qualitatively altered when potential correlations between samples
were investigated by merging data from randomly-selected samples into clusters of various
sizes, and fitting the model to multiple synthetic data sets generated in this manner from the
observed data set. The fixed effect of radiation fluctuated around zero, and the predicted odds
ratios for detection in high vs. low radiation locations remained> 1 for several species.

Fig 2. Comparison of observed (squares) and best-fit model predicted (circles) odds ratios for
detection of fungal species in locations with high vs. low dose rates within the Chernobyl reactor
buildings (data set two, reference [18], S1 Appendix).Error bars indicate 95% confidence intervals (CIs)
calculated by Fisher’s exact test with Type I error threshold of 0.05. The predictions are points, and they are
connected by a line just for convenience to guide the eye. No points are shown when odds ratio estimates
equaled zero or infinity, but CI bounds are shown in these cases. The species are: 1 = Penicillium hirsutum,
2 =Cladosporium sphaerospermum, 3 = Aspergillus niger, 4 = Aureobasidium versicolor, 5 = Alternaria
alternata, 6 = Aureobasidium pollulans, 7 = Acremonium strictum, 8 = Aspergillus fumigatus, 9 = Penicillium
ingelheimense, 10 = Aspergillus flavus, 11 = Aspergillus fresenii, 12 = Aspergillus ochraceus, 13 = Aspergillus
ustus, 14 = Paecilomyces variotii, 15 = Penicillium citrinum, 16 = Phialophora melinii, 17 =Chaetomium
globosum, 18 = Penicillium chrysogenum, 19 = Penicillium hordei, 20 =Cladosporium herbarum, 21 = Botrytis
cinerea, 22 = Doratomyces stemonitis, 23 = Fusarium solani, 24 =Geotrichum candidum, 25 =Ulocladium
(white sterile mycelium), 26 = Fusarium oxysporum, 27 = Stachybotrys chartarum, 28 =Geotrichum sp., 29 =
Cladosporium cladosporioides, 30 = Beauveria bassiana, 31 =Chrysosporium pannorum, 32 =Mucor
plumbeus, 33 = Fusariummerismoides, 34 =Ulocladium (orange sterile mycelium), 35 = Sydowia polyspora,
36 =Ulocladium botrytis, 37 =Cladosporium sp. They are arranged on the x-axis in rank order of predicted
odds ratios.

doi:10.1371/journal.pone.0147696.g002
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At the most extreme case of inter-sample correlation (when the data from all samples at low
dose rate were merged into a single presence/absence value and the same was done to all sam-
ples at high dose rate, reducing the data set to only two presence/absence values for each spe-
cies), the coefficient for the fixed effect of increased radiation became negative, but not
significantly different from zero: –0.66 (SE: 4.8, P = 0.89). Again, this fixed effect explained
very little of the variance: marginal R2 was< 10−4. In contrast, random effects of order and
species on the response to radiation explained most of the variance of this reduced data set,
bringing conditional R2 to 0.998. Predicted odds ratios for detection in high vs. low radiation
locations remained> 1 for 9 species: Aspergillus flavus, A. fresenii, A. ochraceus, A. ustus, Beau-
veria bassiana, Geotrichum candidum, Paecilomyces variotii, Penicillium citrinum, and Phialo-
phora melinii. Consequently, the presence or absence of fungal taxa within Chernobyl reactor
buildings was probably determined mainly by taxon-specific responses to radiation, which
were positive rather than negative for several taxa.

The lethal dose of acute irradiation (in kGy), taken from reference [25], was associated with
detection of a given taxon in the reactor buildings. When this variable was added to GLMM
analysis, the coefficient relating it to fungal detection probability was 0.20 (SE: 0.058,
P = 0.00038). However, resistance to acute irradiation did not predict differences in fungal
abundance at high vs low dose rate locations: the coefficient for the interaction of radiation
level with acute lethal dose was -0.04 (SE: 0.17, P = 0.81). This suggests that the most radioresis-
tant species (Alternaria alternata and Cladosporium cladosporioides) were more likely to be
found in the reactor buildings, than more sensitive species, but that their abundance was unaf-
fected by dose rate fluctuations within the buildings.

Data Set Three: Continuously Irradiated Yeast
This data set shows how the maximum radiation dose rate that a population can tolerate
depends on another stressor–cell removal rate by chemostat dilution [19]. To analyze it, we
used twenty mechanistically-motivated formalisms (summarized in Table 2). Nine of them
(models M1–M9) had a fair degree of support from the data—based on values of the sample-
size corrected Akaike information criterion (AICc) [33, 34]. The absence of overwhelming sup-
port for one model is not unexpected, given the overlap between mechanisms represented in
different models (Table 2) and small data set size [19]. The best-supported formalism was M1

(Table 2), and it provided a reasonable fit to the data (Fig 3).
Direct cell killing by radiation (parameter k) and suppression of cell proliferation by radia-

tion (parameter δ) were very important for describing the data: if either of these parameters is
excluded (models M17, M19, and M20, Table 2), support from the data will decrease virtually to
zero. Interestingly, the radiation-independent cell proliferation rate component (parameter g)
was also very important: if it is excluded (models M10 and M18, Table 2), model performance
will become poor. This is consistent with published data, which show that the proliferation rate
of continuously irradiated yeast stabilizes at a non-zero value even at very high dose rates [35].
Perhaps this occurs because of the interplay between accumulation and repair of radiation
damage and checkpoint-induced proliferation arrest dynamics.

There was little support for quadratic terms for radiation effects on cell killing (models M6,
M16, Table 2). This result is in agreement with radiobiological data and theory, which suggest
that at low dose rates most DNA double strand breaks are rejoined before they can interact
with each other, thereby creating a linear dose response [36, 37]. Quadratic terms or alternative
dose response shapes for cell proliferation, including the possibility that low radiation dose
rates stimulate cell proliferation (models M4, M8, M9, M13, M16, Table 2), also had low support.
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However, this finding may be in part explained by the small size of the data set, which causes
complex models to be heavily penalized by AICc.

There was some support for effects of radiation and/or dilution rate on intraspecific compe-
tition: the sum of Akaike weights [33, 34] for models M2, M7, M10, M11, M12, M14 and M15 was
0.163. Furthermore, there was some evidence that dilution rate interacts with radiation: the
sum of Akaike weights for models M3, M5, M7, M14, and M15 was 0.162. Perhaps these effects
are caused by changes in the cell cycle phase/age structure of the irradiated yeast population
[19, 38].

The parameter values for the best-supported model M1 were quite robust to randommodifi-
cation of the data set: k = cell killing by radiation, best-fit value 5.78 (95% CI: 3.14, 9.08)×10−4

Gy-1; δ = suppression of cell proliferation by radiation, 4.78 (3.27, 7.89)×10−2 h/Gy; q = fast

Table 2. Summary of mechanistic models used to analyze the data on continuously irradiated yeast (data set three, reference [19], S1 Appendix),
arranged with the best-supported models at the top of the list. Details are provided in the main text and in S4 Appendix. Briefly, increasing ΔAICc and
decreasing Akaike weight (W) indicate decreasing support. The description of models M2–M20 focuses on the features which are different for each model
compared with model M1. The mathematical structure of each model is represented by (dN/dt)/N, which is the relative rate of change of the yeast cell concen-
tration (N). R is the radiation dose rate and d is the chemostat dilution rate. Model parameters arem, g, q, k, δ, μ, σ. Not all parameters are present in every
model, and the same symbol can represent parameters with different meaning in different models. *For a model which allowed different radiation effects on
fast and slow cell proliferation components (using the structure (dN/dt)/N = –d–m×N+g×exp(–μ×R)+q×exp(–δ×R)–k×R) the best-fit value of parameter μ was
0, so the mathematical result was indistinguishable frommodel M1 and the Akaike weight was attributed to M1.

Model Description Mathematical expression for (dN/dt)/
N

ΔAICc W

M1 basic formalism with cell killing and suppression of proliferation by radiation –d–m×N+g+q×exp(–δ×R)–k×R 0.00 0.544*

M2 radiation increases intraspecific competition –d–m×N×exp(μ×R)+g+q×exp(–δ×R)–
k×R

3.37 0.096

M3 dilution rate decreases radiation effect on cell proliferation –d–m×N+g+q×exp(–δ×R)/(d×μ+1)–k×R 3.83 0.076

M4 radiation effect on cell proliferation is non-exponential –d–m×N+g+q/(R×δ+1)–k×R 4.08 0.067

M5 dilution rate decreases cell killing by radiation –d–m×N+g+q×exp(–δ×R)–k×R/(d×μ+1) 4.74 0.048

M6 cell killing by radiation is linear-quadratic –d–m×N+g+q×exp(–δ×R)–μ×R2
–k×R 5.29 0.037

M7 intraspecific competition is affected by interaction of dilution rate with radiation –d–m×N×exp(–μ×d×R)+g+q×exp(–
δ×R)–k×R

5.44 0.034

M8 radiation effect on cell proliferation is linear-quadratic – d–m×N+g+q×exp(–R2×μ–R×δ)–k×R 5.52 0.033

M9 radiation stimulates cell proliferation at low dose rates –d–m×N+g+(q+μ×R1/2)×exp(–δ×R)–
k×R

5.81 0.028

M10 radiation increases intraspecific competition, but no radiation-independent cell
proliferation rate component

–d–m×N×exp(μ×R)+q×exp(–δ×R)–k×R 7.02 0.015

M11 radiation increases intraspecific competition, but no cell killing by radiation –d–m×N×exp(μ×R)+g+q×exp(–δ×R) 8.68 0.007

M12 radiation effect on intraspecific competition is linear-quadratic –d–m×N×exp(R2×σ+R×μ)+g+q×exp(–
δ×R)–k×R

8.72 0.007

M13 with separate non-exponential radiation effects on cell proliferation rate
components

–d–m×N+g/(R×μ+1)+q/(R×δ+1)–k×R 9.91 0.004

M14 dilution rate decreases radiation effects on cell proliferation and intraspecific
competition

–d–m×N/(d×μ+1)+g+q×exp(–δ×R)/(d×σ
+1)–k×R

10.07 0.003

M15 with negative effect of dilution rate on cell killing by radiation and on intraspecific
competition

–d–m×N/(d×μ+1)+g+q×exp(–δ×R)–
k×R/(d×σ+1)

12.21 0.001

M16 radiation effects are linear-quadratic for cell killing and for proliferation –d–m×N+g+q×exp(–R2×μ–R×δ)–σ×R2
–

k×R
12.75 0.001

M17 no direct killing by radiation –d–m×N+g+q×exp(–δ×R) 18.61 0.000

M18 no radiation-independent cell proliferation rate component –d–m×N+q×exp(–δ×R)–k×R 23.17 0.000

M19 radiation increases intraspecific competition, but no radiation effect on cell
proliferation

–d–m×N×exp(μ×R)+g–k×R 26.86 0.000

M20 no radiation effect on cell proliferation –d–m×N+g–k×R 33.28 0.000

doi:10.1371/journal.pone.0147696.t002
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(radiation-responsive) component of cell proliferation rate, 0.599 (0.410, 1.01) h-1;m = coeffi-
cient of intraspecific competition, 2.11 (1.43, 3.68)×10−3 ml/(h×106 cells). The radiation-
related parameters k and δ were highly correlated (r = 0.818), and so were non radiation-
related parameters q andm (r = 0.832). As mentioned in S4 Appendix, parameter g was esti-
mated analytically from data which were not fitted, so it was not freely adjustable.

Combined predictions from all models generated by MMI were numerically very similar to
those of the best-supported model M1. Consequently, both model M1 and MMI suggested the
following conclusions:

1. The critical dose rate decreased rapidly and non-linearly with increasing dilution rate (Fig
4). For example, a dilution rate which caused 2-fold decrease in equilibrium cell concentra-
tion without irradiation decreased the critical dose rate by 13.3-fold. At sufficiently high
dilution rates, extinction, of course, occurred even without excess irradiation.

2. The critical dose rate was sensitive to radiation-induced cell killing (parameter k) only at
low dilution rates; whereas at high dilution rates effects on cell proliferation rate (parame-
ters q, g, δ) became most influential (Fig 5). In other words, when the yeast population was

Fig 3. Comparison of best-fit model predictions (curves) with the data (symbols) on continuously
irradiated yeast (data set three, reference [19], S1 Appendix) at various radiation dose rates and
chemostat dilution rates (d). Solid circles are measurements of the equilibrium yeast cell concentration,
which represents the steady-state number of cells/ml attained in the chemostat after multiple yeast
generations (error bars are 95% CIs). Open squares are measurements of the critical dose rate above which
the population became extinct. Solid curves are best-fit model predictions (from the best-supported model
M1, Table 2). Dashed curves represent 95%CIs for model predictions, generated by fitting the model to
multiple synthetic data sets generated from the original data set by Monte Carlo simulation (S4 Appendix).
Predicted negative values for the equilibrium cell concentration (i.e. curves extending below zero on the y-
axis) indicate population extinction. Points measured at 0 Gy/h are shown at 0.1 Gy/h so they can be
displayed on a logarithmic scale.

doi:10.1371/journal.pone.0147696.g003
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subjected to combined stresses from radiation and dilution, the maximum tolerated dose
rate was mainly determined by the ability to proliferate fast enough to compensate for cell
loss by dilution. Thus, this experimental system serves as a simple example showing that

Fig 4. Best-fit prediction by MMI using all highly supportedmodels (withΔAICc < 6) for continuously
irradiated yeast (data set three, reference [19], S1 Appendix). Details of the methods used are provided in
S4 Appendix. The predicted variable is the critical radiation dose rate (Rcrit) above which the yeast population
becomes extinct, as function of the chemostat dilution rate (d).

doi:10.1371/journal.pone.0147696.g004

Fig 5. Sensitivity of the critical radiation dose rate (Rcrit) predicted by the best-supported model M1

(Table 2) for continuously irradiated yeast (data set three, reference [19], S1 Appendix) to a 10%
increase in each of the model parameters (g, q, δ, k), as function of the chemostat dilution rate (d).
When one parameter was increased, all others were held constant at best-fit values. The y-axis is the ratio of
Rcrit calculated when one of the parameters was increased to the value of Rcrit calculated when all
parameters were at their best-fit values. Details of the methods used are provided in S4 Appendix.

doi:10.1371/journal.pone.0147696.g005
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radiation effects on suppression of reproduction can be more influential on populations
subjected to multiple stressors than direct killing by radiation [39].

Discussion
Taken together, the results of our analysis of three diverse data sets by descriptive and mecha-
nistic mathematical modeling approaches demonstrate that microbial population responses to
radioactive contamination can be strongly influenced by additional stressors. These stressors,
such as chemical toxicants, should be taken into consideration when predicting radionuclide
effects on the environment [6, 8, 9].

Specifically, analysis of data set one revealed that the nuclear waste at Hanford had strong
toxic effects on soil bacteria. However, much of these effects were caused by chemical contami-
nants (e.g. NO2) rather than by radionuclides. Radiation from radionuclides (e.g. 137Cs) proba-
bly provided a competitive advantage for taxa with the highest resistance to radiation and
oxidative stress (e.g. Deinococcus).

The results for data set two suggest that chronic irradiation can potentially produce non-
monotonic dose response shapes: the probability to detect some (or even most) fungal species
within the Chernobyl reactor buildings was predicted to increase (rather than decrease) with
increasing radiation dose rate (within the range of dose rates represented in this data set).
These findings are consistent with previously reported stimulation of directional growth and/
or proliferation of some fungi by chronic irradiation [40–44].

Mutation rates in fungi within reactor buildings were probably elevated [45, 46], but it is
unclear whether or not they exceeded the lethal mutagenesis threshold, which was measured
only for some bacteria and viruses [47, 48]. Therefore, long-term genetic consequences of
chronic irradiation for these fungal populations are unknown and could result either in pro-
gressive accumulation of deleterious mutations and extinction, or in accumulation of beneficial
mutations [47, 48].

Analysis of data set three showed that the presence of additional stressors, such as a high
cell mortality (removal) rate due to factors other than radiation, lowers by several-fold the criti-
cal radiation dose rate, which precipitates population extinction. In addition, reproduction
suppression by radiation can be more important for determining the critical dose rate, than
radiation-induced cell mortality.

The conclusions drawn from analyzing these three data sets quantitatively support the fol-
lowing generalizations, which could be useful for environmental protection and radionuclide
bioremediation [6, 8].

First, the most severe effects (e.g. extinction) on microbial populations may occur when
unfavorable environmental conditions (e.g. fluctuations of temperature and/or nutrient levels)
coincide with radioactive contamination. For example, certain microbial species may persist in
contaminated areas for some time, but become extinct when conditions become harsher due to
seasonal and/or random factors. Consequently, to predict the long-term responses of such
communities to radioactive contamination, it may be insufficient to measure radiation toxicity
to the target organisms under laboratory conditions, or even under typical field conditions–
measurements under the worst expected conditions (i.e. when non-radiation stressors attain
maximal values) may be needed.

Second, to identify promising candidates for microbial bioremediation of radioactive wastes,
it may be insufficient to screen only for radioresistance and/or efficiency in remediating certain
chemicals–robustness against multiple stressors may be required to carry out bioremediation
in the field. For example, many organisms which can grow in rich laboratory media with high
radionuclide concentrations [9] may not be able to cope with similar concentrations in soil,
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where nutrient availability is lower and other stressors are present. Consequently, an organ-
ism’s ability to survive and proliferate under oligotrophic conditions in the presence of severe
radioactive contamination would be needed to usefully exploit this organism for bioremedia-
tion [7]. Such abilities were demonstrated by several fungal taxa (e.g. Penicillium, Cladospor-
ium, Alternaria) in data set two, suggesting that their potential as radionuclide bioremediators
may need to be evaluated further [7].

The strengths of the present study include rigorous quantitative analysis intended to identify
parsimonious explanations for how radiation and other stressors affected bacterial and fungal
taxa under both field and laboratory conditions. State of the art descriptive and mechanistic
methods, which incorporate elements of machine learning [49, 50] and information theory
[33, 34], were employed.

The limitations of this study result from the properties of the data sets. For example, in data
set one only a single contaminated site was sampled and, therefore, there is no guarantee that
this site is representative. In data set two, many potentially relevant environmental variables
(e.g. spatial locations of samples, temperature, pH) were not reported. In data set three, sample
size was limited and results of replicate experiments at each stressor combination were not
reported.

The limitations of the data sets resulted in unavoidable limitations of the methodology used
to analyze them. In particular, the large number of taxa and/or stressors in data sets one and
two prevented mechanistic modeling and we therefore relied on descriptive approaches,
although in principle we believe that mechanistic models provide advantages over statistical
ones [29, 30]. We had insufficient information about which taxa have important interactions
with others, and therefore we had no choice but to ignore these interactions. Finally, the large
number of potential predictor variables (radionuclides, chemical contaminants, temperature,
pH, etc) in data set one prompted us to adopt a step-wise filter procedure to refine the data
analysis. The goal of the filter procedure was to identify the most important predictors, but
because not all possible predictor combinations were evaluated, there is no guarantee that the
best-supported model was found.

Despite these limitations, we believe that our analysis of three diverse data sets provides use-
ful insight into the important role of chemical and environmental stressors in determining the
responses of microbial populations to radioactive contamination and might help to select the
best microbial candidates for use in bioremediation.
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