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Abstract

Since statistical relationships between HIV load and CD4+ T cell loss have been demonstrated to be weak, searching for host
factors contributing to the pathogenesis of HIV infection becomes a key point for both understanding the disease
pathology and developing treatments. We applied Maximum Relevance Minimum Redundancy (mRMR) algorithm to a set
of microarray data generated from the CD4+ T cells of viremic non-progressors (VNPs) and rapid progressors (RPs) to
identify host factors associated with the different responses to HIV infection. Using mRMR algorithm, 147 gene had been
identified. Furthermore, we constructed a weighted molecular interaction network with the existing protein-protein
interaction data from STRING database and identified 1331 genes on the shortest-paths among the genes identified with
mRMR. Functional analysis shows that the functions relating to apoptosis play important roles during the pathogenesis of
HIV infection. These results bring new insights of understanding HIV progression.
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Introduction

Many efforts have been devoted to better understanding the

mechanism governing disease progression and non-progression

during HIV infection. Besides the direct cytotoxic effect against

CD4+ T cells caused by HIV, immune activation is widely

accepted as a good predictor for disease progression [1,2,3,4,5].

Furthermore, some clinical studies using immunity suppressive

drugs to suppress immune activation slowed down the diseases

progression [6,7]. However, the molecular mechanism underlying

the immunopathogenesis remains obscure. To identify the host

factors important for the HIV-1 pathogenesis and disease

progression, high throughput techniques had been employed.

Genome wide association studies revealed the protective effect

against the virus of human leukocyte antigens (HLAs) including

HLA-B*57:01, B*27:05 and risk alleles including HLA-B*35,

Cw*07 [8,9]. These studies further led to the finding of the

protective effect of HLA-C [10] Transcriptome studies also gained

important insights, regarding to interferon stimulated genes (ISGs),

immune activation, cell cycle and cell death during the infection.

People had conducted transcriptome researches for identifying

factors affect the viral control and the speed of CD4+ T cell loss

[11,12]. A research with 137 HIV seroconverters, 16 elite

controllers and 3 healthy blood donors attempted to identify

some molecular factors associated with the viral control. More

surprisingly, successful treatment made the transcriptome states of

patients similar to the elite controllers and the HIV-negative

donors [11]. Another study compared the transcriptoms of 6

viremic non-progressors (VNPs) and more than 20 rapid

progressors (RPs). No significant result was found. Genes identified

from the data of monkeys (CASP1, CD38, LAG3, SOCS1, EEIFD,

and TNFSF13B) were deemed as the factors affecting the speed of

disease progression [12].

Machine learning was recently proved to be an effective strategy

for accurate classification of phenotypes based on transcriptome

data (gene expression microarray) [13,14,15,16,17]. Among them,

minimum redundancy – maximum relevance method (mRMR) is

robust and represents a broad spectrum of characteristics [18,19].

It was also developed to identify disease-related genes from

expression profiles [18,19].

Another useful informatics strategy for disease candidate gene

identification is by known protein-protein interactions (PPIs).

Since proteins not only function individually by themselves, but

also co-function with their interaction partners; thus interaction

partners of disease related genes are also important candidates for

further disease casual studies. The STRING (Search Tool for the

Retrieval of Interacting Genes) database is an online resource that

provides PPI information by reporting from both prediction and

experimental observations [20].

Here, we present a comprehensive informatics study based on

transcriptional profiling of three different groups of HIV patients -

rapid progressors (RPs), viremic controllers (ECs) and viremic

nonprogressors (VNPs). We attempted to i) identify a gene set

which can well classify the three groups, by using mRMR feature

selection; ii) provide candidate casual genes for further experi-

mental studies, by using shortest-path analysis of the above
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identified genes in a molecular interaction network contructed

with the STRING data.

Materials and Methods

Gene expression profiling dataset of HIV patients
The dataset was from a research on HIV infection done by

Rotger et al. [12]. In total, 78 chips were used in that research. We

adopted data generated from CD4+ T cells, which contains 40

microarrays (8 elite controllers (ECs), 27 rapid progressors (RPs), 5

viremic non-progressors (VNPs)). Using the dataset alone, Rotger

et al., didn’t observe any differentially expressed genes. The data

was downloaded from NCBI Gene Expression Omnibus (GEO)

with the accession number of GSE28128. The expression profile

was generated using the microarray Illumina HumanWG-6 v3.0

expression beadchip. Bead summary data was the output from

Illumina’s BeadStudio software without background correction.

Genes declared as non-expressed (P.0.01) were excluded from

further analysis. Data preprocessing, including quantile normali-

zation and log2 transformation was completed in the Partek

Genomics Suite package (Partek Inc.).

Minimum redundancy – maximum relevance algorithm
Minimum redundancy – maximum relevance algorithm for

selecting features (genes) was developed based on the idea to

balance features’ ‘relevance’ to target (phenotype) and ‘redundan-

cy’ between features [18]. Both relevance and redundancy are

quantified using mutual information (MI). In this study, mRMR

was realized using a R package ‘mRMRe’ [21], in which MI is

estimated as,

I x,yð Þ~{
1

2
ln 1{r x,yð Þ2
� �

ð1Þ

where I and r represent the MI and the correlation coefficient

between variables x and y, respectively.

Let y and X = {x1, …, xn} be the input variable (phenotype) and

set of input features (genes), respectively. Given xi as the feature

with highest MI with the output variable, so the set of features,

denoted by S is then initialized with xi.

In the second step, the feature xj with the best balance between

highest relevance and lowest redundancy was added to S. It is

achieved by maximizing the score q as follows,

q~I xj ,y
� �

{
1

Sj j
X
xk �S

I xj ,xk

� �
ð2Þ

The second step is repeat until a desired solution length has been

reached.

Prediction engine
In our analysis, predicted phenotype of an individual was

estimated in three ways: the phenotype of its nearest neighbor; the

most phenotype of its 5 nearest neighbor; the phenotype of its

nearest clustering center of each phenotype group (Table S1).

Distance between two individuals were calculated according to

Chou et al.’s studies [22,23], as follows,

d i1,i2ð Þ~1{
e1
:e2

e1j j: e2j j
ð3Þ

where d refers to the distance, i1 and i2 represent two

samples, and e1 and e2 are vectors of selected features

(expression levels of selected genes) of the corresponding

individual.

Validation and Incremental Feature Selection
Jackknife validation was used to estimate the prediction

accuracy of the selected features, considering its better

performance and applicability to the dataset compared with

other validation methods such as independent data set test and

subsampling test [22,24,25]. Its idea is as follows. Given x

samples with known outcome variable (phenotype) and n

selected features (expression levels of genes), for each sample,

we compared its known outcome variable with an estimated

outcome variable, and the estimation was performed based on

the rest x - 1 samples. The accuracy is defined using the

following equation,

Accuracy~
TPzTN

TPzTNzFPzFN
ð4Þ

where TP, TN, FP and FN represents the numbers of true

positives, true negatives, false positives and false negatives,

separately.

Incremental Feature Selection (IFS) was used to determine the

number of prediction features. For n = 1 to 800 required number

of features, each feature set was determined using mRMR and its

prediction accuracy was estimated using Jackknife validation. The

set with best prediction accuracy and smallest feature number was

regard as final feature set. In this study, a set with 147 genes was

chosen and its prediction accuracy is 0.8049.

Shortest path identification in STRING PPI network
The background weighted PPI network was constructed using

data from STRING database (version 9.1) (http://string-db.org)

[20]. Weights of edges in the PPI network present confidence of

the PPI ranging from 1 to 999. The Dijkstra’s algorithm

implemented in a R package ‘igraph’ [26,27], was applied to

identify shortest path between two pairs of proteins, and each of

the protein corresponds to 86 protein coding genes of 147

mRMR-IFS identified genes. And the network of shortest paths

was constructed using Cytoscape (version 3.0.1) [28].

Pathway enrichment analysis
KEGG pathway enrichment and GO functional enrichment

analysis were carried out using web service of DAVID tools

(version 6.7) [29,30]. Original enrichment P values as well as

Benjamin multiple test corrected P values were estimated.

Results

A set of 147 genes presents the best accuracy for
prediction of RPs, ECs and VNPs

Based on the outputs of mRMR, we tested the predictor with

one feature (probes of gene expression array), two features, three

features, etc., and the IFS result is provided in Figure 1. In the IFS

curve, the X-axis is the number of probes used for classification,

and the Y-axis is the prediction accuracies of the nearest neighbor

algorithm evaluated by the Jackknife validation. The accuracy

reaches its maximum value when 147 features were included,

corresponding to 147 different genes (Table 1 for 20 genes

identified with top mRMR scores and Table S2 for the full list).

We discussed reported function of three genes in Table 1,

SRP14P1, SLC45A2, and DNAJB1. Figure 2 A to C show their

expression difference between VNP and RP. Although fold

HIV Genes with mRMR and Shortest Path

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e78057



changes are not dramatic, there are significant difference between

them (P value, 0.09957 to 1.636*1025).

A PPI sub-network provides insights for the 147 genes on
HIV infection

Furthermore, we constructed an undirected graph with the PPI

data from STRING [20]. Then we picked all pairs of any two

genes from 86 protein coding genes of the 147 genes identified

with mRMR as described above, and revealed the shortest path

between these two proteins using the Dijkstra’s algorithm [26]. We

eventually obtained a total of a sub-network of STRING PPIs

based on the shortest paths (Figure 3). There are a total of 4248

protein-protein interactions of 1331 proteins. Among the 1331

proteins, 1290 of their corresponding genes were annotated in the

Ensemble Biomart database, and we ranked these genes according

to their betweennesses (Table 2 for the top 20 and Table S3 for the

full list). Among these 1290 genes, UBE2K has the largest

betweenness of 66, meaning that there are at least 33 shortest

paths going through this gene. Accordingly, UBE2K may play an

important role in connecting the 66 candidate genes and hence

may be related to the loss of CD4+ T cells, although we didn’t find

any previous reports about the effect of UBE2K on the loss of

CD4+ T cells.

Function and pathway enrichment of the identified
genes

Using the functional annotation tool DAVID [29,30], the Gene

Ontology (GO) and KEGG pathway enrichment analysis were

carried out for the 147 genes identified using mRMR as well as the

1290 genes on the shortest paths (Table S4). The results showed

that these genes were significantly enriched in the GO modules of

protein localization in organelle and SMAD protein nuclear

translocation GO modules. In KEGG pathway enrichment

analysis, no pathway was significantly enriched. These results

suggested that protein location may play critical role in the

pathogenesis during the chronic HIV infection.

We also analyzed the genes on the shortest paths among the

genes identified by mRMR algorithm with GO and KEGG

enrichment. In the GO enrichment analysis, many genes were

significantly enriched in GO modules relating to negative

regulation of apoptosis (Table S5). Early studies had shown the

importance of apoptosis during the pathogenesis of HIV infection

[31,32]. Vulnerability to apoptosis is a hallmark character of

CD4+ T cells due to immune activation and Tat protein [31,33].

Our results supported that resistance to apoptosis might be an

important mechanism of the VNPs to maintain their CD4+ T cell

levels. In the KEGG enrichment results, nothing strongly relating

to the high CD4+ T cell level was discovered (Table S6).

Discussion

Using mRMR to identify candidate gene set
We applied mRMR algorithm to study HIV progression related

genes based on transcriptome data. The major difference between

mRMR and another machine learning method is that mRMR

considers redundancies among features as well as relevance

between feature and target. Therefore, disease-related genes

which shown less correlation in expression among themselves,

are favored by the mRMR algorithm. This may be the theoretical

reason that genes identified in our study represent various

functional groups in GO annotations (Table S4).

Result validation
In this study, we used a jackknife method to validate our result.

In jackknife validation, one sample xi is excluded from all the n

samples X = {xi|i = 1,2,3 … n}. We predict its phenotype using

the rest n-1 samples, and compared its predicted phenotype with

the real one. The above step is repeated for all xi, i = 1,2,3 … n. In

this way, prediction accuracy of X is considered as a parameter of

validation. Previous studies also discussed the advantages of

jackknife validation over another validation methods, such as

subsampling test and independent data set test [22,24,25].

Jackknife validation can exclude ‘‘memory’’ effect as well as

Figure 1. IFS curve to determine the number of features used
in prediction. We used an IFS curve to determine the number of
features finally used in mRMR selection. Prediction accuracy reached its
maximum value when 147 genes were included. The ‘predict1’,
‘predict2’ and ‘predict3’ refer to the three prediction methods we used
– a vote of the top five nearest neighbor, the first nearest neighbor and
nearest clustering center of each phenotype group, seperately.
doi:10.1371/journal.pone.0078057.g001

Table 1. Top 20 of the 147 genes by mRMR score.

Probe ID Gene Symbol mRMR score

ILMN_2211950 SRP14P1 0.374054816

ILMN_1908490 KRTAP24-1 0.189859156

ILMN_1685259 SLC45A2 0.187915652

ILMN_1667517 LOC643329 0.187764108

ILMN_1805778 RBM12B 0.182771664

ILMN_1766475 MGAT3 0.180021681

ILMN_1790650 C16orf63 0.179598512

ILMN_2393712 CTTN 0.177892746

ILMN_1731157 MYOZ1 0.174400886

ILMN_1662845 NBPF11 0.173616766

ILMN_1775304 DNAJB1 0.171712561

ILMN_1742846 DIRAS2 0.164352488

ILMN_1724271 LOC648976 0.162551286

ILMN_2215103 LOC644152 0.162538695

ILMN_1774617 NAB1 0.161792112

ILMN_1702009 SV2A 0.161418466

ILMN_1710092 ZBTB46 0.16034942

ILMN_1733799 LOC348262 0.157032268

ILMN_1770038 LAMA1 0.15612958

ILMN_1695397 LOC644151 0.153023869

doi:10.1371/journal.pone.0078057.t001
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arbitrariness problem existed using the other two validation

methods.

Although jackknife validation was proved to be useful, we also

considered using an independent dataset of general HIV infection

as an additional validation to our results. The independent dataset

is composed of expression profiles of CD4 T cells from 127 HIV

untreated samples and 8 normal controls. Using student t test, we

observed that 46 genes out of the 147 mRMR selected genes

differentially expressed under P value 0.05 [11]. We included the

related results in Table S2.

mRMR selected Genes
In the 147 genes optimizing the mRMR prediction, a series of

SLC (Solute Carrier Family) genes, e.g. SLC4A8 (mRMR

score = 0.1096), SLC22A10 (mRMR score = 0.1159), SLC22A15

(mRMR score = 0.1314), SLC25A1 (mRMR score = 0.1240),

SLC28A1 (mRMR score = 0.1260) and SLC45A2 (mRMR

score = 0.1879) are included. As SLC gene products are

transmembrane proteins transporting/translocating substrates

(e.g. inorganic or organic ions, sugars, nucleosides, etc.) into/out

of cells [34], it can be fairly assumed that such genes have

functional influences on HIV/AIDS-related processes.

In fact, polymorphisms (e.g. SNPs) of human SLC transporter

genes have been found to be closely related to HIV infection or

responses to treatments of HIV-infected patients. For example, the

genotypes of SLC11A1, a proton-coupled metal ion transporter,

have determining effects on mortality in HIV infection [35]; SNPs

of loci in or near SLC26A7, a multifunctional anion exchanger

linked to energy metabolism and immunoregulations, are strongly

associated with upper trunk and arm subcutaneous adipose tissue

(SAT) distribution in antiretroviral therapy (ARV)- treated HIV-

Figure 3. PPI network of shortest paths among 86 mRMR
identified proteins. Shortest paths between each pair of the 86
mRMR selected proteins were identified in the STRING PPI network.
Proteins are presented using their Ensemble IDs. Proteins in yellow are
the 86 identified using mRMR; in blue and green are located only on
shortest paths; in blue are annotated in Ensemble Biomart; and in green
are not annotated in Ensemble Biomart.
doi:10.1371/journal.pone.0078057.g003

Figure 2. Expression differences of SRP14P1, SLC45A2, and
DNAJB1 between VNPs and RPs. This figure show the expression
differences of SRP14P1 (A), SLC45A2 (B), and DNAJB1 (C)
between VNPs and RPs, separately. Error bars indicate standard
errors.
doi:10.1371/journal.pone.0078057.g002

HIV Genes with mRMR and Shortest Path
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infected patients [36]. Furthermore, literatures suggest that

antiretroviral drugs such as efavirenz and nevirapine are substrates

of a variety of SLCs and SNPs of them may influence highly active

antiretroviral therapy (HAART) efficacy and AIDS-free survival

[37,38]. Thus it is no surprise that the SLC genes included in our

results of mRMR (4A8, 22A10, 22A15 - inorganic/organic ions

transporters; 25A1 - mitochondrial carrier; 28A1 - nucleoside

transporter; 45A2 - putative sugar transporter), which have similar

functions to those in the literatures, may sustain similar functional

roles and serve as good surrogates for prediction of HIV/AIDS

outcomes.

Another gene among the 147 genes we noticed is Mouse Double

Minute 2 Homolog (MDM2) (mRMR score = 0.1185). It is also

known as E3 ubiquitin-protein ligase Mdm2, which is a negative

regulator of p53 tumor suppressor [39]. Mdm2 inhibits p53 cell-

cycle arrest and apoptic functions and the interaction with Mdm2

can also result in a large reduction in p53 protein levels through

enhanced proteasome-dependent degradation. Endogenous levels

of Mdm2 are sufficient to regulate p53 stability, and overexpres-

sion of Mdm2 can reduce the amount of endogenous p53. Mdm2

is also found to be important for lymphopoiesis through the

inhibition of p53 [40], which makes it a potential factor regulating

the CD4+ T cell counts during chronic HIV infection.

The importance of gene DNAJB1 (DnaJ homolog subfamily B

member 1, mRMR score = 0.1717,) to HIV/AIDS is self-evident, as

experimental studies show that it is regulated by various subtypes

of HIV (e.g. HIV-1 B, C and A/E) in dendritic cells (DCs), which

are among the first targets of HIV infection and in turn play

crucial roles in viral transmission to T cells and regulation of

immune responses [41,42]. Meanwhile, its gene product DNAJB1

(Hsp40), is essential for HIV-1 Nef-mediated enhancement of viral

gene expression and replication, thus playing a key role in the virus

life cycle [43,44].

SRP14P1 (scored the highest 0.374 by mRMR) is named as

Signal Recognition Particle 14 kDa (Homologous Alu RNA Binding Protein)

Pseudogene 1, which is rarely studied. SRP14 is an Alu RNA binding

protein. It regulates the expression of Alu elements, which is an

important expression regulation element. This finding in our work

suggested its potential role in affecting the pathogenesis of HIV

infection.

Interferon response is of important function in HIV infections.

But we didn’t observe interferon stimulated genes. As suggested by

Rotger et al. [11], during the course of HIV infection the

interferon stimulated genes are stimulated by the virus. So it may

explain that in our case, holding the viral load equal, the interferon

stimulated genes are not identified.

Conclusion

In the previous study [12], M. Rotger et al. endeavored to

explore some molecular factors relating to the maintenance of

CD4+ T cell level using the transcriptome derived from CD4+ T

cells of VNPs and RPs. The results were not encouraging.

Therefore, we made the attempt to discover something new from a

different perspective. Although most genes found in our results did

not closely relate to the different CD4+ T cell levels between the

two groups of people, functions associated with apoptosis

regulation had been identified. These results reflected the

complexity of the mechanism governing the decline of CD4+ T

cell count during HIV infection. To some extent, this could also be

explained by the design of the study. The data were generated

from a retrospective study, thus the factors mediating the decline

of CD4+ T cells might function early among the RPs and returned

to normal since the CD4+ T cells had already dropped to a low

level. Taking that into consideration, perspective studies for

further discoveries could become feasible.

Table 2. Top 20 of the 1290 genes by betweenness in the shortest paths among the 86 mRMR identified genes.

Ensembl Gene ID Ensembl Protein ID Associated Gene Name mRMR gene betweenness

ENSG00000078140 ENSP00000261427 UBE2K TRUE 66

ENSG00000147889 ENSP00000355153 CDKN2A TRUE 65

ENSG00000196406 ENSP00000359546 SPANXD TRUE 60

ENSG00000150991 ENSP00000344818 UBC FALSE 56

ENSG00000198728 ENSP00000392466 LDB1 TRUE 55

ENSG00000049449 ENSP00000054950 RCN1 TRUE 54

ENSG00000087338 ENSP00000282570 GMCL1 FALSE 54

ENSG00000143632 ENSP00000355645 ACTA1 TRUE 54

ENSG00000178919 ENSP00000364265 FOXE1 TRUE 54

ENSG00000132002 ENSP00000254322 DNAJB1 TRUE 53

ENSG00000197894 ENSP00000296412 ADH5 TRUE 53

ENSG00000183808 ENSP00000382239 RBM12B TRUE 53

ENSG00000141232 ENSP00000268957 TOB1 TRUE 52

ENSG00000116761 ENSP00000359976 CTH TRUE 52

ENSG00000164125 ENSP00000377396 FAM198B TRUE 50

ENSG00000185630 ENSP00000405890 PBX1 TRUE 48

ENSG00000137804 ENSP00000260359 NUSAP1 TRUE 46

ENSG00000115267 ENSP00000263642 IFIH1 TRUE 46

ENSG00000138777 ENSP00000343885 PPA2 TRUE 46

ENSG00000006283 ENSP00000352011 CACNA1G TRUE 46

doi:10.1371/journal.pone.0078057.t002
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