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Recently, there has been an increased focus on the influences of mitochondrial
dysfunction on various pathologies. Mitochondria are major intracellular organelles
with a variety of critical roles, such as adenosine triphosphate production, metabolic
modulation, generation of reactive oxygen species, maintenance of intracellular calcium
homeostasis, and the regulation of apoptosis. Moreover, mitochondria are attracting
attention as a therapeutic target in several diseases. Additionally, a lot of existing agents
have been found to have pharmacological effects on mitochondria. This review provides
an overview of the mitochondrial change in the kidney and skeletal muscle, which is
often complicated with sarcopenia and chronic kidney disease (CKD). Furthermore, the
pharmacological effects of therapeutics for CKD on mitochondria are explored.
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INTRODUCTION

Mitochondria originated approximately 1.5 billion years ago from α-proteobacterium via symbiosis
within an ancestral eukaryotic host cell. Although mitochondria contain double membrane and
serve as the main producer of adenosine triphosphate (ATP), their form and composition have
evolved, and these organelles have gained a myriad of additional functions. This article reviews
mitochondrial functions, the changes of these organelles in the kidney (Figure 1A) and skeletal
muscle tissues (Figure 1B) in kidney diseases, and the potential effects of therapeutic agents on the
mitochondria in treating kidney diseases and uremic sarcopenia.

MITOCHONDRIA BIOLOGY IN THE KIDNEY

Mitochondrial Structure
Mitochondria are intracellular organelles found in all eukaryotes. The mitochondrial structure
contains a membrane structure of outer and inner mitochondria membrane (IMM) layers, with
one compartment between the intermembrane space and the inner matrix. The mitochondrial
outer mitochondria membrane (OMM) contains a porin that controls the transport of proteins into
mitochondria and allows non-selective permeation of small molecule substances of approximately
1,550 kDa. The IMM contains a complex folded structure, the cristae, that contributes to oxidative
phosphorylation to produce ATP, which is an energy source in the cell.

The renal proximal tubules contain more mitochondria than any other compartments in the
kidney. Renal proximal tubules absorb more than 65% of the filtrate that passes through the
glomerular membrane filter, such as glucose, ions, and albumin (Rector, 1983). Mitochondria often
undergo transformation in both physiological and pathological conditions (Wakabayashi, 2002).
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In a diseased kidney, premorse and gigantic mitochondria are
noted in the cytoplasm of the proximal epithelial cells, as
shown in early studies of human kidney samples using electron
microscopy (Suzuki et al., 1975). The experimental literature also
supports that mitochondria amounts largely diminish and their
structure appears altered after acute kidney injury (AKI) (Lan
et al., 2016). Although the molecular mechanism underlying the
morphologic alteration has yet to be investigated, mitochondria
represent one of the more vulnerable organelles for various types
of toxic and pathogenic insults.

Mitochondrial Chromosome, Genome,
DNA
Mitochondrial Biogenesis
The mitochondrial mass is increased through the cellular process
called mitochondrial biogenesis to adapt to the ever-changing
energy demand. Mitochondrial biogenesis leads to a greater
mitochondrial metabolic capacity by increasing synthesis
of metabolic enzymes. While the majority of mitochondrial
molecules are encoded by the cell nuclear genes, most
parts of the electron transport chain (ETC) that function
as an energy generator are produced from mitochondrial
genes. Mitochondrial DNA (mtDNA) is transcribed by the
mitochondrial DNA-directed RNA polymerase, POLRMT
(Graziewicz et al., 2006) and the essential enhancer is the
mitochondrial transcription factor A (TFAM), which ensures
mtRNA unwinding and flexing required for the POLRMT
binding to the promoters. The expression of TFAM is
regulated by nuclear respiratory factor 1 (Nrf1) binding to
the specific promoter sites (Virbasius and Scarpulla, 1994;
Gureev et al., 2019), suggesting that Nrf1 may be involved the
biogenesis and energy production in the mitochondria (van
Tienen et al., 2010; Benner et al., 2013). Also, researchers
have discovered that peroxisome proliferator-activated
receptor γ coactivator 1α (PGC-1α) in brown adipocytes
is a contributing factor for cold-mediated mitochondrial
biogenesis (Puigserver et al., 1998). This transcription coactivator
promotes the transcription of Nrf1 although PGC-1α acts as
a coactivator for numerous genes including Nrf2 (Wu et al.,
1999). PGC-1α also activates mitochondrial biogenesis in
skeletal muscle and enhances the slow-twitch manifestations
of the skeletal muscle, such as fatty acid oxidation and an
increase in type I myosin heavy chain (Wu et al., 1999;
Jornayvaz and Shulman, 2010). Furthermore, this coactivator is
important for skeletal muscle remodeling in physical exercise
(Lira et al., 2010).

In sepsis-associated AKI, the mitochondrial function
deteriorates, and the expression of genes involved in oxidative
phosphorylation is reduced (Parikh et al., 2015). Particularly,
PGC-1α expression decreases as renal function declines, and
renal function was impaired due to prolonged sepsis. The
activation of PGC-1α may promote recovery from AKI caused
by sepsis, and this application in therapy is expected. Recently,
our laboratory revealed that mtDNA copy number and PGC-
1α expression were reduced in the kidneys of animals with
polycystic kidney disease (Ishimoto et al., 2017). Moreover,

the eradication of mitochondrion-specific oxidants reduced
intracellular superoxide and halted the proliferation of cyst
epithelial cells via extracellular signal-related kinase inactivation
(Ishimoto et al., 2017).

Mitochondrial DNA Leakage
In cells infected with pathogens (e.g., DNA viruses), the
pathogen-derived double-stranded DNA appears in the
cytoplasm. Cyclic GMP–AMP synthase (cGAS) is a pattern
recognition receptor that recognizes double-stranded DNA
in the cytoplasm and then binds to the trans-membrane
protein, a stimulator of interferon genes (STING) localized
on the endoplasmic reticulum (ER). Eventually, this reaction
induces a type I interferon-mediated host defense response to
DNA viruses (Chen et al., 2016). Moreover, the cGAS–STING
pathway activation is involved in autoimmune and inflammatory
reactions, likely resulting from the activation of cGAS by
self-genomic DNA damage (Li and Chen, 2018).

Our group recently clarified the relationship between
mitochondrial damage and the induction of cGAS–STING
pathway in inflamed proximal tubular cells. In cisplatin-induced
AKI, the cGAS–STING pathway was activated in the kidney
(Maekawa et al., 2019). In STING-deficient mice, cisplatin-
induced renal dysfunction and inflammatory responses were
reduced. Additionally, the mitochondrial membrane potential
was reduced in renal proximal tubular cells stimulated with
cisplatin, and mtDNA leaked into the cytosol, thereby causing the
activation of the cGAS–STING pathway (Maekawa et al., 2019).
The inhibition of this pathway is a promising target for future
treatments of AKI.

Mitochondrial Dynamics
Although mitochondrial biogenesis promotes new mitochondria
production, mitochondria cannot be generated de novo. Instead,
mitochondria form a dynamic network that can alter the shape
and size and also add new content to pre-existing mitochondria.
In other words, mitochondria actively and frequently undergo
fusion and division (fission), such that long and extended
structures are formed through fusion, and small fragmentation is
induced through the division. Mitochondrial fusion is caused by
several guanosine triphosphate hydrolases (GTPase), including
mitofusin 1 (Mfn1), Mfn2, and optic atrophy 1 (Opa1). Both
Mfn1 and Mfn2 are considered to contribute to OMM fusion,
whereas Opa1 splicing contributes to IMM fusion. Conversely,
mitochondrial fission is promoted by fission 1 protein (Fis1),
that is localized on the OMM, and the GTPase, dynamin-
related protein (Drp1). The mutation of Drp1 is associated with
lethal neonatal defects in humans (Waterham et al., 2007), and
the mice deficient in Drp1 are also embryonic lethal, whereas
brain-specific Drp1 ablation causes developmental defects to
the cerebellum (Wakabayashi et al., 2009). These findings
suggest that mitochondrial fission plays an essential role in early
development and differentiation.

In ischemic and cisplatin nephrotoxic AKI, these
mitochondrial dynamics have been analyzed mainly in proximal
tubules that are dependent on oxidative phosphorylation for
the large demand of ATP necessary for solute transportation.
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FIGURE 1 | Mitochondrial damage in CKD and uremic sarcopenia.
(A) Stressors like sepsis, ischemia and toxins induce acute mitochondrial
damage. Pathogenesis such as hypertension, diabetes, and obesity induce
chronic mitochondrial damage. Uremic toxins accumulated in AKI and CKD
also induce mitochondrial damage. On the other hand, mitochondrial damage
itself exacerbates kidney damage, forming a vicious cycle in CKD progression.
(B) In CKD, mitochondrial damage mediates uremic sarcopenia. AKI, acute
kidney injury; CKD, chronic kidney disease; ROS, reactive oxygen species;
ATP, adenosine triphosphate.

Mitochondrial fission initiated by Drp1 translocation to the
OMM is often observable immediately after the injury (Brooks
et al., 2009). Intriguingly, treatment with a small molecule that
inhibits Drp1, Mdivi1, attenuated both tubular cell apoptosis
and tubular tissue damage. Also, in cultured tubular cells, the
silencing of Drp1 or a dominant-negative Drp1 induction led
to mitochondrial fragmentation and subsequent apoptosis.
This concept of Drp1 to mediate not only mitochondrial
fission but also subsequent ischemic renal tissue damage was
further supported by the murine genetic deletion of Drp1 in
the proximal tubule epithelium (Perry et al., 2018). They also
showed that delayed deletion of Drp1 in the recovery period
after ischemic-reperfusion injury (IRI) resulted in improved
kidney recovery and reduced fibrosis, implying that tubular
mitochondrial fission and fusion might play a role in progression
of AKI to fibrosis. Moreover, Drp1 phosphorylation is also
implicated in diabetic renal tubular cells (Zhan et al., 2015) and
podocytes (Ayanga et al., 2016). The deletion of Drp1 selectively
in podocytes of db/db diabetic mice leads to an attenuated
diabetic phenotype, such as seen through excessive oxygen
consumption (Ayanga et al., 2016).

Mitochondria and ER Crosstalk
Eukaryotic cells contain various organelles besides the
mitochondria. The functions of these individual organelles
and the communication between them are essential for cell
survival, proliferation, and differentiation. Intracellular transfer
of vesicles enables communication between distant organelles
via microtubules and actin along the cytoskeleton (Allan
and Schroer, 1999; Bonifacino and Glick, 2004). Moreover,
different organelles can also communicate with each other
through direct contact and proximity signaling. The ER is
located at the center of the membrane contact site (MCS)
between organelles. Particularly, mitochondria-associated
membranes (MAMs) have been intensively studied as a type
of MCS formed through the ER (Fujimoto and Hayashi,
2011; Inoue et al., 2019). This machinery forms a raft-like
structure rich in cholesterol and sphingolipids similar to caveola
(Hayashi and Su, 2007) and enables molecular communications
between ER and mitochondria via calcium, lipid synthases,
inositol trisphosphate (IP3) receptors, and sarco/endoplasmic
reticulum calcium-ATPases that are abundant and active on
the MAM (Appenzeller-Herzog and Simmen, 2016). Notably,
mitochondrial fission-promoting enzyme Mfn2 is located both
in the mitochondria and partially in the ER. Furthermore, Mfn2
on the ER assembles a molecular complex with Mfn1 on the
mitochondria that tightens the connection between ER and
mitochondria (de Brito and Scorrano, 2008).

In the murine diabetic kidney, the MAM is significantly
reduced and resembles the severity of tissue damage (Yang
et al., 2019). Cultured tubular cells overexpressing the MAM-
uncoupling protein (UCP), FATE-1, are resistant to high-glucose
stimuli and have less cellular apoptosis (Yang et al., 2019).
Although the mitochondrial-ER association has only lately been
highlighted (Inoue et al., 2019; Yang et al., 2020), how this
organelle crosstalk is altered in AKI or chronic kidney disease
(CKD) remains largely unknown.

Energetics
Glycolysis and Tricarboxylic Acid (TCA) Cycle
Glycolysis is considered the most primitive metabolic system.
This process catabolizes glucose into organic acids, such as
pyruvate, and produces energy for the organism to consume.
Under aerobic conditions, pyruvate produced by glycolysis is
transported from the cytosol to the mitochondrial matrix through
an active transporter. It is next decarboxylated by the pyruvate
dehydrogenase complex (PDHC) and then converted to acetyl-
CoA (Semenza, 2011; Gray et al., 2014). The acetyl-CoA enters
the TCA cycle, which oxidizes acetyl-CoA to produce carbon
dioxide. TCA produces coenzymes as three molecules of NADH,
one molecule of FADH2, GTP. Although carbon dioxide is
excreted outside the mitochondria and no ATP is produced in
the TCA cycle, the resulting coenzymes aide ATP production in
the subsequent oxidative phosphorylation.

In ischemic AKI, glucose metabolism is differently altered in
the cortex and the medulla of the kidney. Metabolites pyruvate
and lactate are decreased in the cortex during early onset
of AKI, while the TCA intermediates succinate and malate
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are almost unchanged (Wei et al., 2014). These observations
suggest a transient decrease in the use of glucose for energy
metabolism in the cortex. By contrast, the kidney medulla
showed a slower decrease in glycolysis and TCA cycle activity
over time. Tubular cell glucose uptake and lactate production
were accelerated in fibrotic kidney resembling human CKD,
implying an enhancement of aerobic glycolysis flux (Ding
et al., 2017). Interestingly, induction of aerobic glycolysis led
to myofibroblast activation in vitro. Past research has illustrated
that the metabolism of the renal medulla is primarily glycolysis,
whereas aerobic oxidation of substrates and gluconeogenesis is
prioritized in the renal cortex (Lee et al., 1962; Lee and Peterhm,
1969). This layer-dependent renal energy preference is explained
by local tissue oxygen pressure. Moreover, in the outer medulla,
where slightly less oxygen is available than in the cortex, glucose
fuels the mitochondria (Eveloff et al., 1980), although succinate is
prioritized as an energy source (Baverel et al., 1980). In the inner
medulla, glycolysis plays a more critical role in metabolizing
glucose to produce energy as oxygen consumption is lower
(Baverel et al., 1980).

Fatty Acid Transport and β-Oxidation
Most fatty acids act as energy sources for peripheral tissues
once they are released into the blood through the hydrolysis
of triacylglycerols in adipose tissue. Circulating triacylglycerol is
degraded by lipase to produce fatty acids and glycerin. Cytosolic
fatty acids are converted to acyl-CoA by acyl-CoA synthetase,
which cannot pass through the IMM of the mitochondria.
First, the fatty acid portion of acyl-CoA is transferred
to carnitine through carnitine acyltransferase to provide
acylcarnitine. Then, acylcarnitine enters the mitochondrial
matrix and reacts with Coenzyme A (CoA) and returns to
acyl-CoA (Bremer, 1983; Brady et al., 1993). Acyl-CoA is then
decomposed into two carbon units to produce acetyl-CoA in
the stepwise sequence of oxidation, hydration, oxidation, and
thiol cleavage. This process, known as β-oxidation, generates
ubiquinol (QH2), NADH, GTP, and a sufficient amount of ATP
(Raskind and El-Chaar, 2000).

As previously mentioned, glucose is a poor energy source
for respiration in the kidney cortex, which contains glomeruli
and proximal tubules. The preferred fuels are short- and long-
chain fatty acids and endogenous lipids, as well as ketone
bodies, lactate, and some amino acids (Weidemann and Krebs,
1969; Klein et al., 1980). Conversely, chronic hyperinsulinemia
enhances degradation of triglycerides in the adipocytes, thus
elevating serum levels of non-esterified fatty acids. These elevated
levels lead to the ectopic accumulation of lipids in organs
outside of the lipid tissue, including the kidney. The excessive
accumulation of lipids results in cellular damage, known as
lipotoxicity (Weinberg, 2006; Ertunc and Hotamisligil, 2016;
Nishi et al., 2019). For instance, fatty acids accumulated in
the mitochondrial matrix are vulnerable to lipid peroxidation
(Schrauwen and Hesselink, 2004; Schrauwen et al., 2010; Sergi
et al., 2019), which can have lipotoxic effects on DNA, RNA, and
proteins of the mitochondrial machinery, leading to organelle
dysfunction. In AKI and diabetic nephropathy, β-oxidation
in the mitochondria is decreased and the formation of lipid

droplets inside the cell are increased, resulting in diminished
ATP production (Simon and Hertig, 2015). Stimulation of
proximal tubular culture cells with the fatty acid palmitate
invokes the accumulation of abnormal organelles because of
poor acidification of lysosomes (Yamamoto et al., 2017), even
promoting lipoapoptosis (Katsoulieris et al., 2010).

Electron Transfer System and Mitochondrial Reactive
Oxygen Species
The ETC is responsible for mitochondrial oxidative
phosphorylation, which produces ATP using the oxygen-based
fatty acids and pyruvate. In this process, five electron-
transporting enzyme complexes (complexes I to V) on the
IMM, as well as the electron transporters ubiquinone and
cytochrome c, excrete protons into the intermembrane space to
drive ATP synthase. Although this process is efficient, insufficient
reactions can produce reactive oxygen species (ROS). Oxidative
stress reduces mitochondrial and cellular function and can even
cause cell death by promoting lipid peroxidation in the IMM.
This lipid peroxidation can change the membrane permeability
and structure (Stewart and Heales, 2003) or disrupting calcium
homeostasis, particularly affecting the oxidation state of
specific thiol groups in proteins (Toescu, 2005). Mitochondria
possess defense systems to scavenge ROS to protect them from
excess radicals. For example, superoxide dismutase 2 (SOD2)
transforms superoxide anions to oxygen and hydrogen peroxide
(Weisiger and Fridovich, 1973). Also, coenzyme Q10 (CoQ10)
can exist in two forms: Ubiquinone, an oxidized form, that acts
as an electron carrier during mitochondrial respiration; and
Ubiquinol, a reduced form, that is an endogenous antioxidant
(Crane, 2001). Mutations in the genes that encode the CoQ10
pathway confer an inherited mitochondriopathy with primary
renal involvement (Diomedi-Camassei et al., 2007).

In chronic hypoxic kidneys of rat, proteomic analysis
identified maladaptive suppression of Cu/Zn-SOD enzymes
as a mediator of a cycle of oxidative stress and subsequent
renal injury (Son et al., 2008). Also, mice with cisplatin-
induced AKI treated with CoQ10 has less depletion of their
antioxidant defense mechanisms (glutathione level and SOD
activity), lipid peroxidation, and renal tissue damage (Fouad
et al., 2010). The significance of mitochondrial ROS levels
has also been implicated in diabetic kidney diseases (DKD).
Mitochondrial superoxide and ATP production were increased
in type 2 diabetic db/db mice in the renal cortex, compared to
control mice (Sourris et al., 2012); however, the excessive renal
mitochondrial hydrogen peroxide production and membrane
potential seen in db/db mice were attenuated with CoQ10
treatment. This normalization of mitochondrial ROS generation
caused by CoQ10 treatment decreases albuminuria (Sourris
et al., 2012). NADPH oxidases (NOX) are the principal
enzymes to generate nitrogen species and ROS, with NOX4
localized within the renal cortex and upregulated under
hyperglycemic conditions within the mitochondria (Block
et al., 2009). Intriguingly, pharmacological inhibition of NOX4
has potential for treatment of renal histopathology and
albuminuria in db/db mice (Sedeek et al., 2013). Also, chemical
inactivation of NOX4 protected ApoE-deficient mice treated
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with streptozotocin from both structural and functional kidney
damage (Jha et al., 2014).

Electrochemical Gradient and Uncoupling
The pumping of protons into the transmembrane space results
in a difference of proton concentrations between the inside
and outside the IMM (i.e., electrochemical gradient). These
protons can return to the matrix through the ATP synthase
pump, at which uses the potential to generate ATP from
adenosine diphosphate (ADP) and inorganic phosphate (Pi). The
generated ATP is then transported from the mitochondria to
the cytoplasm by ATP/ADP transporters and becomes the active
energy source for cells. Alternatively, proton in the mitochondrial
intermembrane space released by the ETC may also return to
the matrix by diffusing through the IMM without involvement
in ATP synthesis. This flux is known as uncoupling, and the
accumulated electrochemical potential is squandered as heat
(Dlaskova et al., 2006). The transporter protein UCP uses this
proton gradient between membranes to generate energy for
oxidative phosphorylation (Ricquier et al., 1991).

The UCP has isoforms in mammals (UCP1–5). Thermogenin
(UCP1) is present only in brown adipocytes, and contributes to
heat production without movement during hibernation (Palou
et al., 1998). Recently, UCP1 expression was reported in the
ischemic kidneys (Jia et al., 2019) and speculated to protect
the organ from hypoxia, since deletion of UCP1 worsened both
ischemia or cisplatin induced AKI. Furthermore, peroxisome
proliferator-activator receptor (PPAR) γ agonist treatment
increased UCP1 expression, suggesting their close relationship.
Elsewhere, an early work combined immunohistochemistry and
polymerase chain reaction techniques to unravel the UCP2
expression in rat kidneys, specifically the epithelial cells of the
proximal tubules and the medullary thick ascending loop of
Henle (Balaban and Mandel, 1980). Multiple reports suggest
that tubular UCP2 expression is enhanced in kidneys that
are diseased. Higher expression of UCP2 is found in diabetic
kidneys (Balaban and Mandel, 1980). It was demonstrated
that glutamate-stimulated oxygen consumption was increased
in the isolated mitochondria from diabetic animals, and could
be reduced by adding guanosine diphosphate, which inhibits
UCP activity. These results imply that those mitochondria have
increased uncoupling due to increased UCP2 protein expression
(Friederich et al., 2008). In fibrotic kidneys, the expression
of UCP2 in proximal tubular epithelial cells was increased
(Jiang et al., 2013), and mice deficient in UCP2 were protected
from kidney fibrosis induced by unilateral ureter obstruction
(UUO). Intriguingly, UCP2 causes cultured epithelial cells to
transdifferentiate and release cellular matrix. Regarding other
UCP isoforms, UCP3 expression is found in the epithelial cells of
the renal cell carcinoma (Braun et al., 2015). Intriguingly, their
loss-of-function study indicates that UCP3 in carcinoma that
originated from the proximal tubular cells helps resist against
hypoxia/reoxygenation injury of cancer.

Calcium Storage
Intracellular calcium concentration is tightly regulated and
plays a vital role in the signal transduction of cells. Although

the ER stores the highest amount of intracellular calcium,
mitochondria also have temporary capacity to store calcium,
which contributes to the homeostasis of the overall intracellular
calcium concentration (Brookes et al., 2004).

In kidney diseases, mitochondrial calcium uptake is impaired
in tubular epithelia cells. Cation uptake in tubular cells is reduced
per the cytoplasmic glutathione level in cisplatin-induced kidney
damage (Kameyama and Gemba, 1991). Autosomal dominant
polycystic kidney disease (ADPKD) is one of the most common
monogenetic diseases, constituting approximately 5% of all
kidney failure diseases (Levy and Feingold, 2000). Genes PKD1
(The European Polycystic Kidney Disease Consortium, 1994) and
PKD2 (Mochizuki et al., 1996) encode polycystin 1 (PC1) and
polycystin 2 (PC2), respectively, that are responsible for ADPKD;
yet, the biological function of polycystins remains elusive and
controversial (Douguet et al., 2019). Initial studies reported that
PC1 and PC2 form a molecular complex configured as a calcium-
permeable channel at the plasma membrane of renal tubular
cells or neurons (Hanaoka et al., 2000; Delmas et al., 2004).
Additionally, these PC1–PC2 complexes located in the primary
cilium of kidney cells work as mechano-sensors to the intra-
tubular shear stress (Nauli et al., 2003; AbouAlaiwi et al., 2009),
but this mechanism has been challenged by subsequent data
showing that stimulation of the primary cilium does not induce
an increase in intraciliary calcium (Delling et al., 2016). Recently,
researchers who focused on localization of the PC complex in
MAMs discovered a novel role of these polycystins to regulate
mitochondrial function (Padovano et al., 2017). PC1 interacts
with the prolyl hydroxylase domain-containing protein (PHD3)
to sense local oxygen pressure, and fluctuations in oxygen levels
and the PHD3 activity modulate the subcellular localization
and the calcium channel activity of the PC complex. PC1-
deficient tubular cells had reduced oxygen consumption rate
in vitro, consistent with a reduction in the quantity of oxidative
phosphorylation performed by these cells. Thus, deficiency in the
PC1 protein may mimic a relatively low oxygen pressure and lead
to mitochondrial dysfunction.

Mitophagy: Mitochondrial Quality Control
Malfunctioning and defective mitochondria are degraded
through autophagy known as mitophagy. Impaired mitophagy
causes the accumulation of abnormal organelles and severe
mitochondrial dysfunction. The PTEN-induced kinase 1
(PINK1)–Parkin pathway is the most widely studied mechanism
of mitophagy of neuron (Pickrell and Youle, 2015). Initially,
both PINK1 and Parkin were known to be causative mutations
in juvenile Parkinson’s disease. For example, once mitochondria
are damaged and have reduced membrane potential, PINK1
accumulates on the OMM, which recruits the E3 ubiquitin ligase,
Parkin, for ubiquitination of PINK1. Then, light-chain-3 (LC3)
receptors accumulate and invoke the autophagosome to degrade
the dysfunctional mitochondria. In addition, BCL2 Interacting
Protein 3 (BNIP3) and NIX in the OMM also regulate mitophagy
(Zhang and Ney, 2009). In hypoxic cells, hypoxia-inducible
factor-1 (HIF-1) is stabilized and promotes expression of the
target genes that eradicates damaged mitochondria (Zhang
and Ney, 2008). Furthermore, FUN14 Domain Containing 1
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(FUNDC1) in the OMM associates mitophagy with the LC3
receptor through its LC3-interacting region (LIR) domains
under hypoxic conditions (Lv et al., 2017; Zhang et al., 2017).
Under normal conditions, FUNDC1 is phosphorylated and this
moiety blocks binding to LC3.

The pathogenic role of mitophagy in kidney disease still
requires further investigation (Bhatia and Choi, 2019; Wang et al.,
2020). Tissue damage induced by renal ischemia is prolonged in
mice deficient in PINK1, PARK2, or both, representing severe
mitochondrial damage and higher ROS production (Tang et al.,
2018). The PINK1-Parkin pathway expression is increased in
tubular cells stimulated with cisplatin. Interestingly, the silencing
of PINK1 or Parkin attenuates mitophagy and promotes cell
apoptosis as visualized with immunofluorescence microscopy
(Zhao et al., 2017). The protective effect of PINK1/PARK2-
dependent mitophagy can also be demonstrated in AKI
induced by contrast media (Yang et al., 2018). The BNIP3
expression in cultured renal tubular cells is enhanced by oxygen–
glucose deprivation/reperfusion. Finally, BNIP3-deficient mice
demonstrate worsened renal ischemic injury due to impaired
mitophagy (Tang et al., 2019). These findings suggest that the
proper coordination of mitophagy is critical for protection
against acute nephrotoxicity, and chronic renal fibrosis is
also regulated by the PINK1–Parkin pathway in macrophages
(Bhatia et al., 2019).

Apoptosis
Apoptosis is an active and molecular programmed cell death that
requires energy to occur. Oxidant stress, abundant cytokines,
or hypoxia deteriorate the mitochondrial membrane potential
by excreting ROS and cytochrome c from the mitochondria to
trigger apoptosis through the p53 and Bcl-2 family proteins
(Susnow et al., 2009; Redza-Dutordoir and Averill-Bates, 2016).
Cytochrome c binds to the cytoplasmic caspase-9 and forms an
aggregate that activates the caspase-9 and inducing apoptosis
(Bratton and Salvesen, 2010).

In a damaged kidney, epithelial cells (Shimizu and Yamanaka,
1993) and partially podocytes (Shankland, 2006) are the principal
cell types that undergo cell death. The signaling pathway
underlying kidney cell apoptosis is not always p53-mediated.
Cisplatin can induce Bax-mediated apoptosis in primary-
cultured tubular cells isolated from mice deficient in p53 (Jiang
et al., 2009), suggesting only a partial effect of p53 inhibition on
cisplatin nephrotoxicity. Conversely, apoptosis of the renal cells
may also be beneficial during the recovery phase, and assist in
fine-tuning the number of renal cells created by balancing an
exaggerated proliferative response.

MITOCHONDRIA AND SARCOPENIA IN
CKD

Uremic Sarcopenia
Sarcopenia is the progressive reduction of muscle weight and
strength, leading to poor physical activity and quality of life,
and even increasing the risk of death. Age-related muscle loss
and dysfunction were initially defined as sarcopenia, whereas

degradation from a chronic inflammatory or malnutritional
illness is classified as secondary sarcopenia. CKD is a chronic
illness that exhibits sarcopenia symptoms (Moorthi and Avin,
2017). The muscle mass is reduced in those with a greater amount
of albuminuria or a lower glomerular filtration rate (GFR) (Foley
et al., 2007). Importantly, CKD patients with sarcopenia show
higher rates of mortality and longer hospital stays (Sinkeler
et al., 2013; Pereira et al., 2015). Epidemiological evidence
suggests that multiple lifestyle and clinical factors contribute to
the progression of sarcopenia in CKD, including malnutrition,
reduced protein intake, insufficient or deficient exercise, chronic
inflammation, metabolic acidosis, atherosclerosis, and a lack
of natural vitamin D (Stenvinkel and Alvestrand, 2002;
Delano and Moldawer, 2006).

Mitochondrial Dysfunction in Skeletal
Muscles With Uremia
Several experiments indicate mitochondrial dysfunction in the
skeletal muscle of patients with CKD (Gamboa et al., 2016; Sato
et al., 2016; Kikuchi et al., 2019; Thome et al., 2019; Xu et al.,
2020). Both mitochondrial volume density and mtDNA copy
numbers were decreased in skeletal biopsy specimens sampled
from kidney failure patients who underwent HD (Gamboa et al.,
2016) or PD (Xu et al., 2020) (Figures 1B, 2). A recent human
study assessed the phosphocreatine recovery time constant to
measure mitochondrial function in the knee extensors using
with 31P magnetic resonance spectroscopy (Gamboa et al., 2020).
This study demonstrated that the phosphocreatine recovery
was extended in pre-dialysis CKD as well as HD patients,
compared to healthy control participants (Gamboa et al., 2020).
The mitochondrial dysfunction in human skeletal muscle was
also associated with poor physical activity performance when
evaluated with a 6-min walk test. This result indicates that uremic
sarcopenia is already progressing even before CKD advances
(Nishi et al., 2020; Ryan, 2020).

Several studies have recognized the impaired role of the
PDHC at a molecular level in the mitochondria of skeletal
muscle in CKD sarcopenia (Sato et al., 2016; Thome et al., 2019;
Xu et al., 2020). The PDHC is essential to energy production
under anaerobic condition, as the enzyme converts pyruvate to
acetyl-CoA for the TCA cycle. Insufficient activation of PDHC
prevents TCA cycle metabolism and reduces ATP production
in the mitochondria, resulting in an energy shortage in the
skeletal muscle. The activity of the PDHC is regulated by the
expression of several kinases and phosphatase via reversible
phosphorylation. Inhibition occurs when phosphorylated at
Ser232, Ser293, and Ser300 of the PDH E1-α subunit by the PDH
kinases PDK-1, PDK-2, PDK-3, and PDK-4, and re-activated
by dephosphorylation by the two PDH phosphatases PDP1
and PDP2. In murine C2C12 myocytes, cell cultures exposed
to a uremic toxin promote glycolysis with excess antioxidative
responses, leading to mitochondrial TCA cycle down-regulation
and ATP shortage (Sato et al., 2016). Moreover, PDHC activity
and phospho-PDH (S293) are decreased in the skeletal muscle
of patients with advanced CKD, whereas PDK4 protein levels
are upregulated (Xu et al., 2020). Treatment of CKD in mice
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FIGURE 2 | Mitochondrial dysfunction in the kidney and the skeletal muscle. Both kidney failure and sarcopenia are associated with mitochondrial damage, and
there are several common findings or processes in the kidney and the skeletal muscle. Mitochondrial damage, usually accompanied with morphological change for
altered dynamics and decreased biogenesis, results in ROS accumulation or deficiency in ATP production. ROS production, which can induce mitochondrial
damage, promote inflammation or cytochrome C release leading to apoptosis. Low efficiency in ATP production also leads to cell injury. CKD progression or uremic
sarcopenia can result from combination of these phenomena. Therapeutics for CKD have various effects on some or all of these processes. At the same time, these
processes can still be a novel therapeutic target. CKD, chronic kidney disease; ROS, reactive oxygen species; ATP, adenosine triphosphate.

with dichloroacetate to activate PDHC improved the treadmill
running test distance (Tamaki et al., 2014). The uremic condition
does not impair the overall activity of mitochondrial enzymes.
Isolated mitochondria from murine skeletal muscle had impaired
malate and glutamate dehydrogenases, as well as ETC complexes
III and IV, by several uremic metabolites (Thome et al., 2019).
Treatment with 5-aminolevulinic acid to transport electrons in
the mitochondrial ETC also increases the skeletal muscle weight
and the mitochondrial amount, thereby improving physical
activity (Fujii et al., 2017). Altogether, the reinforcement of
muscle mitochondria function serves a potential strategy for
eradicating uremic sarcopenia.

DRUGS

Almost no treatments have been approved for slowing or
reversing CKD progression, although various treatments for
CKD and its complications are currently being trialed. These
treatment approaches may potentially have beneficial effects, such
as relieving renal fibrosis (a hallmark of CKD) and minimizing
AKI in patients, who are predisposed to the development
and progression of CKD. This chapter discusses the various
therapeutic agents and potentially protective agents for CKD with

a focus on the pharmacological effects on the mitochondria in the
kidney or skeletal muscle.

Erythropoietin
Erythropoietin (EPO) analogs are a major therapeutic approach
to treating anemia from EPO deficiency in CKD. Erythropoietin
replenishment has been reported to slow CKD progression
(Gouva et al., 2004), as EPO may provide renoprotection
from some factors related to the mitochondria. Erythropoietin
ameliorates lipopolysaccharide-induced AKI (Stoyanoff et al.,
2014). Renoprotection is promoted via an anti-apoptotic effect
from the expression of the EPO receptor, the reduction of the
Bax/Bcl-XL ratio, the inhibition of cytochrome-c release into
the cytosol, and the decrease of active caspase-3 expression.
EPO treatment also reduces renal fibrosis in UUO model rats,
and downregulates Drp1 overexpression to reduce mitochondria
fission (Zhao et al., 2015).

Patients with CKD develop impaired mitochondrial
energetics associated with the disease severity in skeletal
muscle (Kestenbaum et al., 2020). CKD mice with muscle
atrophy have decreased mitochondrial activity and amount,
metabolism related to AMP-activated protein kinase (AMPK)
phosphorylation and Pgc1α gene expression (Tamaki et al.,
2014). The EPO receptor expression can be seen in skeletal
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muscle (Lamon and Russell, 2013), and EPO treatment increases
the PGC-1α protein and gene expression in combination with
exercise (Pin et al., 2015). Elevated EPO signaling leads to
the activation of mitochondrial biogenesis and metabolism
as indicated by increased AMPK phosphorylation, PGC1α

expression, and oxygen consumption rate in both in vitro and
in vivo models (Wang et al., 2013). Thus, EPO treatment may
alleviate mitochondrial dysfunction in skeletal muscle in CKD
and improve muscle amount and performance.

HIF-PH Inhibitor
Hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitors
are another emerging therapeutics for renal anemia, as these
inhibitors have already been effective in treating patients with or
without dialysis (Chen et al., 2019a,b). HIF-PHs stimulates EPO
production in the kidney via the activation of the HIF pathway.
The agents exert non-hematopoietic effects, as HIF up-regulates
the transcription of more than 100 genes involved in hypoxic
adaptation. Moreover, HIF-1α regulates cellular metabolism
against oxidative phosphorylation via LDHA, PDK, and COX4-2
upregulation and encourages mitochondrial autophagy through
BNIP upregulation, resulting in the optimized efficiency of
mitochondrial respiration and ROS production (Semenza et al.,
1996; Kim et al., 2006; Papandreou et al., 2006; Fukuda et al.,
2007; Zhang et al., 2008; Bellot et al., 2009). Moreover, HIF-1α

is crucial in preventing mitochondrial dysfunction and apoptosis
under hypoxic conditions. Cobalt chloride salt is a classical HIF-
PH inhibitor that protects against cisplatin-induced kidney injury
in mice (Tanaka et al., 2005). The emerging HIF-PH inhibitor
enarodustat also suppresses mitochondrial respiration in HK-2
tubular cells and changes energy metabolism in early DKD mice
(Hasegawa et al., 2020).

HIF-1α plays a part in regulation of skeletal muscle function,
since a skeletal muscle-specific HIF-1α knockouts in mice have
increased mitochondrial activity with higher citrate synthase
activity and oxidative metabolism as well as slight increases in
the mitochondrial amount and endurance capacity (Mason et al.,
2004). Moreover, PHD1 is also associated with mitochondrial
changes in skeletal muscle (Aragones et al., 2008). The silencing
of PHD1 in myofiber cells decreases oxidative metabolism and
less mitochondrial ultrastructural changes compared to ischemia-
exhibiting control myofibers with swollen mitochondria, inner
lucency, and fractured cristae (Aragones et al., 2008). HIF-PH
inhibitors have also been reported to reduce the levels of ROS
with glycolytic metabolic shift and increase cell viability in renal
proximal tubule cells (Ito et al., 2020) and neuronal cells with
glutamate-induced oxytosis (Neitemeier et al., 2016). HIF-PH
inhibitor MK-8617 ameliorates myopathy in 5/6 nephrectomy
CKD mice and corrects abnormalities in the mitochondrial
number and size in skeletal muscle (Qian et al., 2019). Future
HIF-PH inhibitors as novel HIF stabilizers may relieve uremic
sarcopenia, but they require further investigation.

Nrf2 Activator
The progression of CKD leads to oxidative stress and impaired
antioxidant capacity that are associated with the impairment
of Nrf2 activity (Ruiz et al., 2013). Bardoxolone methyl, an

Nrf2-activating triterpenoid, has been reported to improve renal
function in DKD in humans (de Zeeuw et al., 2013), although
this drug is not yet approved for patient use. Bardoxolone
methyl improved the estimated GFR (eGFR) above baseline in
CKD/type 2 diabetes patients in a BEAM randomized, placebo-
controlled, 52 week trial (Pergola et al., 2011); however, this
trial was prematurely terminated due to as a result of an
increased rate of cardiovascular events leading to hospitalization
or death in the treatment group because of heart failure (de
Zeeuw et al., 2013). Thereafter, the efficacy on DKD was
evaluated in a TSUBAKI clinical study in Japan that payed
careful attention to cardiac events by excluding patients with
risk factors for volume overload or prior history of heart
failure (Nangaku et al., 2020). Nrf2 activation also relieves
renal injury in non-DKD model mice, and the Nrf2-activating
triterpenoid CDDO-imidazolide seems to protect the kidney
from ischemia-reperfusion injury by decreasing ROS production
in mice (Liu et al., 2014). Another Nrf2 activator, dihydro-
CDDO-trifluoroethyl amide (dh404), alleviates proteinuria-
induced tubular damage by stopping mitochondrial structural
changes, such as decreasing size, number, and breakdown of
the cristae structure of mitochondria in vivo (Nagasu et al.,
2019). Moreover, activator dh404 also decreased mitochondrial
ROS and the preservation of mitochondrial membrane potential
in vitro (Nagasu et al., 2019).

Nrf2 is important for maintaining mitochondrial function,
muscle mitohormesis, and oxidative stress defense in skeletal
muscle (Coleman et al., 2018; Kitaoka et al., 2019). Moreover,
Nrf2 is involved in uremic sarcopenia, which has reduced
skeletal muscle mitochondrial mass and gene expression related
to mitochondrial biogenesis, including Nrf2 (Liu et al., 2019;
Watson et al., 2020). Genetic Nrf2 activation in skeletal
muscle improves endurance capacity and increased oxygen
consumption without altering mtDNA content (Uruno et al.,
2016). Treatment with Nrf2-activating compounds also increases
running endurance in rodents (Uruno et al., 2016). Altogether,
these results indicate that Nrf2 activators could be effective
therapeutic against sarcopenia in CKD patients and require
further investigation.

SGLT2 Inhibitor
Recent research has focused on sodium–glucose transporter 2
(SGLT2) inhibitors as a beneficial treatment for DKD. The
CREDENCE trial assessed the effects of inhibitor canagliflozin on
renal conditions in patients with type 2 diabetes and albuminuric
CKD (Perkovic et al., 2019). Canagliflozin had favorable results
with a 30% risk reduction in the composite outcome of kidney
failure (dialysis, transplantation, or a sustained estimated GFR
of <15 ml per minute per 1.73 m2), a doubling of the
serum creatinine level, or death from renal or cardiovascular
causes, thereby resulting in early cessation of the trial (Perkovic
et al., 2019). Similarly, early cessation of the DAPA-CKD
trial was also announced by AstraZeneka (Heerspink et al.,
2020), whereas their EMPA-KIDNEY trial is still under way1.
There are various mechanisms of renoprotection exhibited

1www.empakidney.org; accessed April 24, 2020
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by the SGLT2 inhibitors, including a decrease in blood
glucose levels, tubuloglomerular feedback, upregulation of
HIF and EPO, and subsequent hematocrit elevation and
oxygen supply (Vallon and Thomson, 2020). The inhibitor
ipragliflozin protects tubular cells in the high-fat diet-fed
mice (Takagi et al., 2018). These mice show no longer
abnormal mitochondrial fission associated with increased
oxidative stress, lower gene expression of Opa1 and Mfn2, and
higher expression of Drp1 (Takagi et al., 2018). Ipragliflozin
also reduces ROS and mitochondrial dysfunction in tubular
epithelial cells and glomerular podocytes in diabetic db/db mice
(Kamezaki et al., 2018).

SGLT2 inhibitors have also been reported to have protective
effects against muscle atrophy and lowered exercise performance
(Hirata et al., 2019). Empaglifrozin improves symptoms for
diabetic sarcopenia in hyperglycemic Akita mice, though it
is unclear whether there are other factors beyond the anti-
diabetic effects and improving muscle mass (Hirata et al., 2019).
Empagliflozin also restores lowered exercise capacity in a murine
heart failure model (Nambu et al., 2020). The drug increases
endurance capacity, but not muscle weight or muscle strength,
by restoring mitochondrial fatty acid oxidation in skeletal muscle
(Nambu et al., 2020).

AST-120
AST-120 is an agent that inhibits the accumulation of uremic
toxins and is often prescribed to CKD patients to slow the
progression of renal failure. The efficacy of AST-120 to slow down
CKD progression is controversial, as various clinical trials have
failed to show renoprotective effects (Schulman et al., 2015; Cha
et al., 2016); however, the drug remains a standard method of
treatment for CKD patients.

AST-120 may have beneficial effects on muscles since uremic
toxins are harmful to them. AST-120 may improve mitochondrial
status by reducing the accumulation of indoxyl sulfate, which
induces mitochondrial dysfunction and ATP shortage in muscle
cells (Sato et al., 2016). As for in vivo models, AST-120
administration improves running endurance reduced in subtotal
nephrectomy mice, and attenuates harmful changes, such as
down-regulated citrate synthase activity, decreased expression
of mitochondrial biogenesis genes like Pgc1α, and increased
superoxide production (Nishikawa et al., 2015). There are no
significant reports on the clinical usage of AST-120 against
uremic sarcopenia, so further studies are required to indicate
clinical efficacy.

Carnitine
Patients with pre-dialysis CKD have higher plasma L-carnitine
levels than healthy individuals (Rodriguez-Segade et al., 1986;

Guarnieri et al., 1987). Nevertheless, hemodialysis patients show
low plasma and muscle L-carnitine levels that correlate with the
dialysis vintage (Sakurauchi et al., 1998; Debska et al., 2000;
Evans, 2003).

Carnitine deficiency is associated with EPO-resistant anemia,
intradialytic hypotension, cardiomyopathy, and skeletal muscle
dysfunction (Karpati et al., 1975). Therefore, L-carnitine
supplementation is recommended to relieve such problems
(Eknoyan et al., 2003). There is no firm conclusion regarding the
clinical efficacy of L-carnitine on skeletal muscle (Hurot et al.,
2002), although some trials have shown improvement in muscle
volume, strength, and maximal oxygen consumption (Ahmad
et al., 1990; Siami et al., 1991). In animal models, L-carnitine
improved endurance capacity lowered in CKD mice, normalized
PGC-1α expression, and reduced a blunt reduction in type I
muscle fibers seen in untreated controls (Enoki et al., 2017).

FUTURE DIRECTIONS

Although mitochondrial dysfunction has been involved in
various pathologies, including CKD and sarcopenia, clinical
impact of this organelle dysfunction in patients with CKD has not
been fully explored. This article reviewed essential mitochondrial
functions, mitochondrial changes in CKD and sarcopenia
conditions, and the effects of emerging therapeutics on the
kidney and skeletal muscle. A comprehensive understanding
of mitochondrial physiology is critical for understanding
the pathogenesis of kidney diseases and muscle wasting.
Furthermore, therapeutic strategies against mitochondrial
dysfunctions could lead to drastic progress in the treatment and
regression of CKD or sarcopenia.
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