
ARTICLE

Metal-free alcohol-directed regioselective
heteroarylation of remote unactivated
C(sp3)–H bonds
Xinxin Wu1, Hong Zhang1, Nana Tang1, Zhen Wu1, Dongping Wang1, Meishan Ji1, Yan Xu1,

Min Wang1 & Chen Zhu 1,2

Construction of C–C bonds via alkoxy radical-mediated remote C(sp3)–H functionalization is

largely unexplored, as it is a formidable challenge to directly generate alkoxy radicals from

alcohols due to the high bond dissociation energy (BDE) of O–H bonds. Disclosed herein

is a practical and elusive metal-free alcohol-directed heteroarylation of remote unactivated

C(sp3)–H bonds. Phenyliodine bis(trifluoroacetate) (PIFA) is used as the only reagent to

enable the coupling of alcohols and heteroaryls. Alkoxy radicals are readily generated from

free alcohols under the irradiation of visible light, which trigger the regioselective hydrogen-

atom transfer (HAT). A wide range of functional groups are compatible with the mild reaction

conditions. Two unactivated C–H bonds are cleaved and one new C–C bond is constructed

during the reaction. This protocol provides an efficient strategy for the late-stage functio-

nalization of alcohols and heteroaryls.
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D irect functionalization of unactivated C(sp3)–H bonds
represents one of the most intriguing and advanced
technologies in synthetic chemistry but is still facing

enormous challenges with reactivity and selectivity1–4. Radical-
mediated hydrogen-atom transfer (HAT) renders an efficient
entry to cleave the inert C(sp3)–H bonds that allows for sub-
sequent substitutions5–8. Besides the classic Hofmann–Löffler
reaction, recently new breakthroughs mediated by N-centered
radicals have been achieved with the photoredox catalysis9–19.
Alcohols are important and readily available chemicals. The
radical-mediated late-stage functionalization of the C–H bonds of
alcohols affords an ideal approach to the preparation of complex
alcohol derivatives. According to the bond dissociation energy
(BDE)20–22, the C–H bonds proximal to hydroxyl group are in
higher reactivity than the distal ones (Fig. 1a)23–28. Therefore, the
selective functionalization of the less reactive remote C–H bonds
in alcohols is a formidable challenge.

The HAT process triggered by alkoxy radicals has long been
developed in order to gain the good chemo-/regio-
selectivities29,30. After several decades, however, this method is
still underexplored, which is mainly ascribed to the difficult
homolysis of the alcoholic O–H bonds with high BDEs (ca. 105
kcal mol−1) to generate alkoxy radicals from free alcohols. On the
other hand, alkoxy radicals are prone to induce the β-C–C bond
fragmentation under harsh reaction conditions31–39. Conse-
quently, alcohols are often elaborated to other surrogates, e.g.,
nitrite esters40–42, peroxy compounds43–46, sulfonates47–49, lead
(IV) alkoxides50–52, hypohalites53–59, N-alkoxylpyridine-2-
thiones60,61, and N-alkoxyphthalimides62–64, for the formation of
alkoxy radicals by heat or ultraviolet irradiation. Nevertheless,

these compounds are sometimes hard to handle or synthesize. In
this scenario, seeking a general and mild strategy to generate
alkoxy radicals from free alcohols is highly desirable.

Recently, we disclosed a tertiary-alcohol-directed hetero-
arylation of remote C(sp3)–H bonds by a sequence of HAT and
intramolecular heteroaryl migrations (Fig. 1b)65. Alkoxy radicals
were directly obtained from alcohols in the presence of iridium
complex irradiated by visible light. The tertiary alcohol substrates
were well designed to suit for the intramolecular mode. Soon
after, Zuo et al. reported a CeCl3-catalyzed amination of remote
sp3 C–H bonds of alcohols66. Only primary alcohols were
applied to generate alkoxy radicals (Fig. 1c). Concerning the
values and ubiquity of heteroaryl moieties in drugs and bioactive
molecules, the intermolecular heteroarylation of alcohols is more
significant and valuable than the intramolecular mode. Herein
we report our findings in the regioselectively intermolecular
heteroarylation of alcohols to furnish the Minisci-type products.
This reaction demonstrates a wide scope of both alcohols and
heteroaryls. Notably, all types (1°, 2°, and 3°) of alcohols are apt
to afford the alkoxy radicals that trigger the regioselective het-
eroarylation of C(sp3)–H bonds. The metal-free conditions are
mild and operationally simple, providing a practical strategy for
the late-stage functionalization of alcohols and heteroaryls
(Fig. 1d).

Results
Reaction conditions survey. With 4-methyl quinoline 1a and n-
pentanol 2a as model substrates, we set about investigating the
reaction parameters (Table 1). After a brief survey, it was found
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that the only use of stoichiometric amounts of hypervalent iodine
(III) reagent phenyliodine bis(trifluoroacetate) (PIFA) could
promote the reaction under the irradiation of blue light-emitting
diodes (LEDs) (entry 1). While varying the light source to com-
pact fluorescent light (CFL) bulb decreased the yield (entry 2), the
reaction did not proceed with the use of green LEDs or in dark
(entry 3). The reaction also took place at 50 °C without light
irradiation albeit in a low yield (entry 4), suggesting that this is
not a photocatalytic process and the light may just input energy
into the reaction. Increasing the amount of PIFA slightly
improved the outcome (entry 5), but using too much PIFA sig-
nificantly inhibited the reaction (entry 6). Other hypervalent
iodine(III) reagents were also examined. Surprisingly, the use of
(diacetoxyiodo)benzene (PIDA) almost turned off the reaction
(entry 8). The use of 1,2-dichloroethane (DCE) or MeCN instead
of dichloromethane (DCM) delivered comparable yields (entries
9 and 10), but other solvents did not work efficiently (entries
11–14). The Suárez’s conditions (PIDA and I2)56–59, which were
often applied to the intramolecular cyclization reactions via the
generation of alkoxy radicals from hypohalite intermediates, were

not suitable for our reaction (entry 15). This result clearly illu-
strated that the current reaction underwent a non-trivial pathway
rather than the formation of hypohalite intermediates. The yield
was further elevated to 90% by treating the reaction with high-
intensive blue LEDs (entry 16). However, it was found that the
reaction yield was going down along with reducing the amount of
alcohols (entries 17–20).

Scope of heteroaryls and alcohols. With the optimized reaction
conditions in hand, we turned to examine the generality of
protocol (Fig. 2). Firstly, a variety of heteroaryls were tested.
The electronic properties of heteroaryls did not have much
influence on the reaction, as both electron-donating (e.g., Me,
OMe) and electron-withdrawing (e.g., Cl, CN, CO2Et) groups
were well tolerated (3b–3f). While the reaction could take place
at both the ortho- and para-positions of quinoline (3g) or
pyridine (3k), the reaction of isoquinoline solely preferred the
1-position (3h–3j). The example of 3i was noteworthy, since
the presence of bromide reserved a platform for the late-stage

Table 1 Reaction parameters survey
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Entry HI (x) hv Solvent Yield (%)a

1 PIFA (2.0) 30W blue LEDs DCM 74
2 PIFA (2.0) 30W CFL bulb DCM 57
3 PIFA (2.0) 30W green LEDs, or in dark DCM 0
4 PIFA (2.0) In dark, 50 °C DCM 36
5 PIFA (2.5) 30W blue LEDs DCM 76
6 PIFA (3.0) 30W blue LEDs DCM <5
7 F5-PIFA (2.5) 30W blue LEDs DCM 39
8 PIDA (2.5) or BI-OH (2.5) or BI-OAc (2.5) 30W blue LEDs DCM <5
9 PIFA (2.5) 30W blue LEDs DCE 71
10 PIFA (2.5) 30W blue LEDs MeCN 70
11 PIFA (2.5) 30W blue LEDs CHCl3 38
12 PIFA (2.5) 30W blue LEDs PhCF3 53
13 PIFA (2.5) 30W blue LEDs DMF <5
14 PIFA (2.5) 30W blue LEDs DMSO 0
15 PIDA (2.5), I2 (1.0) 30W blue LEDs DCM 0
16 PIFA (2.3) 100W blue LEDs DCM 90
17b PIFA (2.3) 100W blue LEDs DCM 79
18c PIFA (2.3) 100W blue LEDs DCM 70
19d PIFA (2.3) 100W blue LEDs DCM 43
20e PIFA (2.3) 100W blue LEDs DCM 30

Reaction conditions: 1a (0.4mmol), 2a (2.0 mmol, 5 equiv.), and HI 1–5 (as shown) in solvent (2.0 mL), rt, visible-light irradiation
aYields of isolated products
b2a (1.6 mmol, 4 equiv.)
c2a (1.2 mmol, 3 equiv.)
d2a (0.8 mmol, 2 equiv.)
e2a (0.4 mmol, 1.0 equiv.), PIFA (0.3 mmol, 0.75 equiv., added in three batches)
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products manipulation by cross-coupling reactions. The con-
version of N,N-bidentate ligand dtbpy to 3n provided a valuable
tactic for the ligand modification. Other heteroaryls, such as
phenanthridine (3o), acridine (3p), pyrazine (3q–3s), pyr-
imidine (3t), quinoxaline (3u), and 4-hydroxyquinazoline (3v)
were also proved to be suitable substrates, indicating a broad
scope of heteroaryls. While the pyrazine product 3r was formed
along with another regio-isomer (~10%), the product 3s was
delivered in a unique regioselectivity, which was determined by
the heteronuclear multiple bond correlation (HMBC) analysis.
Significantly, the method could be applied to complex mole-
cules, such as voriconazole and eszopiclone, affording the
corresponding products in good regioselectivities (3w and 3x).
Next, a number of alcohols were investigated. The alkoxy
radical-mediated 1,5-HAT exclusively occurred even in the
presence of more reactive benzylic C–H bonds (3z), showing
the outstanding regioselective control. It might be attributed to
that the 1,5-HAT via six-membered cyclic transition state is
more kinetically favorable in this reaction. A variety of Minisci-
type products were readily furnished. It should be noted that
the current Minisci reactions involving C(sp3)–H activation are
largely dependent upon the inherent BDEs of C–H bonds, and
scarcely discuss about the regioselective control67–70. The olefin
moiety, which is generally susceptive to radical process,

remained intact in the reaction (3aa). The C–H bonds adjacent
to heteroatoms were also readily functionalized (3ab and 3ac).
Remarkably, the reaction with cyclic C–H bonds proceeded
stereoselectively, leading to the thermodynamically favored
trans-product (3ad). In contrast, the reaction with linear C–H
bonds delivered the diastereomer mixtures in a 2:1 or 1:1 ratio
(3ae and 3af). In addition to primary and secondary C–H
bonds, the congested tertiary C–H bonds were also readily
transformed (3ag and 3ah), forming the new quaternary all-
carbon centers. The applicability was further spread from pri-
mary to secondary and tertiary alcohols. Both of them were
suitable precursors for the generation of alkoxy radicals to
accomplish the distal C–H bond heteroarylation (3ai–3al). This
method provides an efficient approach for alcohol derivatiza-
tion. For instance, the heteroaryl groups could be directly
introduced to the δ-position of cycloalkanols (3am and 3an).
The regioselectivities were unambiguously determined by the
HMBC experiments.

Mechanistic studies. To shed light on the mechanistic path-
ways, a set of experiments were carried out. Replacement of the
hydroxyl group by ether entirely inhibited the reaction, ver-
ifying that the reaction was enabled by free alcohols (Fig. 3a).
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Mixing 2a with PIFA in d-chloroform immediately led to a
metastable intermediate 4, which was speculated by crude 1H
NMR. Then irradiating the mixture with blue LEDs resulted in
the formation of 2a and trifluoroacetate thereof presumably via
the alkoxy radical intermediate (Fig. 3b). The intermediate 4
displayed weak absorption from 420 to 450 nm, suggesting the
possibility of energy transfer from blue LEDs to 4 (Fig. 3c).
Finally, the radical clock experiment unambiguously provided
support for the proposed radical pathway (Fig. 3d). The PIFA-
promoted reaction of 1a with 5 afforded the ring-opened
product 6 in 70% yield as a 4:1 mixture of E and Z isomers.

The proposed mechanism was depicted on the basis of
experimental observations (Fig. 4). Initially, the mixture of 2a
and PIFA results in the dialkoxyiodo benzene 4. Homolysis of 4
induced by visible-light irradiation leads to the alkoxy radical I
that triggers the subsequent 1,5-HAT to generate the alkyl radical
II. Meanwhile, PhI and iodanyl radical are cogenerated in the
reaction. Nucleophilic addition of II to the quinoline salt III
affords the radical cation IV, which is then single-electron
oxidized by excess PIFA or the in situ formed iodanyl radical to
afford the final product 3a.

Discussion
In summary, we have described a practical and metal-free
protocol of alcohol-directed remote C(sp3)–H functionaliza-
tion. The combinational use of PIFA and visible-light irradia-
tion offers a non-trivial and mild tactic for the direct generation
of alkoxy radicals from free alcohols. This strategy is expected
to significantly facilitate the alkoxy radical-mediated transfor-
mations. A vast array of heteroaryls and alcohols have proven
to be suitable substrates. The protocol makes a complement to
the classic Minisci reactions, and may find wide use in med-
icinal synthesis owing to the easy operation and metal-free
conditions.

Methods
General procedure for heteroarylation of remote C(sp3)–H bonds. Heteroaryl 1
(0.4 mmol) and alcohol 2 (2.0 mmol) were loaded in a reaction vial, which was
subjected to evacuation/flushing with N2 three times. Then DCM (2.0 mL) followed
by PIFA (0.92 mmol) was added to the mixture. The reaction was irradiated with
100W blue LEDs and kept at room temperature (rt) under fan cooling. After the
reaction completion monitored by TLC, the mixture was quenched by addition of
aq. KOH until pH > 8 and then extracted with ethyl acetate (3 × 10 mL). The
combined organic extracts were washed by brine, dried over Na2SO4, filtered,
concentrated, and purified by flash column chromatography on silica gel (eluent:
ethyl acetate/petroleum ether) to give the desired product 3.

Data availability. The authors declare that all other data supporting the findings of
this study are available within the article and Supplementary Information files, and
also are available from the corresponding author on reasonable request.
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