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Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in
different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining.
One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence
of time series data is used.This paper reviews some definitions and backgrounds related to subsequence time series clustering.The
categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various
state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories.
The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.

1. Introduction

One of the primary tasks of data mining is clustering, whose
function groups similar objects into a cluster. Clustering is
the most prevalent task of statistical data analysis in various
aspects. In cluster analysis, most similar data objects are
discovered on the basis of some criteria for comparisons.
Clustering aims to increase the efficiency of similarity among
members in a cluster [1].

In the clustering domain, Han et al. [2] propose clustering
method categorizations to arrange various static data. Data
are considered static if their feature values do not change
with time or do not change negligibly. They divide clustering
methods into five major categories, namely, partitioning,
hierarchical, density-based, grid-based, and model-based
methods.

In contrast to static data, time series values change with
time [3]. A series of data points in similar time spaces is
called time series, which is usually expressed by line charts.
Information and data mining research has played an impor-
tant role in the pattern-mining domain through the huge
collection of time series data. The pattern discovery problem
addressed by unsupervised learning is known as time series
clustering [4, 5]. One of the most challengeable clustering
issues in the time series data mining community [6–11] is

time series clustering [12–18]. Furthermore, the high-speed
growth of computer and Internet technology increases the
amount of data in different fields, such as e-commerce [19],
outlier detection [20, 21], speech recognition [22], biological
systems, DNA optimization [23], and text mining. Among
these different fields, the use of subsequence time series data
is important for improving time series mining.

In time series clustering, subsequence time series cluster-
ing is proposed to group interesting subsequence time series
data in the same cluster. Subsequence time series clustering is
used for discovering structures or patterns in time series data.

Subsequence time series clustering leads to many inter-
esting data, including sequential patterns, motifs, periodic
patterns, partially ordered patterns, and approximate bio-
logical sequence patterns. With approximately 10 years of
active research on subsequence time series mining by data
mining,machine learning, statistical data analysis, andBioin-
formatics research, we believe that a systematic introduction
and comprehensive overview of state-of-the-art technology
in this area is warranted.

Many algorithms have used time series clustering [15,
16]. A previous study in 1998 proposes the main reference
technique for single time series clustering, which is used
for the subroutine rule discovery of time series [24]. In this
study, the 𝑘-means clustering algorithm is applied to extract
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Figure 1: A sample of time series data.

subsequence clusters. The problem of this method is that
it shows only sine waves and has an independent output
compared with the input. To solve this problem, most studies
have tried to find improved algorithms for subsequence time
series clustering from 1998 to 2003 [4, 24–26].

Lin et al. [27] prove the claim of meaningless results in
2003 and explain that all previous claims are false because
they have the same results and are unacceptable [14]. Thus,
researchers have tried to find a solution to this issue and
answer the question of why it is meaningless (from 2005 to
2011) [13, 14, 28–30]. This issue has remained unsolved.

From 2011 to 2013, three main papers have proposed
solutions for the problem ofmeaningless results of time series
clustering and explained how to obtain meaningful time
series clusters [31–33]. Continually, most of the papers claim
that they reach appropriate results with different ways.

The rest of this paper is organized as follows. Section 2
clarifies themain definitions and background of subsequence
time series clustering. Section 3 includes the evolution of
subsequence time series clustering according to papers on
the subject. Section 4 provides the discussions, comparisons,
strengths, and weaknesses. Finally, Section 5 concludes the
paper.

2. Background and Definitions

In this section, we provide the definitions and background
knowledge used in this work.

2.1. Time Series Definitions

Definition 1. A time series 𝑇 of size𝑚 is an ordered sequence
of real-value data, where 𝑇 = (𝑡

1
, 𝑡
2
. . . 𝑡
𝑚
) [33]. Figure 1

shows a sample of time series data.

Definition 2. A subsequence of length 𝑛 of time series 𝑇 is
𝑇
𝑖,𝑛

= (𝑡
𝑖
, 𝑡
𝑖+1

, . . . , 𝑡
𝑖+𝑛−1

), where 1 ≤ 𝑖 ≤ 𝑚 − 𝑛 + 1 [33].
A subsequence is an arranged sequence of data that omits
some elements without changing the order of the remaining
elements [34].

2.2. Taxonomy of Time Series Clustering. In reviewing litera-
ture, one can conclude that most works related to clustering

time series are classified into three categories: whole time
series clustering, subsequence time series clustering, and
time point clustering (Figure 3). The first two categories
are mentioned in 2005. Whole time series clustering is the
clustering of a set of individual time series with respect
to their similarity. Here, clustering means the conventional
(usually) clustering of discrete objects, which are time series
[35, 36]. Subsequence time series clustering involves the
clustering of a set of subsequences of a time series extracted
via a sliding window, that is, the clustering of segments from
a single long time series. Figure 2 illustrates the subsequence
clustering of time series data.

Another category of clustering is time point clustering
[37–39], which is the clustering of time points on the basis of
a combination of their temporal proximity and the similarity
of their corresponding values. This approach is similar to
time series segmentation. However, time point clustering is
different from segmentation in the sense that all points do
not need to be assigned to the cluster; that is, some of points
are considered noise.

Subsequence clustering is performed on a single time
series [14]. Time point clustering is also applied to a single
time series and is similar to time series segmentation.That is,
the objective of time point clustering is to find clusters of the
time point instead of clusters of time series data. In the next
section, subsequence time series clustering and its concepts
are explained.

2.3. Subsequence Time Series Clustering. This paper aims to
review the main concepts of subsequence time series clus-
tering step by step. Figure 4 elucidates the general skeleton
of this clustering with some features and subfeatures covered
in this paper which are utilized in most of the related work.
Additionally, in the end of this part, related algorithms which
have been applied in subsequence time series clustering are
explained. It is important to notice that the skeleton of this
paper is extracted from some works which exactly applied
subsequence time series clustering; hence, it may omit some
minor features.

2.3.1. Basic Methods. In subsequence time series clustering,
an important issue is how to employmethods for categorizing
a huge amount of time series data and how they can produce a
meaningful result. Somemajor methods, such as hierarchical
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Figure 2: A sample of subsequence time series clustering.
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Figure 3: Time series clustering taxonomy.

clustering, 𝑘-means, and pattern discovery, are described
briefly as follows.

(1) Hierarchical Clustering. One other general clustering algo-
rithm is hierarchical clustering, which has a powerful visu-
alization compared with other clustering approaches [40].
Hierarchical clustering creates a nested hierarchy of related
groups of objects regarding a pairwise distance matrix of the
objects. One of the strengths of this method is generality; that
is, the user does not need to provide any parameter, such
as the number of clusters. However, the application of this
method is limited to small datasets because of its quadratic
computational complexity [27]. The following outlines the
basic hierarchical clustering algorithm.

(1) The distance between all objects is calculated. The
results are stored in a distance matrix.

(2) Search through the distance matrix for the two most
similar clusters/objects.

(3) The two clusters/objects are joined to produce a
cluster with at least two objects.

(4) The matrix is updated by calculating the distances
between this new cluster and all other clusters.

(5) Step 2 is repeated until all cases are in one cluster.

Hierarchicalmethods are divided into two types: agglom-
erative and divisive. Agglomerative methods have a bottom-
up structure; thus, each data object stays in one cluster and
then merges with other clusters until a large cluster forms.
This task continues while all clusters create the main root
cluster.The structure of divisive methods is the opposite; that
is, a top-down structure is applied. The cluster splits into
small clusters. By merging this process with other clustering
techniques, we can increase the quality of hierarchical clus-
tering. Nevill-Manning and Witten [41] use the SEQUITUR
algorithm to abstract subsequences as a hierarchical method
for subsequence clustering. Kumar et al. [5] in 2006 propose
an adaptiveWaveSim transform on the basis of a hierarchical
tree-based approach to improve subsequence time series
clustering.

(2) Partitioning Clustering. Given a set of 𝑛 unlabeled data
tuples, a partitioning method constructs 𝑘 partitions of the
data, where each partition illustrates a cluster containing at
least one object and 𝑘 ≤ 𝑛. The partition is crisp if each
object belongs to exactly one cluster, or fuzzy if one object
is allowed to be in more than one cluster to a different degree.
Two renowned heuristic methods for crisp partitions are the
𝑘-means algorithm, where each cluster is represented by the
mean value of the objects in the cluster and the 𝑘-medoids
algorithm, where each cluster is represented by the most
centrally located object in a cluster. Two counterparts for
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Figure 4: The general skeleton of subsequence time series clustering.

fuzzy partitions are the fuzzy 𝑐-means algorithm and the
fuzzy 𝑐-medoids algorithm.These heuristic algorithms apply
well for discovering spherical-shaped clusters and small to
medium data sets. To discover clusters with nonspherical or
other complex shapes, specially designed algorithms such as
Gustafson-Kessel and adaptive fuzzy clustering algorithms
or density-based methods to be explained in the sequel
are required. Most genetic clustering methodsimplement
the spirit of partitioning methods, especially the 𝑘-means
algorithm, the 𝑘-medoids algorithm, and the fuzzy 𝑐-means
algorithm [42].

(3) Density-Based Clustering.The idea of density-basedmeth-
ods such as DBSCAN is to continue growing a cluster as
long as the density (number of objects or data points) in
the “neighborhood” exceeds some threshold. More than
producing a cluster, OPTICS calculates an augmented cluster
ordering for automatic and interactive cluster analysis. The
ordering contains information that is equivalent to density-
based clustering obtained from a wide range of parameter
settings [43, 44]. Denton [45] uses this type of clustering for
her work.

(4) Pattern Discovery. An interesting function of time series
clustering is pattern discovery, which involves two major
fields: frequent [46] and surprising patterns [47]. These

methods are also known as motif discovery [48, 49] and
anomaly [50, 51] or discord detection [52], respectively.

Pattern discovery is a significant task in data mining [53,
54]. In 2003, Ma and Perkins [55] develop a support vector
regression- (SVR-) based algorithm that detects online nov-
elties.This algorithm applies the pattern discovery method to
cluster data regarding temporal sequences. In 2005, Chan and
Mahoney [50] proposed an approach to determine anomalies
online by using the Gecko algorithm. This method generates
a sequence of minimal bounding boxes with the training
trajectories. For discovering time series patterns, distance-
based clustering is commonly used [24, 25, 56].

2.3.2. Similarity/Distance Measures. An important clustering
job is determining the similarity between two data. These
data come in different forms, including raw values of equal or
unequal length, vectors of feature-value pairs, and transition
matrices.

(1) Euclidean Distance. Assuming that 𝑥
𝑖
and V

𝑗
are 𝑃-

dimensional vectors, the Euclidean distance can be calculated
as follows [3]:

𝑑
𝐸
= √

𝑝

∑

𝑘=1

(𝑥
𝑖𝑘
− V
𝑗𝑘
)
2

. (1)
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(2) Dynamic Time Warping Distance. Dynamic time warping
(DTW) generalizes classical algorithms to compare discrete
sequences to continuous value sequences [3]. For time series
𝑄 = 𝑞

1
, 𝑞
2
. . . 𝑞
𝑖
. . . 𝑞
𝑛
and 𝑅 = 𝑟

1
, 𝑟
2
. . . 𝑟
𝑗
. . . 𝑟
𝑚
, DTW align

the two series to minimize differences. To this end, an 𝑛 × 𝑚

Matrix, where the (𝑖, 𝑗) element of the matrix covers the
distance 𝑑(𝑞

𝑖
, 𝑟
𝑗
) between points 𝑞

𝑖
and 𝑟

𝑗
. In this matrix,

the Euclidean distance is typically measured. A warping path
𝑊 = 𝑤

1
, 𝑤
2
. . . 𝑤
𝑘
, . . . , 𝑤

𝑘
, where max(𝑚, 𝑛) ≤ 𝑘 ≤ 𝑚 + 𝑛 − 1,

is a set of matrix elements that satisfies three constraints:
boundary condition, continuity, and monotonicity. To meet
the boundary condition constraints, the warping path must
start and finish in matrix corner cells that are diagonally
opposite; that is, 𝑤

1
= (1, 1) and 𝑤

𝐾
= (𝑚, 𝑛). The

continuity constraint restricts the allowable number of steps
to the adjacent cells, and the monotonicity constraint forces
the monotonic spacing of points on the warping path in
time. A warping path that displays the minimum distance
between the two time series is of interest and is expressed as
follows:

𝑑DTW = min
∑
𝐾

𝐾=1
𝑤
𝑘

𝐾
. (2)

Dynamic programming efficiently determines this path
by evaluating the below recurrence, which defines the cumu-
lative distance as the sum of the distance of the current ele-
ment and the minimum cumulative distance of the adjacent
elements [3]:

𝑑cum (𝑖, 𝑗) = 𝑑 (𝑞
𝑖
, 𝑟
𝑗
)

+min {𝑑cum (𝑖 − 1, 𝑗 − 1) ,

𝑑cum (𝑖 − 1, 𝑗) , 𝑑cum (𝑖, 𝑗 − 1)} sp.

(3)

Oates [25] uses thismeasure in 1999 to identify distinctive
subsequences. This measure has also been used by Rakthan-
manon et al. [57] in 2013 to address significant time series
data.

(3) Short Time Series Distance. Short time series (STS)
distance is the squared of the gradient distance between
two time series data [58]. Mathematically, the STS distance
between two time series 𝑥

𝑖
and V
𝑗
is defined as

𝑑STS = √

𝑝

∑

𝑘=1

(
V
𝑗(𝑘+1)

− V
𝑗𝑘

𝑡
(𝑘+1)

− 𝑡
𝑘

−
𝑥
𝑖(𝑘+1)

− 𝑥
𝑖𝑘

𝑡
(𝑘+1)

𝑡
𝑘

)

2

. (4)

In this formula 𝑡
𝑘
is the time point for data points 𝑥

𝑖𝑘
and

V
𝑗𝑘
, and 𝑧 standardization is used for deleting the effect of

scale.

(4) Minimum Description Length. The minimum description
length (MDL) supplies a criterion formodel selection regard-
less of complexity without the restrictive assumption that the
data generate a sample from a “true” distribution. Algorithms
such as PRESEE have applied MDL as a base [59].

2.3.3. Challenges. The clustering of subsequence time series
is hindered by the following issues with respect to algorithm
behavior.

(1) High Memory Usage. In the clustering of subsequence
time series, the memory consumed by linear spaces and large
clustering data is problematic. A prevalent weakness that is
commonly observed in studies on subsequence time series is
increased memory usage, which reduces clustering efficiency
[32, 41, 60–63].

(2) Unsuccessful Outcomes with Large Parameters.Algorithms
must occasionally analyze many parameters, thus severely
affecting the clustering of subsequence time series and ren-
dering the examined parameters meaningless. This problem
is common in the second period (interproof period) of
subsequence time series clustering, which is explained in the
next section (Section 3.2) [4, 5, 61–63].

(3) Unclear Result. The results of most papers in the second
period of subsequence time series analysis are unclear. All
of the clusters evaluated by using various algorithms display
similar results with no remarkable difference. Consequently,
the researchers considered the clusters to be meaningless
[5, 14, 27, 32, 64].

(4) High Complexity. The uncertainty of the solution elimi-
nates the dismissal property, andhigh complexity is generated
when the results do not match the objective of the clustering
of large time series. The time complexity will be minimal if
ignored.

2.3.4. Evaluation Metrics. In this section, we clarify some of
the criteria that directly affect the evaluation of algorithms for
subsequence time series clustering.

(1) Cluster Quality (Accuracy). To evaluate clustering quality,
studies use cross entropy, which is expressed as follows:

Cross entropy =
𝑘

∑

𝑗=1

(
𝑛
𝑗

|SDB|
)(−

𝑚

∑

𝑖=1

𝑝
𝑖𝑗
log (𝑝

𝑖𝑗
)) , (5)

where 𝐾 is the prespecified number of clusters; 𝑛
𝑗
represents

the number of sequences in the 𝑗th cluster;𝑚 is the number of
natural classes in the sequence database; 𝑝

𝑖𝑗
is the probability

of randomly drawing sequences from the 𝑗th cluster that
belongs to class 𝑖; SDB is the sequence database.This equation
assesses algorithm accuracy.

(2) 𝐽-Measure. Regarding measure rule of algorithms, 𝐽-
measure use apply rule-ranking. It is defined as

𝐽 (𝐵
𝑇
; 𝐴)

= 𝑝 (𝐴) ∗ (𝑝 (𝐵
𝑇
| 𝐴) log(

𝑝 (𝐵
𝑇
𝐴)

𝑝 (𝐵
𝑇
)
)

+ (1 − 𝑝 (𝐵
𝑇
| 𝐴)) log(

1 − 𝑝 (𝐵
𝑇
| 𝐴)

1 − 𝑝 (𝐵
𝑇
)

)) ,

(6)
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where, in the context of sequence rules,𝑝(𝐴) is the probability
of symbol 𝐴 occurring at a random location in the sequence,
𝑝(𝐵
𝑇
) is the probability of at least one 𝐵 occurring in a

randomly chosen window of duration 𝑡, and 𝑝(𝐵
𝑇
| 𝐴) is the

probability of at least one 𝐵 occurring in a randomly chosen
window of duration 𝑇 given that the window is immediately
preceded by an 𝐴. Intuitively, the first term in the 𝐽-measure,
namely 𝑝(𝐴), is a bias towards rules which occur more
frequently [24, 65].

(3) Normalized Mutual Information (NMI). NMI is one of
the significant comparing measures for evaluating cluster-
ing results of algorithms. It can help researchers to assess
algorithm performance and analyze their improvements. It is
specified as follows.

Let 𝐶
𝑇
and 𝐶

𝐸
be the set of true class labels and the

set of cluster labels calculated by a clustering algorithm,
respectively.

Then, NMI between 𝐶
𝑇
and 𝐶

𝐸
is

NMI (𝐶
𝑇
, 𝐶
𝐸
) =

𝐻 (𝐶
𝑇
) + 𝐻 (𝐶

𝐸
)

𝐻 (𝐶
𝑇
, 𝐶
𝐸
)

(= 1 +
𝐼 (𝐶
𝑇
; 𝐶
𝐸
)

𝐻 (𝐶
𝑇
, 𝐶
𝐸
)
) ,

(7)

where 𝐻(𝑃), 𝐻(𝑃,𝑄), and 𝐼(𝑃; 𝑄) represent entropy, joint
entropy, and mutual information with respect to random
variables 𝑃 and 𝑄. When 𝐶

𝑇
and 𝐶

𝐸
are independent from

one another, NMI (𝐶
𝑇
, 𝐶
𝐸
) = 1 because 𝐻(𝐶

𝑇
, 𝐶
𝐸
) =

𝐻(𝐶
𝑇
) + 𝐻(𝐶

𝐸
) should be satisfied. The larger the NMI

(𝐶
𝑇
, 𝐶
𝐸
) is, the more accurate the clustering results are [66].

(4) Algorithm Performance. Algorithm performance is typi-
cally evaluated by the following measurements.

(1) Test Environment and Datasets. Previous studies have
shown thatmining closed sequential patterns can lead
tomore concise sets of results thanmining all sequen-
tial patterns. To assess the algorithm performance,
we consider the use of datasets because their features
affect this performance.

(2) Scalability Test. In the experiments, we replicate the
dataset from 1 time to 20 times. The constraint and
the threshold of minimum relative support are set.
Both the runtime of and space usage by the algo-
rithm increased linearly when the number of input
sequences increased, and this observation implies
that the base size algorithm is scalable. By testing
the scalability of the algorithm and by determining
the relationship between this scalability and the other
criteria, we can evaluate the algorithm performance.

(5) Runtime and Memory Usage. By measuring runtime and
memory usage, we can compare algorithms with respect
to the time and memory consumed. Furthermore, we can
calculate the minimal support threshold in the algorithm.
The runtime and memory usage of an algorithm increase
exponentially as the minimal threshold decreases.

2.3.5. Applications. In this section, we describe some of the
major applications of subsequence time series clustering.

(1) Speech Recognition. Subsequence time series clustering
is typically applied in speech processing. Thus, this study
examines each stage of a speech-recognition system. Speech-
recognition engines can be improved by matching a detected
word to a knownword by using an online pattern recognition
[22, 33].

(2) Biological Systems. Time series expression experiments
have been used to investigate numerous biological systems.
Many bioinformatics problems, including heartbeat-related
illnesses (electrocardiography (ECG) data analysis) and anal-
yses of human wellbeing and genes, can be improved by this
method [33, 67].

(3) Music Analysis. In music analysis, determining the
underlying natural structures of sequences is an interesting
challenge from demonstration programming to code opti-
mization. This problem can be addressed by using the online
pattern recognition method.

(4) Text Mining. Subsequence time series clustering can effi-
ciently illustrate text mining projects on a discrete analogue
of time series, such as English texts [32].

2.3.6. Datasets. In this section, some useful datasets that
have been applied in subsequence time series clustering are
clarified.

(1) Archive of the University of California at Riverside. The
library of Special Collections and University Archives at
UCR house rare books, manuscripts, archival materials, pho-
tographs, videotapes, broadsides, and other media formats
that cover a wide range of special subject areas. In the domain
of the subsequence time series clustering, most studies use
this archive as a reference source in implementing their
algorithms.Themost prevalent datasets used in subsequence
time series clustering are ECG, cylinder-bell-funnel (CBF),
speech data, music, and video data.

(2) IBM Data Generator. This generator is a synthetic data
generator that prepares open source data by using IBM
Quest version and C#. These data can generate transactions,
sequences, and taxonomies.

(3) Clickstream Dataset (Gazelle Dataset). This dataset con-
tains 59,601 sequences of clickstream data in FrameCom-
merce, with 497 distinct items. The sequences are 2.42 items
long on average with a standard deviation of 3.22. However,
318 of these sequences are long and are composed of more
than 20 items.

(4) Msnbc.com Dataset. This clickstream dataset has 989,818
sequences obtained from the UCI repository. After removing
the shortest sequences, 31,790 sequences remain. In this
dataset, 17 distinct items are located in the domain ofwebpage
category. The average number of item sets per sequence is
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13.33, and the average number of varied items per sequence
is 5.33.

(5) Genealogical Dataset. This dataset contains different
sources for different domains that are relevant to research
interests. To extract information systematically from primary
sources, many events are inevitably recorded; however, these
events cannot be fitted to the main family trees either
because the key linking information is missing or because the
people concerned are not related to the researchers.Thus, the
recorded information on these datasets may not be directly
relevant to our personal interests.

2.3.7. Related Algorithms. In this section, some of the related
algorithms which have been used in subsequence time series
clustering are discussed.

(1) 𝐾-Means. A common algorithm in subsequence time
series clustering is 𝑘-means [68]. The basic intuition behind
the 𝑘-means algorithm (and a general class of clustering
algorithms known as iterative refinement algorithms) is
provided as follows [27].

(1) Determine a value for 𝑘.

(2) Initialize the 𝑘 cluster centers (randomly, if neces-
sary).

(3) Select the class memberships of 𝑁 objects by assign-
ing these objects to the nearest cluster center.

(4) Reestimate the 𝑘 cluster centers by assuming that the
memberships found above are correct.

(5) If none of the 𝑁 objects changes the membership in
the last iteration, exit the algorithm; otherwise, return
to Step 3.

(2) SEQUITUR. SEQUITUR shapes a grammar from a
sequence based on repeated phrases in that sequence. Each
repetition produces a rule in the grammar, and the repeated
subsequence is changed from a nonterminal symbol, creating
a more brief representation of the overall sequence.The algo-
rithm forms and maintains the grammar. Then it provides a
hierarchical structure for the sequence [41, 69].

(3) Rule Finding. Rule discovery method works on discov-
ering local relationships from tile series, in the spirit of
association rules, sequential patterns, or episode rules [24].

(4) 𝐿-Sequences. In the discovery of variable-length distinc-
tive subsequences we need to identify a set of fixed-length
subsequences that capture patterns generated by 𝑅. This is
completed by randomly sampling sequences of length 𝐿,
called 𝐿- sequences, from the source. We need to construct a
𝑛-by-𝑛 similarity matrix and cluster of 𝐿-sequences and then
for each of the 𝑘 resulting clusters, where 𝐿 is a user-specified
parameter, we should choose a prototype by discovering the

sequence that minimizes the average distance to all other
sequences in the cluster [25].

(5) PERUSE. The goal of PERUSE is to find the patterns used
most frequently to produce segments of the time series data
that it obtains as input. Note that PERUSE must search over
two spaces to discover candidates with high scores [4].

(6) Cluster-Buster. The cluster-buster algorithm consists of
three steps [26].

(1) Apply one pass of the forward algorithm to obtain
the log likelihood score 𝑠[𝑖] for each subsequence
beginning at nucleotide 1 and ending at nucleotide 𝑖.

(2) For each of these subsequences, we need to observe
the end-point 𝑏 to be reliable, but the start-point
could be unreliable. Apply the backward algorithm
beginning at band continuing to refine the optimal
start point.

(3) Ignore subsequences that overlap higher scoring sub-
sequences with a greedy algorithm.

(7) EM. In order to evaluate the parameters of a Gaussian
mixture model in the domain of time series data expectation
maximization (EM) will be utilized. It is applied as an
alternative and complemented to empirical orthogonal func-
tion (EOF) analysis. The resulting weights, associating time
points with component distributions, are used to distinguish
physical regimes. This method can use accurate explanation
of the variability in the basic EOF analysis [27].

(8) SOMS. In the context of artificial neural network (ANN),
one of the unsupervised algorithms which are used for
maps is self-organizing map (SOM). A self-organizing map
includes nodes or neurons. There are differences between
this algorithm and the other artificial neural networks. The
structure in this algorithm is not based on neighborhood
function to preserve the topological properties of the input
space. However, each node in this algorithm has a weight
vector of the same dimension as the input data vectors and
a position in the map space. Each node arranges in a two-
dimensional regular spacing in a hexagonal or rectangular
grid. This algorithm has clarified a mapping from a higher
to lower dimensional input map space. The goal of this
algorithm is finding the nearest node in order to place a vector
from data space onto the map. This similarity (nearest) can
be applied by measuring weight vector from distance metric
[27].

(9) Motif Discovery. Motif discovery aims to find the closest
subsequence from a given cluster center.The time seriesmotif
includes two most similar subsequences in the given time
series [31, 70, 71].

(10) Continuous Random-Walk Noise. The algorithm uses a
coordinate transformation on the feature space that produces
a uniform noise threshold for all valid input sequences.
Evaluation was based on a new measure that tests the
success and validity of discovering cluster members from
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noise. According to the new evaluation measure, the qual-
ity of the results is enhanced by more than two orders
of magnitude on some data sets compared with 𝑘-means
[60].

(11) Adaptive WaveSim Transform. WaveSim transform is an
approach for producing wavelet transform like coefficients
by exploiting a conventional similarity measure between the
function 𝑓(𝑡) and the wavelet. WaveSim transform measures
temporal data at multiple resolutions and it also generates
flexibility to the user for adopting his own similarity measure
between the basis function and the basis function spanning
the 𝑓(𝑡) segment [5].

(12) RD Algorithm. The radial distribution (RD) function
can be normalized based on the total number of points. It
describes how density varies as a function of distance from
a reference particle. Hence there is no need to explicitly
measure constant factors, and they will be removed from
cluster [13].

(13) CONTOUR. CONTOUR evaluates a set of summariza-
tion subsequences, which is a brief representation of the
original sequence database and maintains much structural
information and can be applied to the input sequences with a
high clustering quality [62].

(14) Repetitive Gapped Subsequence. Feature vector of naviga-
tion patterns is constructed with repetitive support of sub-
sequence. The patterns repeat frequently in some sequences
while the other infrequent could be discriminating features
for clustering. This character motivates the construction of
new feature vectors [72].

(15) Online Motif Discovery. There is significant research
on discovering motifs in static offline databases. However,
the demands of online data bases express the necessity of
generating onlinemotifs discovery.Theonlinemotif of length
𝑚 of a time series 𝑥 = (𝑥

1
, 𝑥
2
, . . . 𝑥
𝑡
) is a pair of subsequences

(𝑥
𝑖,𝑚
, 𝑥
𝑗,𝑚

) for 1 ≤ 𝑖 < 𝑖+𝑚 ≤ 𝑗 ≤ 𝑡−𝑚+1 such that distance
(𝑥
𝑖,𝑚
, 𝑥
𝑗,𝑚

) is the smallest among all such pairs [70].

(16) MDL-Based Discovery. Minimum description length
supplies a criterion for the selection of models, regardless
of their complexity, without the restrictive assumption that
the data form a sample from a “true” distribution. Recently,
some of the algorithms such as PRESEE use MDL as base of
algorithm [32, 59, 63].

(17)𝐾-BestMotif Discovery.Aparameter-freemotif discovery
algorithm called kBMD finds 𝑘-best motif in any time series
sequence without the need of any parameters. The algorithm
returns a small set of motifs, which are ranked by a scoring
function [73].

(18) Grammar Induction. The grammar induction in time
series can discover repeated patterns without prior knowl-
edge of their lengths. The motifs discovered by the visual-
ization system are variable lengths in two ways. Not only
can the intermotif subsequences have variable lengths, but

the intramotif subsequences also are not restricted to have
identical length [74].

(19) Selective Sequence Time Series. A new STS clustering
framework for time series data called selective subsequence
time series (SSTS) clustering generates meaningful results
by applying an idea of data encoding to only essential
subsequences cluster [33].

(20) GOAL. God’s algorithm (GOAL) is an algorithm that
only keeps the mean and standard deviation using the online
O (1) incremental calculations.GOAL is a lower boundon the
fastest possible algorithm for either ED orDTW subsequence
search with unconstrained length queries [57].

3. Evolution of Subsequence Time
Series Clustering

In this study, we divide the subsequence time series clustering
into three categories, namely, pre-, inter-, and postproving
a main problem. This categorization process is based on the
claimofmeaningless results reported in 2003 by Lin et al. with
respect to the subsequence time series clustering [27]. Studies
published prior to Keogh’s claim are relegated to the preproof
period, whereas research related to the claimed proof and
works that attempt to develop a solution are categorized
under the interproof period. Studies that provide increasingly
efficient solutions are grouped into the final period. We also
compare articles obtained from each category in terms of
the following five features: (1) problem, (2) method, (3)
algorithm, (4) goal, and (5) extension. Subsequently, we
specifically detail the categories and their features.

3.1. Preproof Period (1997 to 2003). In this section, we
assess some of the papers published in subsequence time
series clustering between 1997 and 2003. During this period,
researchers explain the concepts of subsequence time series
clustering and some implementation guidelines. In the fol-
lowing paragraphs, we briefly discuss these articles.

First, Nevill-Manning and Witten [41] have established
SEQUITUR, an algorithm that represents the hierarchical
structure of sequence data. This algorithm is based on the
concept of abstracting subsequences that occur more than
once into rules and consecutively repeating this operation.
The algorithm observes two constraints: every diagram in
the grammar must be unique, and every rule must be
applied more than once. SEQUITUR operates incrementally
and is subject to a caveat regarding the register model of
computation in linear space and time. This efficiency enables
its application in sequences up to 40MB long in various
domains. However, the researchers do not assess the predic-
tion accuracy of SEQUITUR and evaluate the compression
performance of SEQUITUR instead. SEQUITUR is one of
the best compression algorithms, particularly when a large
amount of text is available [41]. The greatest limitation of
SEQUITUR is its memory usage, which is linearly associated
with grammar size. Approximate versions of the algorithm
can be developed to partition the input and remerge the
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Table 1: The overview of preproof period dimensions.

Article Problem Method Algorithm Goal Extent

[41]

Reducing the size of the
grammar and producing
structure as a by-product/the
input is not a continuous stream

Hierarchical
clustering SEQUITUR Abstracting

subsequences No

[24] Finding rules relating time series
patterns

Pattern
discovery

Rule finding
algorithms, episode
rule, simple rule

discovery, 𝐾-means

Discovery of
interesting,

interpretable, and
useful rules

No

[25]

Determining what distinguishes
time series in that set from other
time series obtained from the
same source

Pattern
discovery 𝐿-sequences Identifying shared

patterns No

[4] Supervised and unsupervised
learning

Pattern
discovery PERUSE Finding recurring

patterns [25]

[26] Determining activation and
repression of specific genes Clustering Cluster-buster

Finding clusters of
prespecified motifs in

DNA sequences
No

generated grammars, thus establishing an algorithm with
logarithmic memory requirements.

In another study, Das et al. [24] focus on determining the
rules that either relate time series patterns to other patterns
in that series or link patterns in one series to those in
another. They emphasize the discovery of local patterns in
multivariate time series, unlike the traditionalmethod of time
series analysis that examines mostly global models. Das et al.
developed adaptive techniques to determine rules regarding
the above type based on time series data. These methods
discrete sequences by using vector quantification methods.
They first form subsequences by using the sliding window
approach through the time series. These subsequences are
clustered by suitably measuring time series similarity. The
discretized version of the time series is generated by obtaining
the cluster identifiers that correspond to the subsequences.
Once the time series data are discretized, simple methods to
determine rules from the sequence are applied.The empirical
results obtained by this method are provided.

Oates [25] proves that the solution to sequences can
be achieved in times and spaces that are approximately
associated with the total length of the sequences linearly.
Although this study concentrates on multivariate and real-
valued time series, the applied approach covers categorical
sequences. Oates terms these processes as distinctive subse-
quences because the identified patterns distinguish the time
series under consideration from other time series generated
by the same source. However, these approaches are limited to
a univariate time series and are inapplicable to problems such
as the single time series.

Oates [4] also proposes PERUSE, an unsupervised algo-
rithm for detecting recurring patterns in time series. This
algorithm was tested by using sensor data from a mobile
robot, that is, multivariate time series that is noisy and real-
valued with variable intervals between observations. The
experimental results of this study show that PERUSE can
discover audio data patterns that correspond to recurring

words uttered in natural languages, as well as sensor data
patterns of amobile robot reflecting the qualitatively different
outcomes of taking action.

The final article published in this period [26] uses the
modeling approach to discover sequence regions that are
more related to the statistical model of a motif cluster than
to a model of “background DNA.” The motif cluster model
represents randommotifs that distribute uniformly across the
region, and the background model consists of independent
random nucleotides with probabilities that are estimated
from their local abundances in the query sequence. In this
study, Frith et al. [26] identify subsequenceswithmaximal log
likelihood ratios (i.e., subsequences with high log likelihood
ratios do not overlap). However, the algorithm to compute
these subsequences requires time that is proportional to
the square of the sequence length and is not feasible for
sequences longer than a few kilobytes. Frith et al. [26] have
developed three solutions to this problem: Cister, Comet, and
cluster-buster. Each method possesses advantageous features
to address the problem, but they are inefficient by themselves.

Table 1 illustrates the features of these articles in detail.
Figure 5 shows the methods proposed by the papers chrono-
logically according to the year of publication and represents
the slow progress of the methods in the preproof period.
The development of these methods is directed toward the
integration of the clustering approach into these models.

3.2. Interproof Period (2003 to 2010). Thisperiod is significant
in the domain of subsequence time series clustering and aims
to prove themeaningless result claimby Lin et al. [27] in 2003.
From 2003 to 2011, researchers have proposed solutions to
this problem but with inadequate evidence.Themain articles
published during this period are discussed below.

Thefirst article [27]mainly explainswhy the result of time
series clustering ismeaningless.The researchers claim the fol-
lowing: “the clustering of streaming time series is completely
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2003 (Frith et al., 2003) Cluster-buster

2002 (Oates, 2002) PERUSE

1999 (Oates, 1999) L-seeunces
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Figure 5: The chronology of methods in preproof period.

meaningless.” Clusters fetched from time series streams must
follow a particular constraint, and this constraint is unlikely
to be satisfied by any dataset pathologically.Thus, the clusters
extracted by any clustering algorithm are essentially random.
Lin et al. [27] justified their claim with a theorem, illustrative
examples, and a comprehensive set of experiments on the
reimplementation of previous works. Although the primary
contribution of their work, which aimed to determine an
apparent solution to this problem, is invalid and should not
be considered, they introduced a novel method based on the
concept of time seriesmotifs, which can cluster some datasets
obtained from time series streams meaningfully.

According to another study, researchers work on a never-
ending learning framework for time series that tests an
unbounded stream of data for a label. They demonstrate
the usability of their ideas in different categories such
as medicine, entomology, wildlife monitoring, and human
behavior analyses. As future work, they propose to remove
the few assumption/parameters in the model and also apply
the idea to year-plus length streams [45].

The study by Chen [12] in 2005 is the first attempt
to prove the main problem; however, this research did
not successfully address the issue. Several conclusions were
drawn by this work. First, sequential time series clustering
can be significant. Second, accuratelymeasuring the distances
in delay space is the key to obtaining a meaningful result. He
suggests that the measure of Euclidean distance adopted by
most studies is flawed and presents the concept of temporal
and formal similarity in delay spaces in the class of time series
produced by dynamic, time invariant, and deterministic
systems.

Denton [60] proposes an algorithm that incorporates a
continuous random-walk noise model into kernel-density-
based clustering.This algorithm not only surpasses partition-
ing techniques that generate unimportant and unsatisfactory
results under the given quality measure, but also improves
upon other density-based algorithms.The results of this study
suggest that the noise elimination properties of clustering
algorithms based on kernel density can be significant in the
application of clustering to data preprocessing.

Keogh and Lin [14] extend the 2003 claim that the “time
series subsequence clustering is meaningless” in this work.
The clusters extracted from these time series must follow
a certain constraint, and this constraint is unlikely to be
satisfied by any dataset pathologically; therefore, the clusters
extracted by any clustering algorithm are essentially random.

Goldin et al. [64] present cluster form distance, which
is an alternate distance measure based on cluster shapes
for subsequence time series clusters. The cluster shape is
determined by the sorted list of Euclidean distances between
pairwise the centroids of a set of clusters. Two algorithms
are developed based on this distance measure, and these
algorithmsmatch a set of cluster centroids of the subsequence
time series with the parent time series. The first algorithm
creates small “fingerprints” for the sequences, whereas the
second algorithm has high accuracy and correctly matches
an entire dataset containing 10 sequences. Muller-Levet et al.
[58] also explain why cluster shape distance matches the
subsequence time series clusters to the original sequences
more reliably than cluster set distance. Their work was
the first to establish a strong relation between the result
of the 𝑘-means subsequence time series clustering and its
parent time series sequence despite earlier predictions of its
impossibility.

Kumar et al. [5] proposemethodologies to extract hidden
knowledge from time series data through an unsupervised
approach by using the unique WaveSim transform. This
novel transform is a unique wavelet transform version and
considers pattern analysis and recognition. The mining of
time series data has been classified broadly into the mining
of the entire series and of subsequence time series.This study
proposes an approach to mine subsequence time series on
the basis of a hierarchical tree by using a modified WaveSim
transform called adaptive WaveSim transform.

The subsequent research of Chen [28] aims to solve
meaningless problems, including clustering results for dis-
tinct time series that are indistinguishable from one another,
and smoothened cluster centroids. The method proposed in
this study restricts the extension of the clustering space to
cover only the area containing the time series in the space of
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the subsequence vector. Chen reports that the approach can
overcome both problems by producing significant clusters
and cluster representatives that effectively correspond to
(were located among) the data points in their respective clus-
ters. Several solutions have been proposed for the dilemma of
subsequence time series clustering since it was first identified
in [27]; however, this method is the first to directly address
both problems identified above. Hence, he establishes the
term-frequency algorithm to determine useful results for
time series clustering as required.

In 2007, Chen [61] indicates that sequential time series
clustering is meaningful and that the problem highlighted in
previous works stems from the use of the Euclidean distance
metric as the distance measure in the delay-vector space.
He proposes a general class of time series as a solution and
presents a regime based on two types of similarities that can
exist among delay vectors. A measure of distance is naturally
generated as an alternative to Euclidean distance in the delay-
vector space. Chen suggests that the sequential time series
clustering can be significant when this alternative distance
measure is applied. However, the results of the study are
limited given certain barriers.

Fujimaki et al. [66] theoretically studied subsequence
time series clustering from a frequency-analysis viewpoint
and identified the mathematical background according to
the sine wave model generation of subsequence time series
clustering. This study also develops a unique theoretical
analysis methodology for pattern discovery in time series
data. On the basis of theoretical analysis, the cluster-
ing of phase analysis-subsequence time series (PA-STS),
which aligns subsequence phases prior to clustering, is
proposed. This study validates the effectiveness of PA-STS
clustering when applied to time series data obtained from
UCR.

Denton et al. [13] introduce a clustering algorithm that
creates clusters exclusively from subsequences that occur
more frequently in a dataset than expected by random
chance. This algorithm partially incorporates a pattern-
mining perspective into clustering. Subsequences based on
such clusters need not be labeled; the subsequences in the
clustering of an unrelated time series are not expected to
receive labels.

Wang et al. [62] suggest a novel method for discovering
the subset of useful and frequent subsequences. In this
method, any existing algorithm for frequent sequencemining
is used to obtain the complete set of frequent subsequences.
A subset of interesting subsequences can then be identified.
However, mining the complete set of frequent subsequences
is time consuming for large sequence databases. Wang et
al. [62] propose the use of a new CONTOUR algorithm
to mine directly and efficiently a subset of high-quality
subsequences and cluster the input sequences. They mainly
focus on designing effective pruning techniques for search
spaces to accelerate the mining process and discuss the
construction of an accurate clustering algorithm on the basis
of the CONTOUR result. Wang et al. conducted an extensive
performance study to evaluate the efficiency and scalability
of CONTOUR, as well as the accuracy of the clustering
algorithm based on frequent subsequence.

Chao and Wei [72] assess the vector feature of the click-
stream, which is generated by mining the closed repetitive-
gapped subsequence. By considering a particular task of
clickstream clustering, they improve the BIRCH algorithm.
The results of a performance study on several benchmark
datasets reveal that this method effectively and efficiently
clusters clickstreams. As a promising future work, web pages
can be generalized to reduce the dimensionality of the
feature vector and enhance processing speed given the same
number of sessions. Thus, web page classification should be
examined, and clickstreams should be aggregated in multiple
granules.

In another paper, authors discover the problem of distin-
guishing frequently occurring patterns, or motifs in medical
datasets. They suggest a novel approach based on grammar
induction that provides the approximate discovery and also
they propose variable-lengthmotifs finding in streaming data
[69].

Mueen and Keogh [70] developed the first algorithm
to discover online motifs. This algorithm monitors and
maintains motifs in the most recent history of a stream
in real time. This algorithm also incorporates a worst-case
update time that is linear to window size and is extendible
to maintain complex pattern structures. By contrast, current
offline algorithms require either a significant update time or
very costly preprocessing steps. The core ideas presented in
this article extend the algorithm to address arbitrary data
rates and to detect multidimensional motifs. Researchers
have demonstrated the utility of their algorithms in a variety
of case studies in the domains of robotics, acoustic monitor-
ing, and online compression. Table 2 and Figure 6 depict the
overall review of the studies conducted during the interproof
period.

3.3. Postproof Period (2011 to 2013). Since 2011, studies have
proposed approaches to obtain significant results for sub-
sequence time series clustering. In the following sec-
tion, we briefly describe the papers published during this
period.

Rakthanmanon et al. [32] have contributed two funda-
mental early studies during this time. First, they explain
the inherently imperfect problem in time series clustering
from streams. Second, they employ the MDL framework for
time series clustering; this method is efficient, productive,
and parameter free. Rakthanmanon et al. [32] confirm that
their method generates correct outputs with respect to the
various datasets obtained from the analysis of medicine,
zoology, and industrial processes. In this study, they represent
clustering that can strongly ignore some of the data to group
subsequences of different lengths [63].

Nunthanid et al. [73] propose a parameter-free algorithm
for motif discovery called 𝑘-best motif discovery (kBMD).
This algorithm detects 𝑘-best motifs without any parameters.
The algorithm returns a small set of motifs, which is ranked
by a proposed scoring function. The experimental results of
this study demonstrate that kBMD can discover all planted
patterns and that it is better than the discovery of motifs
with variable lengths in terms of both the coverage of
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Table 2: The overview of interproof period dimensions.

Article Problem Method Algorithm Goal Extent

[27] Meaningless time series
clustering

Hierarchical and
partitioning
clustering

𝐾-means, hierarchical
clustering, EM, SOMS

Proving the claim of
meaningless results No

[45] Specifying uninteresting
sequences and their effects

Density-based
clustering

Kernel-density base
algorithm

Detecting meaningful
pattern [7, 12]

[78] Sequential time series clustering
is meaningless

Partitioning
clustering

𝐾-means, distance
measuring

Showing sequential time
series clustering is not

meaningless
[27]

[60] Very high noise levels Density-based
clustering

Continuous
random-walk noise

model

Noise elimination and high
quality measure [45]

[14] Certain constraint in datasets
and clusters, meaningless result

Hierarchical and
partitioning
clustering

Any clustering
algorithm

Showing clustering of time
series subsequences is

meaningless
No

[64]
Reliable determination of the
produced sequences of cluster
centroids

Partitioning
clustering

𝐾-means with new
distance measure

Results: the claim of the
result of 𝐾-means

clustering for time series
subsequences is

independent of the time
series that created it

[14]

[79] Sinusoidal time series clustering Partitioning
clustering 𝑘-means

Explaining sine waves
results of subsequence time

series clustering
[14]

[5] Hidden knowledge in time series
Hierarchical

clustering, discovery
pattern

Adaptive WaveSim
transform

Extracting hidden
knowledge in time series

data
[14]

[28]

Cluster representatives are
smoothed and generally do not
look at all like any part of the
original time series, meaningless
results

Hierarchical and
partitioning
clustering

(Transcription
factors) TF-clustering

algorithm,
TF-minicluster

algorithm

Producing useful time
series clustering [27]

[61] Sequential time series clustering
is meaningless

Partitioning
clustering

𝐾-means clustering
by delay vector space

Showing sequential time
series clustering can indeed

be meaningful
[27]

[13] Unspecific results from dataset,
meaningless Pattern discovery RD algorithm Creating cluster exclusively

from subsequences [14, 60]

[62]

Time consuming to mind the
complete set of frequent
subsequences for large sequence
databases

Pattern discovery CONTOUR
Efficiently discovering a set

of summarization
subsequences

No

[72]
Categorizing visitors based on
their navigation patterns on a
website

Pattern discovery Repetitive closed
gapped subsequence

Constructing feature vector
of click stream [14, 61]

[70] The detection of repeated
subsequences, time series motifs Pattern discovery Online motif

discovery

Useful extensions of the
algorithm to deal with

arbitrary data rates and to
discover multidimensional

motifs.

[75]

[69] Identifying frequently accurate
patterns or motifs Pattern discovery Sequitur

Discovery of approximate,
variable-length motifs in

streaming data.
No
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SEQUITUR

Online motif discovery

2010

2010

2010

2009

2009

2007

2007

2006

2006

2006

2005

2005

2005

2004

2003

Repetitive closed gapped subsequence

CONTOUR

RD algorithm

K-means clustering by delay vector space

K-means

K-means with new distance measure

Any clustering algorithm

Continuous random-walk noise model

K-means, distance measuring

Kernel-density base algorithm

(Transcription factors) TF-clustering
algorithm, TF-minicluster algorithm

Adaptive WaveSim transform

(Mueen and Keogh,
2010)

(Chao and Wei,
2010)

(Lin et al., 2003)

2009)

2009)

(Chen, 2007a)

(Chen, 2007b)

(Kumar et al.,
2006)

(Id ́e, 2006)

(Goldin et al.,
2006)

2005)

(Chen, 2005b)

(A. Denton, 2004)

K-means, hierarchical clustering, EM, SOMS

(Wang et al.,

(Denton et al.,

(Keogh and Lin,

(Denton, 2005)

(Lin and Li 2010)
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Figure 6: The chronology of methods in interproof period.

planted patterns and high accuracy-on-detection. However,
this preliminary work displays a drawback; that is, the time
complexity remains high because allmotifsmust be analyzed.

Li et al. [74] develop a methodology to discover approx-
imate time series motifs with various lengths by using a
grammar-based compression algorithm. The algorithm in
this method can detect hierarchical structure, regularity, and
grammar in the data. The visualization tool also enables
the user to navigate different coexisting motifs with various
lengths in the dataset. The results of this paper show that
the grammar-based approach can determine some important
motifs and that a new direction that integrates grammar-
based algorithms into the discovery of time series patterns is
worth exploring. Li et al. [74] also propose a search heuristic
to improve the quality of induced grammar in this study.
In the future, they intend to analyze the time complexity
of the random search algorithm, which can be controlled
by limiting the number of iterations. However, for long
sequences numerous iterations may be necessary to affect
the results. In the worst case, the algorithm resorts to the
same grammar as SEQUITUR. Goldin et al. [64] also aim to
examine and approximate the number of required iterations

and the fraction of all paths that improve on base grammar.
This study can enable different biases in a random search.
For instance, the bias may be adjusted dynamically according
to current grammar quality. Goldin et al. [64] also intend to
explore other search heuristics, such as the rule ranking and
filtering procedures for the visualization tool. False positives
may be eliminated by estimating the distances between motif
occurrences.

Another research has suggested the selective clustering
of subsequence time series. The authors indicate that sub-
sequence time series clustering can be meaningful if noise
or unimportant subsequences can be ignored and if member
subsequences can possess different lengths. The efficiency of
the proposed algorithm is validated by testing in different
data domains, such as ECG data [33]. However, this approach
requires predefined constraint values that are subjective and
sensitive (e.g., subsequence width).

In 2013, Madicar et al. [31] explained the process of
clustering multiple time series. The clustering of subse-
quences within a single time series is also discussed. This
research proposes a novel clustering technique without
parameters. To address the lack of parameters, a discovery
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2014 Yang and Wang (2014)
WSKM)

2013 Rakthanmanon et al. (2013) GOAL

2013 Rakthanmanon et al. (2013) (EBSM), GOAL

2013

2013

(2013) Motif discovery, noise test

Madicar et al. (2013) Motif discovery

2012 Rodpongpun et al. (2012)

2012 Grammar induction algorithm

2012 Rakthanmanon et al. (2011)

2012 K-best motif discovery (kBMD)

2011 Rakthanmanon et al. (2011) discovery
K-means, motif discovery, MDL-based

Phase shift weighted spherical K-mean (PS-

MDL-based clustering

Kang et al.

Li et al. (2012)

Nunthanid et al. (2012)

Embedded-based search method

Selective sequence time series (SSTS)
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Figure 7: The chronology of methods in postproof period.

algorithm and some statistical principles are used to obtain
the parameters. The dataset outputs confirm the efficiency
of the process in selecting the appropriate subsequence
width [31]. However, this process is conducted offline and is
complex.

Kang et al. [71] design a new method to extract shapes
from time series. This method consists of two steps: testing
noise and collecting information regarding sets of features.
After subsequences are extracted from time series data and
are grouped into similar clusters, the noise test is conducted
to check cluster accuracy. In the second step, sets of features
are preserved to enhance the efficiency of the result in
comparison with raw data clustering. These steps improve
the result of shape patterns rather than the motif discovery
algorithm proposed in [75]. An advantage of this method
is that it ignores the noise from time series data and pro-
duces nonnoise subsequences, thus generating meaningful
results for search machines. This method generates better
results than the other methods proposed in this period with
respect to noisy time series. The proposed shape extraction
method can be applied to both artificial and real world
data.

Yang and Wang [76] reassess the problem and sug-
gest the phase shift weighted spherical 𝑘-means algorithm
(PS-WSKM in short) for clustering unsynchronized time
series. In PS-WSKM, the phase shift procedure is explained
into the clustering process so that the phase problem is
solved effectively. Meanwhile, the subsequences weights are
embedded to subsequences to make the algorithm more
robust.

Rakthanmanon et al. [77] suggest that, by combining
four novel ideas together, they can search and mine truly
massive time series for the first time. They demonstrate the
following extremely unintuitive fact; in massive datasets they
can exactly search under DTW much more quickly than the
current Euclidean distance search algorithms.

In the most recent article on subsequence time series
clustering, Rakthanmanon et al. [57] combine four novel
ideas under DTW to locate and mine large time series data.
The current problem in subsequence time series clustering
is searching large datasets. This issue explains why most
academic work on the mining of time series data considers
only a few million time series objects when billions of
these objects are available for exploration in industry and
science. The DTW method is faster than the Euclidean
distance algorithms; hence, results can be obtained quickly.
The dataset introduced in this paper is larger than the
previous datasets. Rakthanmanon et al. [57] discuss how
their ideas address problems in mining high-level time series
data, such as motif discovery and clustering at scales that
are otherwise untenable. Moreover, they efficiently support
the distance measure for uniform scaling, the utility of
which is underappreciated. In addition to mining large
datasets reaching one trillion data points, Rakthanmanon et
al. indicate that the real-time monitoring of data streams
can handle faster arrival rates and/or use cheaper and lower-
powered devices than other new methods. Table 3 provides
the dimensions of papers published in the postproof period,
and Figure 7 chronologically clarifies the methods generated
in the postproof period.
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Table 3: The summary of postproof period dimensions.

Article Problem Method Algorithm Goal Extent

[63] The problem of time series
clustering from a single stream Motif discovery MDL-based

clustering
Creating meaningful
result No

[32] The problem of time series
clustering from a single stream All methods

𝐾-means, motif
discovery,
MDL-based discovery

Producing correct
results [24]

[73] Discovery motif with arbitrary
length Pattern discovery 𝐾-best motif

discovery (𝑘BMD)
Developing the main
idea of best motif [80]

[74] Length of motifs in finding
time series motifs Pattern discovery Grammar induction

algorithm

Developing a motif
visualization system
based on grammar
induction

[81–83]

[33] Meaningless outcomes as
outputs based on inputs Pattern discovery Selective sequence

time series (SSTS)
Achieving meaningful
results [24]

[31] Predefined constraints values Pattern discovery Motif discovery

Eliminate the
problem of predefined
constraint values such
as width of
subsequences, by
utilizing motif
discovery algorithm

[32, 33]

[71]
Extracting and classifying
shapes from very noisy real
world time series

Pattern discovery Motif discovery, noise
test

A new method for
shape extraction from
time series

[75]

[57] The difficulty of scaling a
search to large datasets Pattern discovery

God’s algorithm
(GOAL),
embedded-based
search method
(EBSM)

Search and mine
massive time series
for the first time

No

[76] Invalid subsequence time
series clustering

Partitioning
clustering

Phase shift weighted
spherical 𝑘-mean
(PS-WS𝐾M)

Clustering
unsynchronized time
series

[5]

[77] Difficulty of scaling search to
large datasets Pattern discovery God’s algorithm

(GOAL)

Search and mine truly
massive time series
for the first time

No

4. Discussion

In this section, the strengths and weaknesses of the clustering
of subsequence time series are discussed. The future of
subsequence time series clustering is then explained. The
time series data are segmented into subsequence data, and
the required details of subsequences are inputted into the
similarity matrix for clustering. Subsequences are then clus-
tered according to the similaritymatrix. Finally, the clustering
results are presented.

Researchers clustered time series data approximately 10
years ago but obtained insignificant results [14]. For instance,
similar time series clusters are generated for each data in
the end. Over time, other researchers developed solutions
to this problem and proposed methods accordingly. Some
techniques generated meaningful results and improved the
accuracy and performance of clustering as explained in
previous sections. In the following paragraphs, we evaluate
the strengths and weaknesses of the studies over the three
periods discussed in preceding sections.

In Table 4, strength is assessed in four different dimen-
sions, namely, pruning the research space, using a long
sequence, determining corresponding clusters, and recogniz-
ing resemblances. Weaknesses are evaluated in terms of five
dimensions, that is, memory usage, unique grammar, unde-
tected rules, limited time series, and lack of predictability.
In the preproof period, researchers focused on determining
corresponding clusters; some examined large subsequence
clusters and they considered these clusters to be strengths in
their research. However, they faced the limitations of imple-
menting in a large-scale environment and memory usage.
During this period, the ability of researchers to determine and
predict appropriate groups for each cluster was weak.

The strengths and weaknesses of studies conducted in
the interproof period are presented in Table 5. The research
strengths at this time are assessed with respect to five dimen-
sions, which are meaningful results, successful clustering,
noise elimination, effectiveness in large window sizes, and
improved BIRCH algorithm. Weaknesses are evaluated in
terms of five dimensions, namely, negative view, deterministic
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Table 4: Strengths and weaknesses of preproof period researches.

Article Strengths Weaknesses

Pruning the
research
space

Using long
sequence

Determining
correspond-

ing
clusters

Recognizing
resemblance

Memory
usage

Unique
grammar

Undetected
rules Limited TS Lack of

predictability

[41] ✓ ✓ ✓

[24] ✓ ✓

[25] ✓ ✓

[4] ✓ ✓

[26] ✓

Table 5: Strengths and weaknesses of interproof period researches.

Article Strengths Weaknesses
Trying to

get
meaningful
results

Successful
clustering

Noise
elimination

Effective
in large
window
size

Improved
BIRCH
algorithm

Negative
view

Deterministic
dynamical
system

Large ratio Unsuccessful
clustering

Limited
investiga-
tion of
behavior

[27] ✓ ✓

[12] ✓ ✓ ✓

[60] ✓ ✓

[14] ✓ ✓

[64] ✓ ✓ ✓ ✓

[79] ✓ ✓

[5] ✓ ✓ ✓

[28] ✓ ✓

[61] ✓ ✓ ✓

[13] ✓ ✓

[62] ✓ ✓ ✓ ✓ ✓

[72] ✓ ✓ ✓

[70] ✓ ✓ ✓

dynamical system, large ratio, unsuccessful clustering, and
limited investigation of behavior. The majority of studies
focused on obtaining meaningful results in the clustering
of subsequence time series because the findings of the
preceding periodweremeaningless. Successful clusteringwas
emphasized; however, the results of the studies did not cover
a large ratio. Thus, data failed to cluster successfully. Lin
et al. [27] claimed during this period that these results are
meaningless. This theory viewed subsequence time series
clustering negatively and discussed the cause of meaningless
results in preceding papers.

Strengths’ dimensions in the third period are efficient
and successfulness inmeaningful results, parameter-lite clus-
tering, parameter-free clustering, and find best motif; while
the weaknesses cover the complexity, not clear results, and
worse result in large dimensions as presented in Table 6.
Researchers have focused on finding a solution for improving
the meaningless result, and they came up with a new
dimension which was parameter-free clustering. Until the
end of 2012, even though researchers tested experiments by
parameter-free clustering, the result was not satisfactory. In

2013,Madicar et al. [31] find the algorithms for parameter-free
clustering as a new solution for overcoming the meaningless
result. Continually, two of the newest articles in the domain of
subsequence time series clustering [57, 71] have attempted to
solve the problem of unclear results and worse results in large
databases. They found the noise ignoring and combining
some method together under dynamic time warping can aid
to handle these problems. The early studies we assessed also
encountered complexity and displayed unclear results.

5. Conclusion

Subsequence time series clustering explores the subsequence
clusters of time series data. Many studies have concentrated
on related algorithms as a subroutine in rule discovery,
indexing, classification, and anomaly detection. We specif-
ically assess this clustering from the perspective of basic
methods, similarity/distance measures, challenges, evalua-
tion metrics, applications, and datasets. To summarize recent
developments in this area of research, we review 25 regular
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Table 6: Strengths and weaknesses of postproof period researches.

Article Strengths Weaknesses
Efficiency and

successfulness in
meaningful results

Parameter-
lite

clustering

Parameter-
free

clustering

Find best
motif Complexity Not clear

results

Worse result
in large

dimensions
[32] ✓ ✓ ✓ ✓ ✓

[73] ✓ ✓

[74] ✓ ✓ ✓

[33] ✓

[31] ✓ ✓ ✓

[71] ✓ ✓ ✓ ✓

[57] ✓ ✓

articles on subsequence time series clustering. The evolution
of this clustering is classified into three groups, namely,
the pre-, inter-, and postproof periods. We have elucidated
and compared the strengths and weaknesses of the previous
literature and presented theoretical and practical issues for
future study.
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