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Abstract

Objective

The special status accorded to elite athletes stems from their uncommon genetic potential

to excel in world-class power sports (PS). Genetic polymorphisms have been reported to

influence elite PS status. Reports of associations between the α-actinin-3 gene (ACTN3)

R577X polymorphism and PS have been inconsistent. In light of new published studies, we

perform a meta-analysis to further explore the roles of this polymorphism in PS performance

among elite athletes.

Methods

Multi-database literature search yielded 44 studies from 38 articles. Pooled odds ratios

(ORs) and 95% confidence intervals (CIs) were used in estimating associations (signifi-

cance threshold was set at Pa� 0.05) using the allele-genotype model (R and X alleles, RX

genotype). Outlier analysis was used to examine its impact on association and heterogene-

ity outcomes. Subgroup analysis was race (Western and Asian) and gender (male/female)-

based. Interaction tests were applied to differential outcomes between the subgroups, P-val-

ues of which were Bonferroni corrected (Pinteraction BC). Tests for sensitivity and publication

bias were performed.

Results

Significant overall R allele effects (OR 1.21, 95% CI 1.07–1.37, Pa = 0.002) were confirmed

in the Western subgroup (OR 1.11, 95% CI 1.01–1.22, Pa = 0.02) and with outlier treatment

(ORs 1.12–1.20, 95% CIs 1.02–1.30, Pa < 10−5–0.01). This treatment resulted in acquired

significance of the RX effect in Asian athletes (OR 1.91, 95% CI 1.25–2.92, Pa = 0.003).

Gender analysis dichotomized the RX genotype and R allele effects as significantly higher

in male (OR 1.14, 95% CI 1.02–1.28, Pa = 0.02) and female (OR 1.58, 95% CI 1.21–2.06,

Pa = 0.0009) athletes, respectively, when compared with controls. Significant R female

association was improved with a test of interaction (Pinteraction BC = 0.03). The overall, Asian
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and female outcomes were robust. The R allele results were more robust than the RX geno-

type outcomes. No evidence of publication bias was found.

Conclusions

In this meta-analysis, we present clear associations between the R allele/RX genotype in

the ACTN3 polymorphism and elite power athlete status. Significant effects of the R allele

(overall analysis, Western and female subgroups) and RX genotype (Asians and males)

were for the most part, results of outlier treatment. Interaction analysis improved the female

outcome. These robust findings were free of publication bias.

Introduction

Exceptional performance during national/international-level competitions defines elite ath-

letes [1]. Among elite power sports (PS) athletes, performance varies across countries, races

and gender. This variation stems from genetic and environmental factors. It has been reported

that genes play a substantial role in muscle function, specifically those involving the PS pheno-

type [2,3]. Genetic variants (i.e. polymorphisms) are vital in understanding the potential influ-

ence of genes on PS [4] but published outcomes have been variable [5,6]. Nevertheless, lines of

evidence have catapulted the ACTN3 (α-actinin-3) polymorphism into prominence regarding

its association with PS performance [7,8].

ACTN3 is the gene that encodes for α-actinin-3, which is a sarcomeric protein expressed

mainly in type II muscle fibers [9]. Type-II muscle fibers are involved in generating explosive

and powerful muscle contractions. A common polymorphism in this gene is ACTN3 R577X

(rs1815739), where a cytosine-to-thymine base substitution transforms the arginine base (R)

to a premature stop codon (X). The X allele is a loss-of-function variant wherein homozygosity

results in a complete lack of expression of α-actinin-3, the deficiency of which occurs in ~20%

of the world’s population [8]. Given functional de-emphasis on the X allele, greater attention

has been paid to the relationship of the R allele with PS performance [10] where athletes with

the RR genotype are associated with high muscle strength [11] and power [12]. In line with

these findings, we examine the hypothesis that the RR genotype is more common among

sprint/power athletes compared with their controls [4,13].

The popularity of ACTN3 in sports performance is attested by its coverage in several

reviews [7,8,14,15]. Current knowledge regarding associations of the ACTN3 R577X polymor-

phism with sports performance involves investigation of its polygenic nature and interactions

[16–20]. Thus, ACTN3 literature has focused on association analyses between several genes

related to sports performance [21,22]. Genome-wide association studies (GWAS) involving

ACTN3 is an emerging possibility in the genomics of sports science. More commonly in

ACTN3 R577X research, however, is the study of the R and X alleles as well as RX genotype fre-

quencies between athlete and control; between sport types, mainly power and endurance and

comparisons between populations. Studies have found that the R allele is more frequent in

power athletes than controls [23] and in power more than endurance [24]. However, other

studies on PS performance showed no associations, rendering inconsistency in the outcomes

[22,25,26].

Meta-analysis is a potent methodology that synthesizes the results of independent studies

thus increasing statistical power and resolution. Our rationale for doing this meta-analysis

rests on the following: (i) the synthetic approach gives a simultaneous overview and detailed
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profiles of the role of ACTN3 R577X in PS performance which is facilitated by an arsenal of

meta-analysis tools that can be used; (ii) primary study outcomes on this topic have been

inconsistent with associations found in some reports [4,26,27] and none in others [28–30] and

(iii) new studies have since been published. In this study, we aim to determine the role of

ACTN3 R577X in the PS phenotype among elite power athletes.

Materials and methods

Selection of studies

We searched MEDLINE using PubMed, Science Direct and Google Scholar for association

studies as of June 28, 2018. The terms used were “α-actinin-3”, “ACTN3”, “elite”, “athlete”,

“power sports” and “polymorphism” as medical subject headings and text, restricted to the

English language. References cited in the retrieved articles were also screened manually to

identify additional eligible studies. The exclusion criteria were; (i) review; (ii) subjects were

non-human; (iii) non-English; (iv) studies did not involve PS performance (e.g. ACTN3 poly-

morphism effects in disease conditions or cases were non-athletes) and (v) not ACTN3 by

title/abstract. Other exclusion criteria are listed in Fig 1 and S1 List. The inclusion criteria

were: (i) case–control study design evaluating the association between ACTN3 R577X poly-

morphism and elite power athletes; (ii) sufficient genotype frequency data to calculate the

odds ratios (ORs) and 95% confidence intervals (CIs) and (iii) controls in studies comply with

the Hardy-Weinberg Equilibrium (HWE) which was assessed using the online application

(https://ihg.gsf.de/cgi-bin/hw/hwa1.pl). S1 Table details information about the excluded arti-

cles based non-compliance with HWE.

Data extraction

Two investigators (PT and NP) independently extracted data and arrived at a consensus.

Authors were contacted in order to obtain more information on incomplete data. The follow-

ing information was extracted from each article: first author’s name, published year, country

of origin, race and gender of participants, those that addressed gene-gene, gene-environment

interactions, those that used haplotype analysis, matching and sample source. Reference lists

of screened full-text articles were scanned for additional studies. Where articles reported mul-

tiple genotypes under PS levels, we chose those that referred to “elite” or “international” or

otherwise contextualized the status of elite athletes according to Lorenz et al [31]. Departures

of genotypic frequencies from the HWE in control subjects were determined with the χ2 test.

Quality assessment of the studies

The Clark-Baudouin (CB) scale was used to evaluate methodological quality of each included

study [32]. Suitability of this scale is based on criteria that include P-values, addressing statisti-

cal power issues, corrections for multiple testing, sample size comparisons between cases and

controls, use of primers and detailing of genotyping methods. CB scores range from zero

(worst) to 10 (best) with low and high quality designated as< 5 and� 5, respectively.

Data distribution and publication bias

Data distribution was assessed with the Lilliefors corrected-Kolmogorov-Smirnov (KS) test

[33] using SPSS 20.0 (SPSS Inc., IBM Corp. Chicago, IL, USA). Descriptive statistics of nor-

mally distributed data were expressed as mean ± standard deviation (SD), otherwise, we used

median and interquartile range (IQR). We assessed publication bias using WINPEPI [34].

Study-specific ORs were used as operating data for publication bias tests, the choice of which
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Fig 1. Summary flow chart of literature search. ACTN3: alpha-actinin-3; HWE: Hardy-Weinberg Equilibrium; PS: power sports.

https://doi.org/10.1371/journal.pone.0217390.g001
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depended on their distribution. Inferential protocol warranted the Egger’s test [35] for nor-

mally distributed data, otherwise, the Begg-Mazumdar test was used [36].

Data synthesis

We estimated associations (OR) and 95% CI among elite athletes for each study. Where geno-

type values were zero, we applied the Laplace correction by adding a pseudo-count of one to

all values of the data set [37] before constructing the forest plots. Because frequency of the vari-

ant X allele was non-uniform, we compared the following: (i) X allele with RX/RR genotype;

(ii) R allele with RX/XX genotype and (iii) RX genotype with homozygous RR and XX geno-

types (heterozygote comparison). This modeling approach facilitates comparisons and inter-

pretations of findings with ACTN3 literature. Raw data for genotype frequencies, without

adjustment, were used to calculate study-specific ORs. To assess the strength of evidence, we

used the following indicators: (i) magnitudes of effects are stronger or weaker when the values

are closer to or farther from the non-associative OR of 1.0, respectively; (ii) precision of effects

was assessed with the confidence interval difference (CID = upper CI—lower CI). High and

low CID values indicate low and high precision, respectively and (iii) P-values close to 0.05

and 0.0001 indicate moderate and high significance, respectively. Two-sided P-values

of� 0.05 were considered significant except in estimations of heterogeneity where the thresh-

old was set at� 0.10 on account of the low power of the χ2-based Q test [38]. Heterogeneity

between studies was estimated with the χ2-based Q test [39], explored with subgroup analysis

[39] and quantified with the I2 statistic which measures degree of inconsistency among studies

[40]. Sources of heterogeneity were detected using the Galbraith plot [41]. Outlier treatment

involves omitting the sources of heterogeneity (outliers) followed by reanalysis [42]. Less vari-

ability in the study characteristics [43] of the component studies indicate reduced heterogene-

ity [44]. This warranted use of the fixed-effects model [45], otherwise, we opted for the

random-effects model [46]. Sensitivity analysis, which involves omitting one study at a time

and recalculating the pooled OR, was used to test for robustness of the summary effects. Differ-

ential outcomes between the races and genders warranted the test of interaction [47]. The con-

cept of this test is contextualize the pooled effect of one subgroup (already established by the

test of overall effect) by comparing it with its counterpart subgroup (its association indepen-

dently obtained). In this meta-analysis, the test of interaction involves comparing the pooled

ORs and their 95% CIs with their counterparts in the race and gender subgroups (e.g. Western

versus Asian, Western versus African, female versus male). A significant Bonferroni corrected

P-value of interaction (PBC < 0.05) from the z-test means improved power of association. Data

were analyzed using Review Manager 5.3 (Cochrane Collaboration, Oxford, England), SIG-

MASTAT 2.03, SIGMAPLOT 11.0 (Systat Software, San Jose, CA).

Results

Search results and study features

Fig 1outlines the study selection process in a flowchart following PRISMA (Preferred Report-

ing Items for Systematic Reviews and Meta-Analyses) guidelines. A total of 548 citations dur-

ing the initial search were subjected to a series of omissions. S2 Table shows the 38 articles

which includes a published thesis [48]. Of the 38, 16 (�) were not included (new) in the 4 previ-

ous meta-analyses [10,13,49,50]. Year range of the articles was 2003–2018.

CB score distributions were non-normal (KS: P� 0.002), where median for the 38 studies

was 7.0 (IQR 6.0–7.0) indicating high methodological quality of the articles. Confined to the

16 new articles (42.1%), median CB was higher at 8.0 (IQR 7.0–8.0). However, the difference

between CB scores in the 38 and 16 studies was marginal (Mann-Whitney U test: P = 0.06).
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Proportion of articles using blood (65.8%) was higher than those that used saliva or buccal

(57.9%) as sources for genotyping. Of note, 9 articles (23.7%) used both sources. Multiple data-

sets from 5 publications placed the total number of studies to 44 (S2 Table). Of the 44 studies,

31 were Western (70.4%), 9 Asian (20.5%) and 4 African (9.0%) subjects.

S3 Table shows quantitative features of the 44 studies which include sample sizes, number

of cases and controls, genotype frequencies, including the minor allele and P-values for HWE.

A detailed description of this meta-analysis is summarized in the checklists for PRISMA (S4

Table) and for genetic association studies (S5 Table).

Meta-analysis outcomes

Here, we emphasize on reporting pooled effects found more in power (MP) rather than in con-

trols (MC). There are two reasons for this emphasis, first, is that power-leaning (MP) effects

allow interpretation of results that quantify the magnitude of association. The second reason

relates to de-emphasizing the X allele effects which Table 1 and Fig 2 show as non-associative

(null/MC) in all comparisons. We thus focus on the R allele and RX genotype where significant

associative outcomes (P< 0.05) were observed (Fig 2).

Overall and race subgroup

Table 1 shows significant overall associations of the R allele in pre-outlier (PRO) as higher in

MP than in MC (OR 1.21, 95% CI 1.07–1.37, Pa = 0.002), confirmed in the post-outlier (PSO)

Table 1. Overall analysis of R allele in ACTN3 R577X polymorphism with power sports.

Test of association Test of heterogeneity Test of association Test of heterogeneity Effect of outlier

treatment

n OR 95% CI CID Pa Sports

Performance

Pb I2

(%)

AM n OR 95% CI CID Pa Sports

Performance

Pb I2

(%)

AM Signi-

ficance

Hetero

geneity

PRO PSO

Overall

power

R 44 1.21 1.07–1.37 0.30 0.002 MP 10−5 61 RE 39 1.20 1.12–1.30 0.18 10−5 MP 0.10 23 F ES RH

X 44 0.71 0.62–0.82 0.20 10−5 MC 0.01 35 RE 42 0.71 0.64–0.79 0.15 10−5 MC 0.11 22 F - - - - - -

RX 44 0.90 0.80–1.01 0.21 0.08 MC 10−5 62 RE 38 0.96 0.89–1.04 0.15 0.30 MC 0.10 24 F - - - - - -

Western

R 31 1.11 1.01–1.22 0.21 0.02 MP 10−4 60 RE 28 1.12 1.02–1.23 0.21 0.01 MP 0.22 16 F RS RH

X 31 0.78 0.65–0.92 0.27 0.004 MC 0.02 39 RE 30 0.81 0.71–0.92 0.21 0.001 MC 0.13 23 F - - - - - -

RX 31 0.93 0.80–1.07 0.27 0.31 MC 10−5 63 RE 28 1.03 0.95–1.13 0.18 0.45 Null 0.12 25 F RNS RH

Asian

R 9 0.83 0.48–1.43 0.95 0.49 MC 10−5 92 RE 7 1.11 0.65–1.89 1.29 0.69 MP 10−5 88 RE RNS NC

X 9 0.63 0.47–0.83 0.36 0.001 MC 0.01 60 RE 7 0.72 0.56–0.92 0.36 0.008 MC 0.09 45 RE - - - - - -

RX 9 1.43 0.86–2.39 1.53 0.17 MP 10−5 95 RE 7 1.91 1.25–2.92 1.67 0.003 MP 10−5 91 RE GS NC

African

R 4 1.03 0.76–1.40 0.64 0.83 Null 0.52 0 F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

X 4 0.81 0.34–1.95 1.61 0.64 MC 0.80 0 F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RX 4 0.99 0.73–1.36 0.63 0.96 Null 0.48 0 F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

R: common allele; X: variant allele; RX: heterozygous genotype; n: number of studies; OR: odds ratio; CI: confidence interval; CID: confidence interval difference; Pa: P-

value for association; Pb: P-value for heterogeneity; I2: measure of inconsistency expressed in %; AM: analysis model; PRO: pre-outlier; PSO: post-outlier; F: fixed-

effects; RE: random-effects; MP: more in power; MC: more in control; Null (ORs 0.97–1.03); values in bold indicate significant effects on sports performance only

(OR > 1.00); the significance and heterogeneity columns were filled when one or both OR values in PRO and/or PSO was MP, otherwise the columns were dashed; ES:

elevated significance; RS: retained significance; RNS: retained non-significance; GS: gain in significance; RH: reduced heterogeneity; NC: no change

https://doi.org/10.1371/journal.pone.0217390.t001
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analysis (OR 1.20, 95% CI 1.12–1.30, Pa < 10−5) and in Westerns (ORs 1.11–1.12, 95% CIs

1.01–1.23, Pa = 0.01–0.02). Seven (33.3%) of the 21 comparisons in Table 1 were MP

(OR> 1.00), 5 (71.4%) of which were significant (Pa < 0.05). Of the 5, pooled effects in Asians

were the only subgroup to gain significance (GS) and its heterogeneity unaffected by outlier

treatment. Initial homogeneity (I2 = 0%) of the African non-associative (null/MC) effects (OR

0.81–1.03, 95% CI 0.34–1.95, Pa = 0.64–0.96) from 4 studies precluded outlier treatment.

Gender analysis

Table 2 summarizes a total of 11 comparisons, of which 5 (45.5%) show pooled ORs that were

higher in MP than in MC. Two of the 5 were significant (Pa < 0.05), both of which were PSO,

underpinning the impact of outlier treatment. Two features mark our core findings in gender

Fig 2. 3D plot of ACTN3 polymorphism effects in power sports. R: wild-type; X: variant-type; RX: heterozygous; MP: more in power; SigMP: significantly more in

power.

https://doi.org/10.1371/journal.pone.0217390.g002
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analysis regarding associations: (i) the RX genotype in males (OR 1.14, 95% CI 1.02–1.28, Pa =

0.02) and (ii) the R allele in females (OR 1.58, 95% CI 1.21–2.06, Pa = 0.0009), but not in males

(ORs 1.01–1.06, 95% CI 0.87–1.20, P = 0.31–0.87).

Mechanism of outlier treatment

Operation of outlier treatment is outlined in Figs 3–5 for the R allele comparison among

females with ORs that favor MP over MC. In Fig 3, the pooled effect (OR 1.39, 95% CI 0.93–

2.08) was not significant (Pa = 0.11) and heterogeneous (Pb = 0.003, I2 = 63%). The sources of

this heterogeneity were identified [30,51] with the Galbraith plot (Fig 4). Fig 5 shows the PSO

value of acquired significance (Pa = 0.0009) and reduced heterogeneity (Pb = 0.11, I2 = 40%)

Table 2. Gender analysis in ACTN3 R577X polymorphism with power sports.

Test of association Test of heterogeneity Test of association Test of heterogeneity Effect of outlier

treatment

n OR 95% CI CID Pa Sports

Performance

Pb I2

(%)

AM n OR 95% CI CID Pa Sports

Performance

Pb I2

(%)

AM Signi-

ficance

Hetero-

geneity

PRO PSO

Male

R 20 1.01 0.87–1.18 0.31 0.87 Null 0.08 33 RE 19 1.06 0.94–1.20 0.26 0.31 MP 0.47 0 F RNS EH

X 20 0.75 0.61–0.93 0.32 0.008 MC 0.05 38 RE 19 0.79 0.67–0.94 0.27 0.008 MC 0.35 8 F - - - - - -

RX 20 1.04 0.87–1.25 0.38 0.66 MP 0.0006 58 RE 19 1.14 1.02–

1.28

0.26 0.02 MP 0.45 0 F GS EH

Female

R 10 1.39 0.93–2.08 1.15 0.11 MP 0.003 63 RE 8 1.58 1.21–

2.06

0.85 0.0009 MP 0.11 40 F GS RH

X 10 0.98 0.66–1.46 0.80 0.92 Null 0.08 42 RE 9 1.02 0.78–1.31 0.53 0.91 Null 0.10 40 F RNS RH

RX 10 0.94 0.77–1.15 0.38 0.54 MC 0.21 25 F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

R: common allele; X: variant allele; RX: heterozygous genotype; n: number of studies; OR: odds ratio; CI: confidence interval; CID: confidence interval difference; Pa: P-

value for association; Pb: P-value for heterogeneity; I2: measure of inconsistency expressed in %; AM: analysis model; PRO: pre-outlier; PSO: post-outlier; F: fixed-

effects; RE: random-effects; MP: more in power; MC: more in control; Null (ORs 0.97–1.03); values and indicator (SP) in bold indicate significant associations

indicating effects on SP only (OR > 1.00); the significance and heterogeneity columns were filled when one or both OR values in PRO and/or PSO was MP, otherwise

the columns were dashed; GS: gain in significance; RNS: retained non-significance; EH: eliminated heterogeneity; RH: reduced heterogeneity

https://doi.org/10.1371/journal.pone.0217390.t002

Fig 3. Forest plot of the R allele female effects in the pre-outlier analysis. R: wild-type; CI: confidence interval; P: P-value; χ2: chi-square; CID: confidence interval

difference.

https://doi.org/10.1371/journal.pone.0217390.g003
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with pooled female effect of the R allele higher in MP compared to MC (OR 1.58, 95% CI

1.21–2.06, Pa = 0.0009).

Effects of outlier treatment

Table 3 presents the trends from PRO to PSO outcomes using four parameters (high signifi-

cance, heterogeneity, homogeneity and precision). In the subgroups, high significance

declined (20% to 9%) as did heterogeneity (73% to 27%). In the overall analysis, however, het-

erogeneity disappeared (100% to 0%). Outlier treatment did not appear to impact on homoge-

neity in all comparisons. The precision parameter (indicated by CID) shows that the PRO and

PSO values had normal distributions in the overall (KS: P = 0.09–0.16) but not the subgroups

(KS: P = 0.002–0.01). For both comparisons, the PSO values were less than PRO with the over-

all mean ± SD (0.16 ± 0.02< 0.24 ± 0.06) and subgroup median (IQR) of 0.27 (0.22–0.77) <

0.36 (0.28–0.91). However, the CID differences were not significant in the overall analysis

Fig 4. Galbraith plot of the female subgroup in the R allele showing the outlying studies found below the -2 confidence limit. R: wild-type.

https://doi.org/10.1371/journal.pone.0217390.g004
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(t = 2.30, P = 0.08) and the subgroups (U = 47.50, P = 0.41). Despite their non-significance,

these differences suggest increase in precision.

Tests of interaction

Interaction tests were performed on the significant R allele and RX genotype subgroup out-

comes. Table 4 shows that of the 5 comparisons subjected to these tests, only the significant

female effect (OR 1.58, P = 0.0009) compared with that of the non-significant male effect (OR

Fig 5. Forest plot of the R allele female effects in the post-outlier analysis. R: wild-type; CI: confidence interval; P: P-value; χ2: chi-square; CID: confidence interval

difference.

https://doi.org/10.1371/journal.pone.0217390.g005

Table 3. Effects of outlier treatment in power sports outcomes.

Overall Subgroups

Parameter Indicator PRO n/Total (%) PSO n/Total (%) PRO n/Total (%) PSO n/Total (%)

High significance P < 10−5 0/3 (0) 0/3 (0) 3/15 (20) 1/11 (9)

Heterogeneity Random-effects 3/3 (100) 0/3 (0) 11/15 (73) 3/11 (27)

Homogeneity I2 = 0% 0/3 (0) 0/3 (0) 3/11 (20) 2/11 (18)

Precision �� CID� 0.24 ± 0.06 0.16 ± 0.02 0.36 (0.28–0.91) 0.27 (0.22–0.77)

PRO: pre-outlier; PSO: post-outlier; CID: confidence interval difference;

� mean ± standard deviation for overall; median (interquartile range) for subgroups;

�� CID comparison between PRO and PSO in overall (t-test: t = 2.30, P = 0.08) and subgroups (Mann-Whitney U test: U = 47.50, P = 0.41)

https://doi.org/10.1371/journal.pone.0217390.t003

Table 4. Tests of interaction.

Outlier status Genetic component a b ORa v ORb Uncorrected Pinteraction Corrected Pinteraction BC

PRO R Western v Asian 1.11 v 0.83 0.30 >1

PSO R Western v Asian 1.12 v 1.11 0.97 >1

PRO R Western v African 1.11 v 1.03 0.64 >1

PSO RX Asian v Western 1.91 v 1.03 0.012 0.06

PSO R Female v Male 1.58 v 1.06 0.007 0.03

PRO: pre-outlier; PSO: post-outlier; R: common allele; RX: heterozygous genotype; v: versus; OR: odds ratio; a: subgroup with significant ORs; b: subgroup with non-

significant ORs; P-values were Bonferroni-corrected (BC). Values in bold indicate significance (P < 0.05) of associations (under ORa) and P-values (corrected and

uncorrected)

https://doi.org/10.1371/journal.pone.0217390.t004
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1.06, P = 0.31) resulted in significant interaction (Pinteraction BC = 0.03) suggesting improved

association. This comparative outcome strengthens the statistical evidence favoring the MP

female effect.

Sensitivity analysis

In this section, we focused only the significant MP pooled ORs. Table 5 shows robust out-

comes in the following: (i) more in PSO than in PRO; (ii) in the overall analyses regardless of

outlier status; (iii) in the subgroups, only race in PSO and in gender, only female and (iv) as to

genetic component, in the R allele more than in the RX genotype.

Publication bias

Study-specific ORs under each of R and RX genetic components showed the non-normal dis-

tribution of the operating data (KS test: P = 0.002–0.02). Given this data distribution, we used

the Begg-Mazumdar correlation [36] to assess publication bias. We applied this test on com-

parisons with > 10 studies [58] and those with significant outcomes only. Table 6 shows no

evidence of publication bias in all comparisons (P> 0.05).

Discussion

This meta-analysis has two principal findings: (i) overall associations of the R allele and RX

genotype with PS performance were validated with outlier and subgroup treatments and (ii)

the R allele was associated with Westerns and females whereas the RX genotype was associated

with Asians and males. Gender-wise, the R allele effects differed between males and females.

The significant Asian and male/female outcomes were the results of outlier treatment. This

Table 5. Sensitivity analysis.

Comparison Genetic component Outlier status Sensitivity outcome

Overall R PRO Robust

Overall R PSO Robust

Western R PRO [4,52]

Western R PSO Robust

Asian RX PSO Robust

Male RX PSO [30,53–57]

Female R PSO Robust

R: common allele; RX: heterozygous genotype; PRO: pre-outlier; PSO: post-outlier; presence of reference number indicates intervening studies

https://doi.org/10.1371/journal.pone.0217390.t005

Table 6. Test for publication bias.

Begg Mazumdar correlation test

Group/subgroup Genetic component Outlier status n Kendall τ P-value

Overall R PRO 44 -0.08 0.45

Overall R PSO 38 -0.10 0.39

Western R PRO 31 -0.03 0.84

Western R PSO 28 -0.09 0.52

Male RX PSO 20 -0.05 0.75

R: common allele; RX: heterozygous genotype; PRO: pre-outlier; PSO: post-outlier; n: number of studies

https://doi.org/10.1371/journal.pone.0217390.t006
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treatment impacted on heterogeneity (reduced or eliminated) of the gender outcomes, but not

the Asian outcomes. Thus, retention of heterogeneity in the PSO Asian pooled effects warrants

caution in its interpretation.

A total sample size of 20,753 individuals for this meta-analysis seems large until this num-

ber is contextualized in terms of the controls (n = 15,903) which is> 3X those of the athletes

(n = 4,850). In the Western subgroup of Wang et al [22], there were 13 controls for every 1

athlete participant (n = 1,694/130). The gap between large numbers of controls and few elite

athlete participants reduces statistical power. This then may be one reason why genetic associa-

tion studies of elite sports performance have low statistical power [8]. In view of this limitation,

the meta-analysis approach, with its aggregate sample sizes may be suitable for examining

association of ACTN3 R577X with PS performance.

Significance of the findings

The ACTN3 R577X polymorphism has a repeated influence on elite athletic performance [4,

57]. This is why improved levels of evidence need to be presented from several front-line stud-

ies. The association between the ACTN3 R577X polymorphism on elite PS performance has

been established across studies that have employed differing methodologies. Our findings of

RR and RX associations with PS appear to agree with both human [59] and animal studies

[60]. Compared with X allele carriers, studies have shown that RR genotype and R allele carri-

ers may have more muscle size and strength [7,61,62], faster sprint times [63] and a higher

proportion of fast-twitch muscle fibers [59,64]. Likewise, PS athletes have been reported to

have a higher frequency of the RR + RX genotype (presence of α-actinin-3 protein) in their

fast-twitch skeletal muscle compared to controls [4]. However, not all studies agree with these

findings [25,65–68]. Nevertheless, the importance of ACTN3 in muscle structure and pheno-

type [63,69] directly affects elite PS performance. In our study, marginalizing the role of the X

allele in the PS phenotype was based on their control-leaning (MC) and/or null effects as well

as non-significance which warranted a neutral position as to its role in PS. We maintain this

neutrality, despite the suggestion that the XX genotype is detrimental for elite sprint and

power performance [70].

Subgroup significance

Differential findings delineated the associations between the races. Outcomes in Africans were

marginalized in view of their non-associative (null/MC) effects across comparisons. Con-

versely, there were significant and associative effects in Westerners (R allele in PRO and PSO)

and Asians (RX genotype in PSO) and these formed the core of our subgroup findings. The

RR and RX associations found in our study seem to agree with studies of Japanese and Cauca-

sian (Western) PS athletes with higher frequencies of RR and RX than controls [4,23,53]. On

the protein level, presence of α-actinin-3 in fast-twitch skeletal muscle fibers (RR and RX geno-

types at the gene level), was associated with PS performance in elite Japanese athletes [27]. Not

only do the RR and RX genotypes have associations with the PS phenotype across race lines,

they also cross athletic status as well, with incremental frequencies from regional to national to

international levels for PS athletes [4,55,71].

Gender analysis of the R allele shows significance in females but not in males indicating the

lack of support for PS in men, but with validated outcome in women. This R allele gender dif-

ference seems at odds with the men’s outcome that did not show enrichment for the RR geno-

type but did for the RX. Our significant male RX finding appears to contrast with the primary

study of Ruiz et al. [56] who reported absence of heterozygous advantage for Spanish elite
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male athletes. Reasons for this disparity may be methodological which include limited statisti-

cal power, hidden confounding factors, and/or misdefined phenotypes [32]. The R allele/RR

genotype appears to influence relative peak power in Japanese male athletes [27] and impact

upon elite status among Taiwanese female sprint swimmers [70]. Regarding response to exer-

cise training, women with the RR genotype (compared to XX genotype carriers) had lower

muscle leg power initially but had greater increases after strength training [12].

ACTN3 and previous meta-analyses

A recent 2018 publication (Garton et al) on the effect of the ACTN3 gene on skeletal muscle

performance included a meta-analysis that evaluated gene dosage effects using the Bayesian

random-effects model [50]. Because this statistical approach diverges from ours, we compare

from the viewpoints of study number differences and genetic outcomes. From a total of 12

studies, they found a homozygote effect (R allele) of 1.4-fold, while our overall R allele outcome

was 1.2-fold from 44 studies (PRO). They also reported substantial heterogeneity in the hetero-

zygote RX effect (OR 0.98). Our overall PRO RX effect (OR = 0.90) was also heterogeneous

(I2 = 62%). However, our outlier results yielded fixed-effects outcomes (PSO) for the R allele

and RX genotype which addressed and resolved the heterogeneity issue. Garton et al [50]

found that race and gender were unlikely variables that explain homozygote (R) and dominant

(RX) effects. In contrast, we delineated race and gender effects with subgroup analysis. They

concluded that no single genetic model explains the association between ACTN3 and PS [50].

In contrast, our use of allele-genotype modeling yielded clear ACTN3 R allele and RX genotype

associations with PS.

Because similar methodologies were used in the 3 previous meta-analyses [10,13,49], we

are able to systematically compare each of their findings with ours (S6 Table). Weyerstraß

et al [49] and Alfred et al [13] presented results exclusively from examining PS performance,

while Ma et al [10] pooled data from power, endurance and mixed sports. S6 Table compares

the overall outcomes based on the R allele and shows where meta-analysis treatments were

applied and where they were not. Our use of outlier treatment facilitated a shift from PRO to

PSO rendering changes in significance (elevated or gained) and heterogeneity (reduced or

eliminated). Despite these dynamic shifts being unaddressed in the previous meta-analyses,

our overall pooled OR is similar to those of Ma et al [10] and Alfred et al [13] but not

Weyerstraß et al [49]. In the race subgroups, the ACTN3 R577X genotype was associated

with PS performance among Europeans (Westerns) in Alfred et al [13] but not Ma et al [10]

and Weyerstraß et al [49]. All three meta-analyses showed no such associations in Asians

and/or African athletes.

Comparisons with other studies

The hypothesis that the ACTN3 R allele may confer some advantage in PS is supported by

cross-sectional studies in elite athletes and non-athletes as well as mouse models of ACTN3
deficiency [2,60,72,73]. In ACTN3 knockout mice, the loss-of-function variant for the XX

genotype resulted in eliminated expression of the α-actinin-3 protein [60,69,74]. Such defi-

ciency has been shown to reduce fast-twitch muscle fiber diameter, muscle mass and strength.

Moreover, studies of athletes with the RR or RX genotype are associated with high muscle

strength and power compared to those with the XX genotype [7]. This appears concordant

with our R allele and RX genotype findings. Several case-control association studies have

reported that the RR genotype is over-represented or the XX genotype is under-represented in

strength and power athletes in comparison with controls [4,72].
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ACTN3 and GWAS

The polygenic nature of gene involvement in sports performance generated studies to investi-

gate this aspect of sports genetics. Other than haplotype and interaction studies, examining

several genes simultaneously using GWAS appears to be the current fashion in genomics. In

2019, Jacques et al [75] summarized current advances in the genetics of sports performance

and covered GWAS and ACTN3 in separate sections exclusive of each other. Five years earlier

(2014), a GWAS and meta-analysis study was performed on African-American and Asian

(Japanese) sprint (power) athletes and identified two loci of putative interest [48] but did not

include the ACTN3 R577X polymorphism. The two PS GWAS in the literature examined grip

strength and sprint but they did not include ACTN3 which suggests the nascent status of the

GWAS approach. A literature search yielded no other GWAS undertakings related to ACTN3,

attesting to the paucity of studies in this area. Nevertheless, whole genome analysis of elite ath-

letes has been predicted to reshape the current understanding of the genetic basis of athletic

performance [76,77].

ACTN3 R577X effects on longevity

Beyond the prestige of elite sports performance in power rests the long term issue of skeletal

muscle integrity, which is an overriding concern in a human’s lifetime, more so in the elderly.

Knowledge of the genetic influence of ACTN3 R577X on elderly populations could potentially

affect health care and treatment for this segment of society. The ACTN3 R577X genotype

exhibits a potential modifying effect on muscle deterioration (sarcopenia), which is associated

with aging [78]. Given the importance of resistance training in preventing and treating sarco-

penia [79], the ACTN3 R577X genotype could modify resistance training adaptations [7]. In

particular, the R allele is associated with greater adaptive response to training [11] and protects

against the development of sarcopenia [80]. The consensus is that the RR genotype is associ-

ated with enhanced strength and power improvements. The protective action of the RR geno-

type against sarcopenia is then expected among the elderly because of its potential association

with better health. However, genetic data on centenarians (� 100 years of age) show otherwise.

In two studies of Japanese and Spanish centenarians, the XX genotype frequency was reported

at 23.7% and 24%, respectively, significant in the latter (P = 0.01) but not the former (P = 0.75)

when compared with controls [81,82]. Moreover, frequency of the XX genotype in supercente-

narians (> 110 years old) was even higher at 33% [81]. In addition, North et al [83] found that

the XX genotype was associated with enhanced cardiovascular fitness. These data suggest a

potential survival advantage of the XX genotype impacting old people [81]. The R allele, on

the other hand, was shown to be associated with reduced frailty risk [80]. Unlike the X allele,

however, the R allele is uncommon in the very old population. Thus, the inverse relationship

of the R allele with longevity renders RX heterozygotes the most benefit given the advantages

associated with each allele [80]. The study of Garatachea et al (2011) further complicates the

ACTN3-longevity issue, where they found no associations of the ACTN3 genotypes with mus-

cle phenotypes in octogenarians [84]. In view of all these findings, associations of the two

alleles (R or X) with human longevity remain complicated and their results controversial [82].

Future studies may require greater sample sizes to resolve this impasse.

Strengths and limitations

The interpretation of our findings is best contextualized in view of its limitations and

strengths. The limitations include: (i) statistical heterogeneity; (ii) possible admixtures of the

Western subgroup; (iii) dominating presence of Western studies under-represented the Asian

and African populations; (iv) only 8 included articles (21.1%) matched their controls with
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athlete participants; (v) that some included studies contain elements of endurance and mixed

sports in the performance (e.g. team sports) might dilute the impact of our PS findings. On the

other hand, the strengths comprise of the following: (i) confining our analysis to HWE-com-

pliant studies effectively screened for genotyping errors, thus minimizing methodological

weaknesses to the summary outputs [85]; (ii) overall methodological quality (determined by

CB) of the included studies was high; (iii) 87% (33/38 articles) of the controls were defined as

healthy indicating lack of heterogeneity; (iv) 71% (5/7 comparisons) of the sensitivity treat-

ment outcomes were robust and (v) a 43% increase (from 19 studies in Weyerstraß et al [49] to

44 in this meta-analysis) in the number of included studies raised the total sample size. This

enhanced the statistical power to assess associations in this study and may have minimized

false-positive outcomes [42]. Our use of outlier treatment in this study also has strengths and

limitations. We have shown that this treatment is an effective meta-analysis tool in addressing

heterogeneity. However, the caveat of outlier treatment is that it reduces statistical power but

is more impactful when the number of studies is few (e.g. < 10). We recognize that elite athlete

status is a complex condition. Whilst few articles (6 and 4, respectively) mentioned gene-gene

interaction and haplotypes, considerably more (20/38 articles) addressed the importance of

gene-environment interplay (S2 Table).

Practical applications

Strengthened evidence from this meta-analysis could establish the ACTN3 gene to form part

of the genetic repertoire for identifying elite athletes with PS potential. The future of genetic

testing for talent identification of elite sprint and power athletes has been posited to include

the ACTN3 R577X genotype [70]. In fact, a genetic-based algorithm (which includes ACTN3)

has been proposed to determine training response by predicting potential for athletic perfor-

mance [80]. However, reaction to this proposal has been viewed as premature, warranting cau-

tion in terms of its interpretation and implementation [84]. At present, the nascent status of

the influence of genetic polymorphisms in sports precludes the recommendation of genetic

testing to optimize athletic performance [48].

Conclusions

Focusing on a single but notable polymorphism (ACTN3 R577X) affecting PS performance [1]

has allowed application of a number of meta-analytical procedures which unraveled detailed

associations. These procedures managed to uncover findings that were not obvious in the

component studies which we hope to have augmented existing evidence for ACTN3 R577X

associations with PS status. Varying depths of supporting evidence are important in replicating

significant results [8]. The MP overall effect of the R allele in ACTN3 R577X may be modest,

but its replicative behavior observed in the subgroups likely establishes its role in enhancing

PS performance.
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