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Summary: Centrosomes are major microtubule organiz-
ing centers (MTOCs) that play an important role in chro-
mosome segregation during cell division. Centrosomes
provide a stable anchor for microtubules, constituting the
centers of the spindle poles in mitotic cells, and deter-
mining the orientation of cell division. However, visualiza-
tion of centrosomes is challenging because of their small
size. Especially in mouse tissues, it has been extremely
challenging to observe centrosomes belonging to a spe-
cific cell type of interest among multiple comingled cell
types. To overcome this obstacle, we generated a tissue-
specific centrosome indicator. In this mouse line, a con-
struct containing a floxed neomyocin resistance gene
with a triplicate polyA sequence followed by an EGFP-
Centrin1 fusion cassette was knocked into the Rosa
locus. Upon Cre-mediated excision, EGFP-Centrin1 was
expressed under the control of the Rosa locus. Experi-
ments utilizing mouse embryo fibroblasts (MEFs) demon-
strated the feasibility of real-time imaging, and showed
that EGFP-Centrin1 expression mirrored the endogenous
centrosome cycle, undergoing precisely one round of
duplication through the cell cycle. Moreover, experiments
using embryo and adult mouse tissues demonstrated
that EGFP-Centrin1 specifically mirrors the localization of
endogenous centrosomes. genesis 54:286-296, 2016.
© 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.
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INTRODUCTION

Centrosomes play a major role as microtubule organizing
centers (MTOCs), affect cytoskeletal architecture, the
positioning of cell organelles, and provide the basal struc-

ture for cilia in quiescent cells (Nigg and Stearns, 2011).
In cycling cells, the centrosome undergoes precisely one
round of duplication from S through G2. In mitosis, each
centrosome, constituted by a pair of centrioles, is located
at the center of each spindle pole, determines the orien-
tation of cell division, and is allocated into each daughter
cell, thus the number of centrosomes is strictly regulated
(Nigg and Stearns, 2011). Extra centrosomes have been
postulated to cause cancer (Nigg and Stearns, 2011).
Centrosomes were discovered more than a century
ago, as structures in the cytoplasm where spindle poles
arise (Szollosi et al., 1972). During the last two decades,
the centrosome cycle has been clarified (Piel et al., 2000),
and mechanisms by which the number of centrosomes
is regulated are an active area of investigation. Major
obstacles to investigating centrosome dynamics are their
small size. Centrosomes are constituted by a pair of two
barrel-shaped centrioles 0.5pum long, 0.2pm in diameter,
and surrounded by a cloud of amorphorous pericentriolar
matrix (PCM) (Nigg and Stearns, 2011; Bornens, 2012).
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Centrin is a small protein concentrated at the distal
lumen of each centriole, appearing as centrioles form
(Paoletti et al., 1996). Cells stably expressing Centrin-
EGFP in conjunction with time-lapse imaging have clari-
fied centrosome dynamics (Piel et al., 2000; White
et al., 2000). Two transgenic mouse lines have been
generated to facilitate centrosome visualization. One
contains CAG promoter driven GFP-Centrin2, with
expression dependent on CAG promoter activity and
positional effects of transgene integration (Higginbo-
tham et al., 2004). In this line, lack of cell type-
specificity makes it difficult to define centrosomes
within cells of interest among comingled cell types
within tissues. Another line contains keratinel4
promoter-driven GFP-Centrinl, expressed only in skin,
salivary gland, or mammary gland epithelium (Lechler
and Fuchs 2005), and therefore not useful for other cell
types.

To facilitate visualization of centrosome dynamics in
vivo in a cell type specific manner, we generated a
ROSA-Neo-EGFP-Cetnl mouse line, knocking a floxed
neomyocin resistance gene with a triplicate polyA cas-
sette followed by a cDNA encoding EGFP-Centrinl into
the ROSA locus. In this line EGFP-Centrinl is expressed
only in cells that have expressed Cre or their descend-
ents. Experiments using embryonic fibroblasts demon-
strated that EGFP-Centrinl expression mirrored
previously reported centrosome dynamics (Piel et al.,
2000). In mouse embryos, EGFP-Centrinl began to be
expressed at blastocyst stages. As expected, numerous
EGFP-Centrinl signals were observed in multiciliated
epithelial cells, however, the number of EGFP-Centrin-1
signals marking dividing cells was strictly regulated
(Roszko et al., 2006). The ROSA-Neo-EGFP-Cetnl
mouse line thus provides a valuable tool for a broad
range of investigators to explore centrosome biology.

RESULTS AND DISCUSSION

Generation of a Tissue-Specific Centrosome
Indicator Targeted into the Rosa Locus

As EGFP-Centrinl allows for centrosome visualization
in vitro and in vivo, we cloned a cDNA encoding EGFP-
Centrinl after a floxed neomycin resistance gene fol-
lowed by triplicated poly A derived from simian virus
40 (SV40) into a vector targeting the Rosa locus (Fig.
1A). Four positive ESC clones were obtained from 250
Neomycin resistant clones (Fig. 1B). Two of four posi-
tive ESC clones were injected into blastocysts. Targeting
vectors were properly targeted to the Rosa locus, con-
firming successful germline transmission (Fig. 1C,D). By
crossing ROSA-Neo-EGFP-Cetnl mice to cardiac-specific
Nkx2.5-Cre mice (Moses et al., 2001), EGFP-Centrinl
was expressed specifically in heart, as expected (Fig.
1E).

EGFP-Centrinl Expression Mirrors Endogenous
Duplication Cycle of Centrioles During Cell
Cycle In Vivo

To examine how EGFP-Centrinl was regulated during
cell cycle, a mouse line able to express EGFP-Centrinl
in all cell types under control of the ROSA locus was
generated utilizing Protamine Cre to ablate the Neo-
polyA cassette in ROSA-Neo-EGFP-Cetnl mice (O’Gor-
man et al., 1997). ROSA-EGFP-Cetnl mice were main-
tained for more than 22 generations, bred and grew
well, with no overt phenotypes. Mouse embryonic
fibroblasts (MEFs) were harvested from ROSA-EGFP-
Cetnl embryos. MEFs were synchronized in GO by
serum starvation, then induced to re-enter cell cycle by
addition of 10% fetal bovine serum (FBS) (Fig. 2A). Cul-
tures were fixed with 4% paraformaldehyde (PFA) every
six hours, then immunostained with antibodies to «-
Tubulin and the G2/M phase specific marker, Serine 10
phospho-Histone H3 (pH3). EGFP-Centrinl was well
visualized without antibody staining.

MEFs exhibited two EGFP-Centrinl signals in close
proximity, representing mother and daughter centrioles
(Fig. 2C,f). Once procentioles are formed from each
centriole in S phase, each procentriole is elongated
throughout S and G2 phase, resulting in structures con-
taining four centrioles (Nigg and Stearns, 2011). Con-
sistent with this centriole duplication cycle, four EGFP-
Centrinl signals were seen in proximity at late S/G2
phase (Fig. 2C,g). At prophase, two pairs of EGFP-
Centrinl signals were segregated to opposite poles to
configure the spindle poles (Fig. 2C,h,i). After cytokine-
sis, each pair of centrioles, as represented by EGFP-
Centrinl was partitioned to each of the daughter cells.

EGFP-Centrinl Colocalizes with y-Tubulin and
Golgi Apparatus In Vivo

As cells become spherical in mitosis, it is difficult to
capture two segregated EGFP-Centrinl centrosomal sig-
nals with a single z-plane (Fig. 3A). For proper visualiza-
tion of both EGFP-Centrinl centrosomal signals,
captured zstack images need to be 3D reconstructed
(Fig. 3C, al-a4), sometimes additionally needing to be
tilted when the EGFP-Centrinl signal is obscured by
DAPI staining (Fig. 3C,b). Time-lapse imaging of ROSA-
EGFP-Cetnl MEFs, demonstrated that EGFP-Centrinl
signals predict the axis of cell division (Fig. 3B). Occa-
sionally, ROSA-EGFP-Cetnl MEFs evidenced aberrant
cell division, such as chromosomes segregating into
three distinct directions led by three centrosomes (Fig.
3D, bl-b4), or aberrant bi-nucleation led by multiple
centrosomes (Fig. 3D, c1-c4).

The PCM surrounding the centriole contains -
Tubulin ring complexes (yTuRCs), which nucleate
microtubules, acting as microtubule organizing centers
(MTOCs) (Moritz et al., 1995; Zheng et al., 1995). To
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FIG. 1.

Generation of tissue-specific centrosome indicator. A: Design of targeting vector for ROSA locus. Human Centrin1 cDNA fused

with EGFP coding sequence at N-terminus was placed after a floxed Neomycin resistant gene and triplicated SV40 poly A cassette. B:
Southern blot for ES clones. C: PCR with mouse tail DNA after germ-line transmission. D: Southern blot with mouse tail DNA, indicating
successful germ-line transmission. E: ED9.5 embryo of ROSA-Neo-EGFP-Cetn1 mouse line after crossing with Nkx2.5-Cre, indicating line-
age specific expression of EGFP-Centrin1. (a1, b1, c1): bright field, (a2, b2, c2): EGFP-Centrin1. Scale bar: 1 mm.

examine colocalization of EGFP-Centrinl with -
Tubulin, ROSA-EGFP-Cetnl MEFs were immunostained
with antibodies to y-Tubulin and o-Tubulin. EGFP-Cen-
trinl co-localized with y-Tubulin throughout M phase
(Fig. 4A).

Centrosomes are adjacent to Golgi in interphase (Sut-
terlin and Colanzi, 2010), while Golgi membranes are

fragmented and dispersed throughout the cytoplasm
during mitosis (Sutterlin and Colanzi, 2010). To exam-
ine the correlation between EGFP-Centrinl and the
Golgi through the cell cycle, ROSA-EGFP-Cetn1 MEFs
were immunostained with antibodies to Giantin and «-
Tubulin. EGFP-Centrinl colocalized with Giantin in GO,
as expected (Fig. 4B, al-a3). In metaphase and
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FIG. 2. EGFP-Centrin1 mirrors endogenous centrosome duplication cycle. A: Diagram of time-course experiment shown in B and C. B:
Fluorescence microscope images of ROSA-EGFP-Cetn1 MEFs in quiescence after serum starvation (t = 0), and in proliferation 24 h after
serum induction (t = 24). Cells were immunostained with antibody to a-Tubulin. Scale bar: 50 um. C: Time-course experiment following syn-
chronization of ROSA-EGFP-Cetn1 MEFs. Cells were immunostained with antibodies to «-Tubulin and Serine 10 phospho-Histone H3
(PH3). (, g, h, i, j) Magnified pictures of square area in of (a, b, c, d, €). Note centrosomes are duplicated by the end of S phase, and each
centrosome is allocated into each dividing cell. Scale bars: 10 um (a, b, ¢, d, ), 5um (f, g, h, i, j).

anaphase, the Golgi apparatus was dispersed through- EGFP-Centrinl Expression Mirrors Endogenous
out the cytosol, however, Golgin was more concen- Centrosomes in Mouse Embryos

trated around EGFP-Centrinl (Fig. 4B, b1-b3, c1-c3). In Centrosomes play a key role in mitotic spindle forma-
telophase, the Golgi apparatus had reformed in each  tion and cell division in early mouse embryos, however,
daughter cell, and again co-localized with EGFP- there are no centrioles until the 16-cell stage (Calarco-

Centrinl (Fig. 4B, d1-d3). Gillam et al., 1983). Consistent with this, EGFP-
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FIG. 3. Z-stack/3D reconstitution and live imaging with ROSA-EGFP-Cetn1 MEFs. A: Z-stack images of a ROSA-EGFP-Cetn1 MEF
undergoing mitosis. Z-stack images of were captured at the interval of 1 pm. Note EGFP-Centrin1 at each spindle pole can be seen at dis-
tinct plane. Scale bar: 10 um. B: Time-lapse imaging with ROSA-EGFP-Cetn1 MEFs. Blue sphere represents nucleus right before cell divi-
sion. C: Fluorescence microscope images of a mitotic ROSA-EGFP-Cetn1 MEF. Cells were immunostained with antibodies to a-Tubulin
and Serine 10 phospho-Histone H3 (pH3). (a1-a4): A 3D reconstructed image from straight view. Note one of EGFP-Centrin1 signals at spin-
dle poles was obscured (a2 and a4), but both EGFP-Centrin1 signals can be clearly seen with tilted view (b). Scale bars: 5 um. D: Normal
cell division and aberrant cell division. (a) The number of centrosomes is strictly regulated in normal cell division. (b, c) Aberrant cell division
is accompanied by extra centrosomes. Scale bars: 5 um.
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Centrinl signal was not observed in 2- to 4-cell stage
embryos (Fig. 5A1 and A2), while EGFP-Centrinl signals
were observed in early blastocysts at ED3.5 (Fig. 5B1-
B3).

Distal appendages of mother centrioles function as
basal bodies for primary cilia (Nigg and Stearns, 2011).
To examine cilia, mouse tissue sections were immuno-
stained with antibody to acetylated-Tubulin, and stained
with Phalloidin and DAPI. With acetylated-Tubulin, cilia
were at the node of mouse embryos at ED7.75 or ED8.5
(Fig. 5J1 and K1). As expected, EGFP-Centrinl was
found at the base of each cilium (Fig. 5J2 and K2).

To examine EGFP-Centrinl in dividing cells, ED10.5
ROSA-EGFP-Cetnl heart sections were immunostained
with antibodies to Troponin T and phospho-Histone H3
(pH3). EGFP-Centrinl was seen at spindle poles of
dividing cardiomyocytes in the compact layer (Fig. 5N1
and O). As EGFP-Centrin1 signals were not on a single Z
plane, 3D reconstructed images were tilted to observe
EGFP-Centrinl at both spindle poles simultaneously
(Fig. 5N2), demonstrating that EGFP-Centrinl indicated
the orientation of cell division. In trabeculae, EGFP-
Centrinl localized to the inner side of trabeculae, oppo-
site to endocardium, demonstrating polarization of tra-
becular myocytes (Fig. 5Q1-Q3).

In neural plate at ED10.5, multiple EGFP-Centrin1 sig-
nals were observed at the side of the neural groove, sug-
gesting the presence of multiple cilia within these
neuroepithelial cells (Fig. 551-S3). However, even in the
presence of multiple EGFP-Centrinl signals within a
cell, only a pair of centrosomes expressing EGFP-
Centrinl in each cell were observed associated with
dividing chromosomes, playing a role as MTOCs of the
spindle poles. (Fig 551-S3, see a pair of white arrows
and pink arrows)

To examine cilia in foregut endoderm, sections of
ED10.5 Rosa-EGFP-Cetnl embryos were immuno-
stained with antibody to acetylated-Tubulin. As shown
in Fig. 5U and 5V, EGFP-Centrinl was at the base of cilia
labeled by acetylated-Tubulin.

EGFP-Centrinl Expression Is Evident in Each
Organ of Adult Mouse

Tissue sections of intestine and skin of two month
old ROSA-EGFP-Cetn1;ROSA-mTmG mice without Cre
were obtained. ROSA-mTmG mice (Muzumdar et al.,
2007) were utilized to delineate outlines of each cell. As
expected, signals from Rosa-mTomato were observed
on membranes of all cells. However, fluorescent inten-
sity was markedly variable depending on cell type, mak-
ing it sometimes challenging to delineate outlines of
each cell unequivocally. Therefore, to observe the out-
lines of each cell, tissue sections were additionally
immunostained with antibody to E-cadherin. As shown

in Figure 6A-C, fluorescent EGFP-Centrinl was mainly
localized at the luminal side.

To examine cilia in adult mouse, tissue sections of
kidney, testis, and sperm were immunostained with
antibody to acetylated-Tubulin. In kidney, cilia were in
the distal tubule, not in the glomerulus, and EGFP-
Centrinl was at the base of cilia (Fig. 6D,E). In testis,
flagella labeled by acetylated-Tubulin were both in sper-
matids and spermatozoa (Fig. O6GH), and EGFP-
Centrinl was at the base of flagella. In isolated mature
sperm, EGFP-Centrinl was at the base of flagella (Fig.
611, 12).

From these results, EGFP-Centrinl was specifically
expressed in each centriole, gave high resolution, and
closely mirrored behavior of endogenous centrosomes.
Additionally, lineage specific visualization of centro-
somes can facilitate understanding centrosome biology
in the complex context of mouse tissues.

METHODS

Mice

All animals were maintained and experiments per-
formed in accordance with institutional guidelines at
University of California, San Diego. Protamine-Cre
(O’Gorman et al., 1997), Nkx2.5-Cre Troponin T-Cre
(Jiao et al., 2003), and R26-mTmG (Muzumdar et al.,
2007) were purchased from Jackson Laboratories.
ROSA-Neo-EGFP-Cetn1 line have been bred into a Black
Swiss outbred background for more than 6 generations,
did not show any overt difference from wild-type
mouse. ROSA-EGFP-Cetnl1 line was generated by cross-
ing ROSA-Neo-EGFP-Cetnl into Protamine-Cre. Geno-
typing for transgene was performed by PCR, using
following primers, forward primer @1): 5-
AAAGTCGCTCTGAGTTGTTAT-3’, reverse primer (P2)
5’- GCGAAGAGTTTGTCCTCAACC-3’, P3 reverse primer
(P3): 5- GGAGCGGGAGAAATGGATATG -3’. P1 and P2
give rise to 313bp amplicon for knock-in allele, while
P1 and P3 give rise to 626 bp amplicon for wild-type
allele. The conditional Cre-dependent and the recom-
bined Rosa-EGFP-Centrinl lines will be available to the
research community upon acceptance of the
manuscript.

GENERATION OF ROSA-NEO-EGFP-CETN1 MICE

cDNA coding human Centrinl fused with EGFP at N-
terminus in-frame was kindly provided by Dr. Fuchs E
(The Rockfeller Univeristy). EGFP-Centrinl cDNA was
amplified with PCR, cloned into pBigT containing a
loxP-flanked cassette with a PGK-neo resistant gene
with a triplicated polyA, then cloned into pROSA26PA
(Srinivas et al., 2001). pBigT and pROSA26PA were
kindly provided by Dr. Costantini F (Columbia
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FIG. 5. EGFP-Centrin1 in developing mouse embryo. A, B: Bright field and fluorescence microscope images of ED2.5 and ED3.5 ROSA-
EGFP-Cetn1 mouse embryos. Note there is no significant EGFP-Centrin1 signal on ED2.5. Scale bars: 20 um. C, D, E, F, G, H, I, J, and K.
Fluorescence microscope images of ROSA-EGFP-Cetn1 mouse embryo sections of ED7.5, ED7.75, and ED8.5. Embryo sections were
immunostained with antibody to acetylated-Tubulin, and stained with Phalloidin and DAPI. (1, J, K): Magnified images of square regions of
(F, G, H). Note cilia formation at node (J1 and K1) and EGFP-Centrin1 at the base of cilia (J2 and K2). Scale bars: 200um (C, D, E), 20um (F,
G, H), 5um (I, J, K). L, M, N, O. ED10.5 ROSA-EGFP-Cetn1 embryo heart sections were immunostained with antibodies to Troponin T and
pH3. (M): A magnified picture of the square area of (L). (N and O): Magnified pictures of square area of (M). (N1 and O): Straight view. (N1):
Note one of EGFP-Centrin1 signals is obscured by DAPI staining. (N2): Tilted view of (N1). Note both EGFP-Centrin1 signals can be seen.
Scale bars: 200um (L), 10um (M, N, O). P. ED10.5 ROSA-EGFP-Cetn1 embryo heart sections were immunostained with antibody to Tropo-
nin T. Scale bars: 200um (P), 20um (Q). R and S. ED10.5 ROSA-EGFP-Cetn1 embryo tissue sections were immunostained with antibody to
pH3. (S1-3): Magnified pictures of square area of (R). White and pink arrows indicate a pair of centrosomes at spindle poles in each dividing
cell. Scale bars: 200um (R), 10um (S1-3). T, U, V. ED10.5 ROSA-EGFP-Cetn1 embryo tissue sections were immunostained with an antibody
to acetylated-Tubulin. Scale bars: 10pm. (U and V): Magnified pictures of square regions of (T). Scale bars: 200 um (T), 10 um (U, V).
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University). After linearization with Sacll, targeting vec-
tor was applied to pronuclear injection.

Southern Blotting

Genomic DNA was purified from tail tip biopsies, fol-
lowed by digestion with EcoRV. Digested genomic DNA
was separated by agarose gel electrophoresis. The
probe was amplified by PCR using following primers,
forward primer: 5- AAGGTAATGTCITTGGTGTGG
GAA-3’, reverse primer: 5- CTTTTCGTCTTCTCAGCTA
CCTTTAC-3’. The probe gives rise to a 4.1kb band for
knock-in allele and a 11.5kb band for wild-type allele.

Cell Culture and Cell Synchronization

Mouse embryonic fibroblasts (MEFs) were isolated by
trypsinization of skin tissues of ED14.5 mouse embryos.
MEFs were maintained in DMEM (Thermo Fisher Scien-
tific), 10% FBS at 37°C in 5% CO,. MEFs were synchron-
ized in GO phase by culturing in DMEM, 0.1% FBS at
37°C in 5% CO, for 72 hours.

IMMUNOFLUORESCENCE

Cells were fixed in 4% paraformaldehyde (PFA) for 10
min at room temperature, or in methanol (MtOH) for
20 min at —20°C. Embryos were fixed in 4% PFA, and
embedded in Tissue-Tek OCT after sucrose gradient
treatment. Primary antibodies used for immunohisto-
chemistry were anti-o—Tubulin mouse monoclonal
(DM1A, Abcam, 1 : 200), anti-y-Tubulin rabbit polyclo-
nal (T5192, Sigma-Aldrich, 1 : 100), anti-Acetylated «-
Tubulin mouse monoclonal (6-11B-1, Abcam, 1 : 100),
anti-Giantin rabbit polyclonal (ab24586, Abcam), anti-
Integrin-B1 rat monoclonal (MAB1997, Millipore, 1 :
200), anti-E-cadherin rat monoclonal (DECMA-1, Sigma,
1 : 200), Serine 10 phospho-Histone H3 rabbit polyclo-
nal (06-570, Millipore, 1:200), anti-TroponinT mouse
monoclonal (13-11, Thermo Fisher Scientific, 1 : 200),
or anti-Numb rabbit monoclonal (C29G11, Cell Signal-
ing, 1 : 50). Secondary antibodies used were Alexa 555,
or 647 anti-rabbit, mouse, or rat IgG (Life Technolo-
gies), followed by nuclear staining with DAPI. Stained
sections were mounted with Dako fluorescence mount-
ing medium, and visualized using an Olympus confocal
microscope (FV1000). Z-stack images were recon-
structed into 3D with Volocity software.
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