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Abstract

Animal-borne sensors enable researchers to remotely track animals, their physiological state and body movements.
Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy
expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from expert
interpretation of sensor data and not validated with direct observations of the animal. The aim of this study was to derive
models that could be used to classify oystercatcher (Haematopus ostralegus) behaviour based on sensor data. We measured
the location, speed, and tri-axial acceleration of three oystercatchers using a flexible GPS tracking system and conducted
simultaneous visual observations of the behaviour of these birds in their natural environment. We then used these data to
develop three supervised classification trees of behaviour and finally applied one of the models to calculate time-activity
budgets. The model based on accelerometer data developed to classify three behaviours (fly, terrestrial locomotion, and no
movement) was much more accurate (cross-validation error = 0.14) than the model based on GPS-speed alone (cross-
validation error = 0.35). The most parsimonious acceleration model designed to classify eight behaviours could distinguish
five: fly, forage, body care, stand, and sit (cross-validation error = 0.28); other behaviours that were observed, such as
aggression or handling of prey, could not be distinguished. Model limitations and potential improvements are discussed.
The workflow design presented in this study can facilitate model development, be adapted to a wide range of species, and
together with the appropriate measurements, can foster the study of behaviour and habitat use of free living animals
throughout their annual routine.
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Introduction

Understanding how animals interact with their environment is

one of the fundamental aims of animal ecology. In order to acquire

this knowledge we need information which can be used to quantify

what animals are doing, when, where, how and for how long. For

a broad spectrum of ecological research, from theoretical to

applied, quantitative time budget information at the individual

level is important [1–3]. A quantitative approach can provide

essential information for species and habitat conservation [4–5],

understanding ecosystem dynamics [2,6], understanding and

mitigating the spread of animal borne diseases [7–8], animal

adaptation to climate and landuse change [4,9], spread of

introduced and invasive species [3] and the development of

environmental policy [10]. For example, when addressing the

direct and indirect impact of fisheries on seabirds (see question 26

[10]), we would like to know where, when and how a species

forages [2,11–12].

Our ability to visually observe the behaviour of free-ranging

animals is generally quite restricted in space and time. In recent

decades, technological advances have enabled researchers to track

animals during local and migratory movements, in the air, on land

and in the sea [13–17]. Similarly, bio-logging features such as

body acceleration, heart rate, stomach temperature, diving depth

enable remote monitoring of an animal’s physiological state and its

activity in 3 dimensional space and in time [18–20]. The data

collected by these sensors can then be used to infer what an animal

is doing. For example, speed measured directly using GPS (global

positioning system) or derived from consecutive tracking locations

has been used to infer behaviour, to distinguish between travelling

and resting during migration [21–23], and during foraging trips

[24–25]. Yet, instantaneous speed measured with a GPS is

probably too inaccurate for distinguishing small differences in

locomotion, especially at low speeds [26]. Accelerometers are a

promising sensor for studying animal behaviour remotely since

accelerometers can measure the posture and body movements

([27] and references therein) as well as estimate the speed and

energy expenditure [3,28–30] of the animal to which it is attached.

In the last decade, dynamic and static body acceleration have been

used to study a diverse range of behaviours including diving [31–

33], swimming and flight strategy [34–37], feeding and breathing

[38] and mating behaviour [39]. Behavioural studies utilizing

accelerometer data have focused primarily on marine animals [40]
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and very few studies have focused on terrestrial locomotion in wild

animals [3,41–43].

Quantifying behaviour from bio-logging data requires an

intermediate step to translate the measured sensor data into

specific behaviours. Three general approaches to achieve this

translation are: (1) non-automated interpretation of sensor data by

an expert, with [2,44–45]) or without [35,41] field observations of

the animal’s behaviour; (2) automated segmentation or clustering

of sensor data without field observations of animal behaviour,

sometimes followed by labelling of the identified segments by an

expert [46]; (3) automated classification of sensor data in

combination with observations of the animal’s behaviour

[3,38,47]. For brevity we will call the first method expert

interpretation, the second clustering, and the third method classification.

In most studies of wild animals, behaviour has been inferred by

expert interpretation; however, the inferred behaviour cannot be

validated via this method. In cases where behavioural observations

are not available, only the methods of expert interpretation and

clustering can be applied to sensor data. The essential difference

between the two methods is that for expert interpretation the

behavioural classes have to be specified prior to the classification

task, whereas in clustering the specification (and meaning) of

behavioural classes follow from the clustering results. Hence,

expert interpretation is deductive whereas the clustering is

inductive in nature. Due to the lack of behavioural observations

which match the sensor data, the uncertainty of the results cannot

be assessed for either of these methods. In contrast, the

classification method can provide information about the uncer-

tainty of the classification result. Knowledge of classification

uncertainty can be used to answer various kinds of inferential

questions such as whether a given model (using sensor data) is able

to predict behaviour better than a null-model or whether a given

number of behavioural classes can be distinguished.

The primary aim of this study was to derive, evaluate and

compare models to classify measurements from sensors attached to

individual shorebirds, the oystercatcher (Haematopus ostralegus), into

pre-defined behaviours; one model would only be based on speed

measured by GPS and other models would include accelerometer

data. The use of accelerometer data to remotely determine the

behaviour of terrestrial wild animals is still quite new. We expected

that classification models based on GPS-speed alone would

improve if accelerometer data would be included. We describe a

methodological workflow that we used in this study to develop and

apply classification models of animal behaviour. The aim of such a

workflow is to provide researchers with a clear outline of the

diverse processing and analysis steps needed to quantify behaviour

based on sensor data; it can be applied to other studies, streamline

analysis of new data and the reanalysis of existing data. By using

sensor data to quantify behaviour in combination with location

data, time-activity budgets of animals can be quantified at the

individual level and in relation to their environment [19]. To show

the added value of incorporating behavioural information with

location data we calculated the time-activity budget of an

individual bird for areas and times of day that are normally

difficult to visually observe in the field. More specifically, we

wanted to determine if an individual spends its time differently

during the day compared to during the night and how does it

spend its time when outside the territory.

Methods

Study species and study area
The oystercatcher is a long lived, monogamous wader that feeds

on intertidal prey, such as hard-shelled bivalves they can open with

their strong bill and large marine worms. They breed predomi-

nantly in coastal habitats, although inland breeding increased

during the second half of the previous century [48]. On the Dutch

Wadden Island Schiermonnikoog (53.26uN, 06.10uW, Figure 1) a

population of oystercatchers has been studied and individuals have

been colour ringed since the 1983 (e.g. [49–51]). In this

population, colour ringed individuals can be easily identified and

a range of behaviours can be visually observed in the field from

two observation towers (Figure 1).

Methodological workflow
In the following sections we briefly describe how each of the

following research steps was applied in the current study: data

collection, data processing, modelling and model application. A

more detailed description is provided in Text S1. The steps are

also shown in a schematic workflow diagram (Figure 2) and

present a general methodological approach that can be applied to

any study where measurements from sensors attached to animals

will be used in combination with observations of behaviour to

derive and apply a classification model of animal behaviour.

Data collection
In this study, we used the recently developed UvA Bird

Tracking System (UvA-BiTS, University of Amsterdam Bird

Tracking System) which has been used to study several resident

and migratory bird species (e.g. [24]). The tracking device is solar-

powered and weighs 13.5 g, and includes a tri-axial accelerometer

and a GPS receiver which measures geographic position, altitude

above mean sea level, time and instantaneous speed. The tri-axial

accelerometer measurements were converted to acceleration in g

(1 g = 9.8 m s22) with respect to the earth’s gravitational field in

three directions: surge (X), sway (Y) and heave (Z).

During the breeding season of 2009 (May-July 2009), oyster-

catchers were observed for several weeks and three colour ringed

birds breeding in high quality territories adjacent to the mudflats

were selected for our tracking study and trapped towards the end

of the breeding season (Table S1). Observations in the breeding

area prior to trapping were described in more detail in previous

studies [50–52]. The birds were caught on their nest with a walk-in

trap. After the birds were weighed and morphological measure-

ments were taken, a tracking device was fitted on their back using

a Teflon ribbon harness (weight ,2 g). The harness was attached

to the bird using a figure eight configuration. The straps were

connected around the neck and the wings to one weak point at the

sternum. The weak point was made out of cotton thread, which is

expected to deteriorate in two to three years. The harness and

tracking device weighed less than 3% of the mean body mass of

the birds (Table S1). Birds were released within 60 minutes of

capture.

A GPS fix was taken every 10 minutes from 30 June 2009

through 20 July 2009 and every 30 minutes from 21–31 July.

Directly following each GPS fix, acceleration was measured with a

frequency of 20 Hz for 3 seconds. From 30 June through 14 July

2009 each bird was observed daily for 30 minutes with a telescope

(20–606, Zeiss Diascope 85 T*FL) positioned in one of the

observation towers (Figure 1). During visual observations, the

tracking device was set to take a GPS fix at 10 s intervals followed

by 3 seconds of acceleration measurements. When a bird started a

new behaviour, it was reported by the observer and recorded by a

field assistant in a PSION handheld computer (Workabout Pro)

with Observer XT software (www.noldus.com). To accurately link

the visual observations with the GPS and accelerometer

measurements, the handheld computer was synchronized to

GPS time using a handheld GPS. The recording procedure was
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first practised extensively on non tagged birds. The main

behaviours defined by Kersten [53] were extended with sub-

behaviours observed in the field (Table 1); the classes to express the

behaviours as well as the sub-behaviours are both exhaustive and

exclusive.

Data processing
In this study data processing (Figure 2) included data storage,

merging datasets and filtering data. All the GPS and accelerometer

data that were collected during the study period were stored in a

dedicated postgreSQL database (http://www.uva-bits.nl/virtual-

lab/) and the visual observations were stored in a separate data

base. This enables researchers to systematically explore or re-use

(parts of) the data sets if needed. The GPS and accelerometer data

were labelled with the visually observed behaviours, while

accounting for a maximum of 10 s recording delay on the

handheld computer (‘merge’ in Figure 2), see Text S1 for more

details. Next, all data were checked for anomalies (‘filter’ in

Figure 2). For example, data that could not be unambiguously

linked to a behavioural observation were removed from further

analysis.

Modelling
Note that the decisions made during the model building phase

(grey ‘model building’ rectangle in Figure 2) regarding the data,

model design and analysis steps are dependent on each other and,

in general, can also be dealt with in a different order than chosen

here. One of the first steps in our analysis was defining the model

aim (‘model aim’ in Figure 2) which was to accurately predict

behaviour, whereby all behavioural classes were considered

equally important. In this study, we report three modelling cycles,

each leading to a different model. We first start a simple model

with three behavioural classes and incrementally working towards

more detailed models. The aim of the first model (‘model S3’,

speed model of three behaviour classes) was to predict three

behaviour classes. The predictor variable specified for this model

(‘specify predictors’ in Figure 2) was GPS speed. The original

behaviour classes were grouped (‘reclassify’ in Figure 2) into three

behaviour classes (Table 1, column 4). With the aim of predicting

three behaviour classes, we then went through feedback loop 1 to

develop the second model (‘model SA3’, speed-acceleration model

of three behaviour classes) using predictor variables based on

accelerometer data, described in more detail below, as well as GPS

speed.

While speed was provided by the GPS sensor, the acceleration

measurements had to be processed to calculate meaningful

predictor variables. We derived 15 predictor variables from the

tri-axial acceleration segments (measurement frequency of 20 Hz

for 3 seconds). All predictor variables used in this study are listed

in Table 2 (see Text S1 for more detailed information on how the

Figure 1. The study area on the island of Schiermonnikoog, the Netherlands (53.296N, 06.106E) at different spatial scales. The points
represent GPS fixes of three oystercatchers (green – tag 166, red – tag 167, blue – tag 169; Table S1) from 1 July 2009 to 31 July 2009, with
consecutive points connected by lines. The black circles are the nests of these birds. The locations of the observation towers are indicated by a square
and the base station by a triangle. Black lines represents creeks, dark grey lines represent urban infrastructure.
doi:10.1371/journal.pone.0037997.g001
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accelerometer data were processed). All the predictors, except for

the mean dynamic body acceleration in single dimensions (odbaX,

odbaY and odbaZ), have been used in other studies [27,35,44,47]

and are described in [47]. The overall dynamic body acceleration

(odba) was calculated as the sum of odbaX, odbaY and odbaZ and

has been used in other studies as a single measure of body

movement and a potential proxy for energy expenditure, see [30]

for a detailed explanation.

In the third modelling cycle (‘model SA8’, speed-acceleration

model of eight behaviour classes) we went through feedback loop

2; the model aim is to classify the eight main behavioural classes

(Table 1, column 1) using all available predictors. In order to

ensure a sufficient sample size per behaviour (Table 1, column 5)

to train the models, the observations of the three individuals were

pooled (‘pool data’ in Figure 2), treating each individual

observation and each individual equally. Even after pooling the

data, the sample size was very small for several of the sub-

behaviours.

We selected classification trees (‘select model type’ in Figure 2)

as our modelling approach [54–55], using the implementation in

the rpart R package [56–57]. Overall cross-validation error was

used as a single criterion to measure the degree of success (‘error

criteria’ in Figure 2). We did not split the data into sub-sets for

model calibration and evaluation because the dataset was already

limited in size (with only a few observations for some behavioural

classes) and also because data splitting is an integral part of the

model calibration procedure for regression trees as described

below.

Classification trees were derived (‘calibrate model’ in Figure 2)

by initially growing a maximum (over-fitted) tree, which was

subsequently pruned to an optimal size. To determine the optimal

tree size, we applied the ‘one standard deviation rule’: select the

smallest tree whose cross validation error is less than the minimum

cross validation error +1 standard deviation [54]. Model

performance was evaluated (‘evaluate model’ in Figure 2) by 10-

fold cross-validation in which the dataset is split into 10 partitions,

9 of which are used to calibrate the model and 1 is used to evaluate

the model; the calibration and evaluation is then repeated 10 times

using a new data partition [58]. Once a model could not

Figure 2. A schematic workflow of the different methodological steps conducted in this study. The workflow is broken down into three
main categories of activity shown on the upper bar: Data collection, Data processing and Modelling. The objects in the grey rectangle indicate the
aspects involved in building classification models and the objects in the dark grey rectangle indicate application of the classification models for
diverse analyses such as calculating time budgets. Ovals indicate data in various formats (files from data loggers, written field forms, etc). Cylinders
indicate information that is stored in a database. White rectangles indicate (computational) activities and decisions. Solid arrows present the
workflow to move from field data to the establishment and application of a model. Dashed arrows present feed-back loops where a certain part of
the workflow is repeated in response to progressive insights (only the most important feed-back loops are shown). Feed-back loops are present from
a point after model calibration as well as a point after model evaluation back to the beginning of the modelling sequence (2) or later in the modelling
sequence (1). These steps are generalized so that they can be applied to other studies, for example visual observations may be replaced by video
observations or expert interpretation of sensor data.
doi:10.1371/journal.pone.0037997.g002
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Table 1. Different behaviours and sub-behaviours visually observed during the study and linked to GPS and accelerometer
measurements.

Behaviour Sub behaviour Description 3-class model behaviours n

Aggression Bobbing Bird is standing and moves its body up and down No locomotion 4

Chasing Bird is chasing conspecifics Terrestrial locomotion 3

Stand Solitary piping Bird is calling loudly while standing, conspecifics are
nearby

No locomotion 18

Piping ceremony Bird is calling loudly together with other birds, while
walking

Terrestrial locomotion 12

Walk Solitary piping Bird is calling loudly while walking, conspecifics are
nearby

Terrestrial locomotion 12

Body care Preen Bird is preening its feathers No locomotion 82

Wash Bird is bathing No locomotion 3

Fly normal flight Bird is flying Fly 13

Forage By sight Bird is searching for prey by sight while walking Terrestrial locomotion 249

By touch Bird is searching for prey by touch while walking Terrestrial locomotion 5

Handle Handling at surface Bird is handling the prey at the surface No locomotion 15

Handling in situ Bird is handling the prey beneath the surface No locomotion 29

Walking with prey Bird is walking with the prey Terrestrial locomotion 7

Sit Bird is sitting No locomotion 100

Stand Bird is standing No locomotion 125

Walk Bird is walking Terrestrial locomotion 25

The column ‘3-class model behaviours’ shows the behavioural classes reclassified a priori and used to calibrate the 3-class models (S3 and SA3). The behavioural classes
in the first column were used as the predicted variable in the 8-class model (SA8). The number of visual observations (n) is provided per behaviour.
doi:10.1371/journal.pone.0037997.t001

Table 2. Predictive parameters used in this study, derived from the GPS (speed) and the accelerometer sensors.

predictor direction label explanation

GPS speed (m s21) - speed 3D speed

body pitch (u) surge pitchX angle of the body along the surge axis

heave pitchZ angle of the body along the heave axis

body roll (u) sway rollY angle of the body along the sway axis

maximum dynamic body acceleration (g) surge mdbaX maximum dynamic body acceleration along the surge axis

sway mdbaY maximum dynamic body acceleration along the sway axis

heave mdbaZ maximum dynamic body acceleration along the heave axis

overall dynamic body acceleration (g) surge odbaX Mean dynamic body acceleration along the surge axis

sway odbaY Mean dynamic body acceleration along the sway axis

heave odbaZ Mean dynamic body acceleration along the heave axis

- odba overall dynamic body acceleration (odbaX+odbaY+odbaZ)

dominant power spectrum (g2Hz21) surge dpsX maximum power spectral density (psd) of dynamic acceleration along the surge
axis

sway dpsY maximum psd along the sway axis

heave dpsZ maximum psd along the heave axis

frequency at the dominant power
spectrum (Hz)

surge fdpsX frequency at the maximum psd along the surge axis

sway fdpsY frequency at the maximum psd along the sway axis

heave fdpsZ frequency at the maximum psd along the heave axis

The dominant power spectrum measures the relative amount of kinetic energy that is spent at the dominant periodicity in a signal (see Text S1 for more details).The
integration interval of the measurement for the accelerometer sensor is 3 seconds with 20 Hz. The direction in which each variable is defined is given in Cartesian
coordinates relative to the ground surface: surge represents the x-axis, sway the y-axis and heave the z-axis. The measurement units (SI) are provided in parentheses.
doi:10.1371/journal.pone.0037997.t002
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accurately predict behaviour, the modelling cycle would not be

repeated to predict behaviour in more detail.

Model application
To exemplify model application we calculated time budgets per

individual, including areas and times of day that are difficult to

visually observe in the field. We applied model SA8 to the sensor

data collected in July 2009, a period for which visual observations

were not collected, to classify each data point into discrete

behaviours associated to the geographic position provided by the

GPS (‘predict’ in Figure 2). We then used the predicted behaviours

to calculate the time budget during the day and at night for three

different habitats (territory, mudflats and salt marsh). For more

details see Text S1.

The percentage of time devoted to each of the classified

behaviours was calculated by dividing the number of observations

per behaviour by the total number of observations during the day

or during the night. We associated each GPS fix to one of the

following habitats: territory, mudflats and salt marsh using the

geographic database of global administrative areas (GADM,

http://www.gadm.org). A bird was considered to be in its territory

when it was within 150 m from its nest. This distance was chosen

after visually inspecting the locations of each individual in relation

to their nest. All terrestrial areas outside the territory, which are

predominantly salt marsh in the study area, were labelled salt

marsh. The inter-tidal areas were labelled mudflats. Day was

defined as the hours between sunrise and sunset at Schiermonni-

koog (53.47 N, 6.23 E).

Software implementation of the various analysis steps
The data processing steps, the definition of prediction variables

and subsequent modelling were conducted using the R language

for statistical computing [57]. We provide a modelling package

with the scripts developed for data analysis (model building and

model application) and the data presented in this study (Dataset

S1).

Results

Behavioural measurements
Table S1 provides an overview of the number of GPS and

acceleration segments (60 measurements per segment) collected

for each bird. During visual observations 16 behaviours were

observed and 702 GPS fixes and acceleration segments could be

linked to the visual observations (Table 1). Forage by sight was the

most frequently observed behaviour. The mean value of each

predictor variable is provided per observed behaviour in Tables

S2A–C. Mean speeds did not differ significantly between

behaviours within the no locomotion and terrestrial locomotion

behaviours (P.0.05, Tukey HSD test). This justified the reclas-

sification of behaviours into three categories, fly, terrestrial

locomotion and no locomotion, before fitting the speed model

(Table 1, Column 4).

3-class speed model
The best model for three behavioural classes, based on speed

alone (model S3), classified 470 out of 695 observations correctly (7

out of the 702 observations in our dataset did not have a speed

measurement) resulting in an absolute cross-validation error of

0.35. Speeds below 0.18 m s21 were classified as no locomotion,

speeds higher or equal to 3.4 m s21 as fly and intermediate speeds

as terrestrial locomotion (Figure 3A). Fly was classified incorrectly

as terrestrial locomotion in 8% (1 out of 13) of the cases. Observed

behaviours belonging to the terrestrial locomotion group were

incorrectly classified as no locomotion in 44% of the cases and

behaviours belonging to the no locomotion group were incorrectly

classified as terrestrial locomotion in 24% of the cases.

3-class acceleration model
The best model for three behavioural classes, using speed and

acceleration data (model SA3), classified 609 of the 702

observations correctly (absolute cross-validation error = 0.14).

Observed behaviours belonging to the terrestrial locomotion

group were incorrectly classified as no locomotion in 9% of the

cases, and no locomotion observations were incorrectly classified

as terrestrial locomotion in 18% of the cases. The predictors that

were included in the model were the mean dynamic acceleration

in the surge axis (odbaX) and maximum power spectral density

(psd) of dynamic acceleration along the heave axis (dpsZ)

(Figure 3B, Table 2). If odbaX was less than 0.09 g, equivalent

to no dynamic acceleration in the surge axis, then behaviour was

classified as no movement, if odbaX was higher and dpsZ was

greater than or equal to 5.1 W Hz21, then behaviour was

classified as fly and if odbaX was greater than or equal to 0.09 g

and dpsZ was less than 5.1 W Hz21, then behaviour was

classified as terrestrial locomotion (Figure 3B). Speed was not

retained as a predictor variable.

8-class acceleration model
The best model for the eight behavioural classes, using speed

and acceleration data (model SA8), classified 517 of the 702

observations correctly (absolute cross-validation error = 0.282).

Only five of the eight behaviours were classified: ‘fly’, ‘forage’,

‘body care’, ‘stand’ and ‘sit’ (Figure 4). Walk was generally

misclassified as forage which is not surprising as forage included,

by definition, walking movement (see Table 1). Aggression was

generally misclassified as body care or forage, and handle was

predominantly misclassified as forage. From the 15 different

explanatory variables, only four variables were retained in the

classification model: odbaX and dpsZ, both also included in model

SA3, as well as overall dynamic body acceleration (odba) and the

pitch angle measured in the surge (pitchX). As with model SA3,

odbaX can be used to distinguish between forward locomotion (fly

and forage) and no locomotion (body care, stand and sit).

Similarly, as in model SA3, dpsZ greater than or equal to

5.1 g2 Hz21 could be used to distinguish fly from forage.

The decision rules in this model (Figure 4) are easy to interpret

within the context of the field observations and locomotion.

Dynamic acceleration or deceleration in the surge axis (odbaX)

describes active forward movement, and the bird is either flying or

walking, depending on the amount of energy invested at the

dominant periodicity in the heave axis signal (dpsZ). When there is

not much movement in the heave or surge, the bird is either

standing or sitting, depending on the pitch angle of the body; a

zero or slightly positive angle means that the logger is horizontal

and the bird is sitting and a negative angle means that the anterior

of the bird is tilted upwards and the bird is standing (see Text S1

for more details). While standing, the bird may preen its feathers

moving its bill and body, resulting in higher overall dynamic body

acceleration (odba) than when standing still. Figure 5 shows

characteristic examples of dynamic and static acceleration signals

for fly, forage, body care, stand and sit behaviours, which were

correctly classified by the SA8 model. See Video S1 for an

example of foraging behaviour coupled with accelerometer data.

The SA8 model effectively reduced the number of behavioural

classes from 8 to 5. This result and the cross validation error

indicated that more detailed behavioural classes or trying to
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classify the 16 mutually exclusive classes of behaviour observed

(column sub-behaviour in Table 1) was not feasible.

Time budget analysis
The SA8 model was applied to classify behaviour per

accelerometer segment and then associated to the respective

GPS fix (time and location). Subsequently, the time spent on five

different behavioural activities (‘fly’, ‘forage’, ‘body care’, ‘stand’

and ‘sit’) in several habitats was calculated for each bird. The time

budget analysis results for the bird fitted with logger 169 (a female)

are presented in Figure 6 and for birds fitted with loggers 166 and

167 (both males) in Figures S1 and S2. The time budgets differed

between individuals predominantly in where and when they spent

their time on different activities rather than the total proportion of

time spent on any one activity. All three birds spent a similar

Figure 3. Decision tree and confusion matrix for models S3 and SA3. For model S3 (A) and model SA3 (B), the number of observations
correctly classified per behaviour is shown in bold. See Table 2 for a description of the predictor variables. Out of the 702 observations, there were no
speed measurements in 7 cases, hence the sample size of 695 for model S3.
doi:10.1371/journal.pone.0037997.g003
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proportion of time during the day foraging as during the night

(166: 39% and 45%; 167: 38% and 40%; 169: 37% and 38%

respectively). Individual 169 spent most of this time foraging on

the mudflats. When on the salt marsh, which functions predom-

inantly as a roosting site outside the breeding season, the three

birds spent most of their time on other activities, such as standing,

sitting (barely at night) and body care (Figure 6). All three birds

spent relatively little time in flight during the day and at night

(,2% of total time) and spent relatively more time during the day

sitting than at night. While the proportion of time spent foraging

barely differed between day and night, the spatial distributions of

the classified behaviours clearly differed (Figure 6).

Discussion

Classification models
The primary aim of this paper was to develop and assess

classification models to convert sensor data into specific behaviours

observed in the field. As we expected, variables derived from body

acceleration are clearly better predictors of behaviour than speed

alone. Thus, when tracking animals, collecting acceleration has a

great added value if information about behaviour is desired.

However, since many GPS tracking studies only provide

information on speed and location it is useful to note that ground

speed measured by the GPS can, in some cases, be used to

distinguish flight from non-flight quite reliably. Yet the threshold

will differ per species, flight strategy used (e.g. soaring or flapping

flight [59]) and environmental conditions such as wind speed and

direction. In this study, 3.4 m s21 and higher is associated with

flight (Figure 3a and Table S2), however this threshold is based on

a very small sample of 13 observations made close to the nest. In a

study on Manx Shearwaters (Puffinus puffinus), using a different

methodology, a ground speed of 2.5 m s21 was found as the

optimal threshold between sitting and flying [60]. Since terrestrial

locomotion in oystercatchers is quite slow (Table S2) and GPS

speed is not accurate enough [26], distinguishing between

terrestrial locomotion and no locomotion is more difficult.

The models we developed can be applied to automatically

classify additional sensor data from the same individuals and

potentially the same species. However, as with any model, if the

dataset used to fit the model is very limited, for example in the

number of measurements per behaviour or the environmental

conditions experienced, the chance of misclassification may

increase. In general, once behaviours can be reliably classified,

the locomotion parameters such as flight speed, wing beat

frequency, gait rates, odba can then be used for comparative

analysis between species, individuals, environmental conditions or

for comparison with theoretical estimates [37,40,61–63]. One

aspect which deserves more attention in the future, especially

when samples are large enough, is the extent to which predictor

variables differ within and between individuals. If predictor

variables differ significantly between individuals and enough data

is available, then building and applying models per individual may

result in lower classification errors than when using models

Figure 4. Decision tree and confusion matrix for model SA8. The number of observations correctly classified per behaviour is shown in bold.
See Table 2 for a description of the predictor variables.
doi:10.1371/journal.pone.0037997.g004
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Figure 5. Examples of behaviours with characteristic signals from dynamic acceleration and static acceleration. Characteristic signals
from dynamic acceleration (A–D) and static acceleration (E–F) are shown. In all panels, acceleration in the surge (X) axis is shown with a continuous
grey line, in the sway (Y) axis with a dashed line and in the heave (Z) axis with a continuous black line. Fly and forage (A, B) are especially
characterized by high-amplitudes of all dynamic acceleration components, but the frequency of the signals is higher for fly than it is for forage
(especially in the Z direction, see dpsZ in Figure 4). Many of the accelerometer signals for foraging are characterized by the alternation between
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calibrated on pooled data. However, if predictive variables are

robust enough, they could encompass individual variability.

Unfortunately, in the current study we could not derive a

reliable model that could classify the 16 sub-behaviours observed

in the field, and could only classify five of the eight main

behaviours. Nevertheless, classification models could potentially be

improved in several ways in the future. We strongly believe that

video observations would be extremely useful for classifying

behaviour, developing predictor variables, and re-evaluating

models [44–45]. As video can be observed again after the activity

has taken place, synchronization between observations and

measurements can be improved, observations and interpretations

can be cross-validated and the importance of context (for example

presence of other individuals, or past events) can also be

considered when classifying behaviour. As humans we are not

always conscious of all the information we are visually processing

to reach a certain conclusion and yet when only using part of this

information for automated classification we expect the same

conclusions to emerge. By re-examining videos carefully we may

be able to identify these gaps and fill them. For example, studying

posture, properties of movement and the measurements simulta-

neously (see video S1), may provide a better understanding of how

they are related and enable researcher to derive more suitable

predictor variables. The predictor variables included in this study

are all aggregate measures which, for example, do not parame-

terize dependencies within the 3 s observation period, and are

hence crude in some respects. A good example is given in

Figure 5B, showing alternating patterns (with regard to total

energy as well as frequency) of acceleration within the 3-second

observation period. Thus, predictor variables which account for

dependencies within an acceleration segment may also result in

model improvement.

relatively smooth lateral movement (changes in acceleration predominantly in the surge axis) and short bursts of high frequency changes in
acceleration in all three axes (e.g. catching prey, at 2.2 s panel B, see also Video S1). The changes in dynamic acceleration for body care (C) are much
smaller than for fly and forage, but still considerably higher than for stand and sit (D, see also odbaX and odba in Figure 4). The static acceleration can
be used to distinguish sit (E) and stand (F) due to differences in body posture (see pitchX in Figure 4).
doi:10.1371/journal.pone.0037997.g005

Figure 6. Diurnal and nocturnal time budget of one oystercatcher during July 2009, using model SA8 to classify behaviours. Diurnal
(top) and nocturnal (bottom) time budgets for one oystercatcher (logger 169, Table S1) during July 2009, using model SA8 (Figure 4) to classify
behaviours. The locations of each behaviour (fly, forage, body care, stand and sit) are presented on the map; the colours of the icons on the map
correspond to those in the time budget bar graphs.
doi:10.1371/journal.pone.0037997.g006
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Quantifying behaviour in space and time
By combing information on the location of the bird and the time

from the GPS, behaviour from the accelerometer and information

about the environment we can calculate spatio-temporal activity

budgets for comparative analysis. The strength of this approach is

that once a classification model is built, it can be applied to data

where additional observations (visual or video) are not available or

not possible. In the current study we apply the classification model

to data from three individuals for which simultaneous observations

were not always available. One aspect we were interested in was a

comparison of diurnal and nocturnal time budgets as oystercatch-

ers are known to forage at night in tidal areas. In a GPS tracking

study of oystercatchers in the Wadden Sea [64], the authors

showed that oystercatchers travel farther at night than during the

day, suggesting that they foraged extensively at night, although

information on behaviour was not available. In our study, we

showed that although individuals visited different locations during

the day and night, all three individuals spent similar proportions of

time foraging during the night as during the day (Figures 6, S1,

S2). Our study also showed that the three individuals spent very

little time in flight (.2%) both inside and outside of the territory,

which is similar to findings from a time budget analyses based on

visual observations within the territory and immediate surround-

ings [53,65]. Furthermore, our study supports previous suggestions

that oystercatchers forage predominantly in their territory and in

the mudflats close by [53,65]. While we cannot generalize these

results on the basis of the small sample used in this case study, it

shows how these methods can be used to compare time budgets

within and between individuals. In the future, we will apply the

classification model in the future to a longer time series and more

individuals to study inter-seasonal carry-over effects of habitat

selection and time-activity budgets. In this context, the type of

tracking system is very relevant, the UvA-BiTS enables the

retrieval of data or re-programming the sensors remotely while

with most of the commercially available tracking equipment an

individual must be recaptured to retrieve the data (e.g. [27,64]).

Methodological workflow
The methodological workflow presented here can be used for

similar studies regardless of the study species or the environment in

which the study is conducted (e.g. terrestrial or marine). By

implementing such a workflow in a programming language with a

connection to a database where the data is stored, the researcher

greatly facilitates the reproducibility of results, re-analysis, model

improvement, knowledge transfer and collaboration, especially for

researchers first entering the field of bio-logging. To facilitate the

transfer of knowledge, we have provided a modelling package

(Dataset S1) which includes a database and R-scripts written to

run the analysis in this study. As shown in this study, several

processes may be iterative, such as the specification of model

predictors or model design; each iteration may improve our

understanding and interpretation of the data as well as our models

and a methodological workflow can streamline this process.

Concluding remarks
The application of accelerometers in behavioural research has

greatly increased in the last few years. Similarly, new develop-

ments at the interface of ecology and computer science may

greatly facilitate the analysis, visualization and exploration of such

data [46,66]. Recent studies have also shown that measures of

dynamic body acceleration can be used to estimate energy

expenditure in a number of species during active locomotion as

well as more sedentary behaviour [3,28,30,67–68]. Thus, the

potential for using accelerometers to quantify behaviour and

energy expenditure makes it a very powerful tool in ecological

research. Once different characteristics of behaviour and body

locomotion are quantified they can be compared between studies,

individuals, species, environmental conditions, seasons or even

different life history stages such as migratory compared to foraging

movements. Comparative studies may also help increase our

understanding of biomechanics and evolution of locomotion [37].

Perhaps most exciting is the possibility to link behaviour and

energy expenditure to space use and time at the individual level to

gain new insight into the ability of animals to adapt to an ever

changing world. In this study we provided a blueprint for the

development and application of classification models for this

purpose.
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Text S1 Extended methods.
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Figure S1 Diurnal and nocturnal time budget of one
oystercatcher during July 2009, using model SA8 to
classify behaviours. Diurnal (top) and nocturnal (bottom) time

budgets for one oystercatcher (logger 166, Table S1) during July

2009, using model SA8 (Figure 4) to classify behaviours. The

locations of each behaviour (fly, forage, body care, stand and sit)

are presented on the map; the colours of the icons on the map

correspond to those in the time budget graph.

(PDF)

Figure S2 Diurnal and nocturnal time budget of one
oystercatcher during July 2009, using model SA8 to
classify behaviours. Diurnal (top) and nocturnal (bottom) time

budgets for one oystercatcher (logger 167, Table S1) during July

2009, using model SA8 (Figure 4) to classify behaviours. The

locations of each behaviour (fly, forage, body care, stand and sit)

are presented on the map; the colours of the icons on the map

correspond to those in the time budget graph.

(PDF)

Table S1 The total number of GPS fixes and accelerometer

segments (3 s intervals) obtained from the date of deployment

through 31 July 2009 for each of the three oystercatchers in this

study. Individual ring code, logger number, sex and body mass (g)

on date of deployment are also provided.

(PDF)

Table S2 List of behaviours observed in the field and the mean

and standard deviation of the predictor variables per behaviour

according to Table 1 as follows: Table S2-A, 3-class model (S3 and

SA3) behaviours (Table 1 column 4); Table S2-B, behaviours for

SA8 model (Table 1 column 1); Table S2-C, 16 sub behaviours

(Table 1, column 2). The predictor variables are described in

Table 2.

(PDF)

Dataset S1 A dataset and software package. The R-scripts

and dataset for this study can be found in this self-contained

archive which also includes a readme-file that explains its contents.

(ZIP)

Video S1 A short video of an oystercatcher foraging by sight

(Table 1) shown simultaneously with corresponding dynamic and

static acceleration in the heave axis (green), surge axis (red) and

sway axis (blue) in units of g (1 g = 9.8 m/s2). The measurement

duration is 10 s, the film is shown at a slower rate. This record was

not included in this study.

(WMV)
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