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Wnt signaling and tumors (Review)
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Abstract. Wnt signaling is a highly conserved evolutionary
pathway that plays a key role in regulation of embryonic
development, as well as tissue homeostasis and regeneration.
Abnormalities in Wnt signaling are associated with tumori-
genesis and development, leading to poor prognosis in patients
with cancer. However, the pharmacological effects and mecha-
nisms underlying Wnt signaling and its inhibition in cancer
treatment remain unclear. In addition, potential side effects of
inhibiting this process are not well understood. Therefore, the
present review outlines the role of Wnt signaling in tumorigen-
esis, development, metastasis, cancer stem cells, radiotherapy
resistance and tumor immunity. The present review further
identifies inhibitors that target Wnt signaling to provide a
potential novel direction for cancer treatment. This may facili-
tate early application of safe and effective drugs targeting Wnt
signaling in clinical settings. An in-depth understanding of
the mechanisms underlying inhibition of Wnt signaling may
improve the prognosis of patients with cancer.
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1. Introduction

A wingless gene was discovered during Drosophila embryonic
development >40 years ago (1). In 1982, Nusse and Varmus (1)
cloned int gene (Drosophila homolog of the mouse mammary
oncogene) that is homologous to wingless during carcinogen-
esis induced by mouse papilloma virus. This was termed Wnt
gene. Wnt proteins bind to receptors on the cell membrane in
an autocrine or paracrine manner. They subsequently undergo
cascade reactions to activate intracellular proteins and tran-
scription factors to promote target gene transcription. Wnt
signaling is associated with cell differentiation, polarization
and migration. Moreover, abnormalities in Wnt signaling
serve an important role in the development of many diseases,
including lung and breast cancer (2). The present review
describes the role of Wnt signaling abnormalities in tumori-
genesis, tumor development, metastasis, cancer stem cells
(CSCs), radiotherapy resistance and tumor immunity (Fig. 1),
as well as inhibitors that target Wnt signaling to explore novel
avenues for cancer treatment.

2. Classical and non-classical Wnt signaling

A total of 19 Wnt and 10 frizzled (FZD) proteins have been
identified in mammalian cells (3). These proteins activate Wnt
signaling when the receptor binds to its ligand. At least three
Wnt pathways have been identified: Classical Wnt/B-catenin
pathway and two non-classical Wnt/planar cell polarity (PCP)
and Wnt/Ca®* pathways.

Classical Wnt/B-catenin signaling pathway. Classical Wnt
signaling, known as B-catenin-dependent signaling, has
been extensively studied (4-7). This pathway comprises three
primary components: Cell membrane proteins, degradation
complexes and (3-catenin. Cell membrane proteins include Wnt
ligands (Wntl, Wnt2, Wnt3a and Wnt8), seven transmembrane
receptors (FZD), auxiliary receptors and low-density lipopro-
tein receptor-related proteins 5/6 (LRP5/6). The degradation
complex is primarily composed of glycogen synthase kinase
3B (GSK-3p), adenomatous polyposis coli (APC), casein
kinase la (CKla) and scaffolding protein axin (4). GSK-3f3
is a serine/threonine protein kinase that phosphorylates resi-
dues Thr4l, Ser33 and Ser37 on [-catenin. APC increases
the affinity of other components of the complex to -catenin,
whereas CKla is a tyrosine kinase that phosphorylates Thr45
on P-catenin. Furthermore, axin serves as a scaffolding
protein that keeps the degradation complex tightly bound
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and stable. B-catenin is a member of the connexin family.
Activation of the Wnt/B-catenin signaling pathway also
involves transduction of Wnt signaling in the cell membrane,
maintenance of P-catenin stability in the cytoplasm, and acti-
vation of Wnt-associated target genes in the nucleus (5). When
Wnt ligands are absent from the cell surface, most 3-catenin
located at the cell membrane junctions forms a complex with
epithelial-type calcium adhesion protein (E-cadherin) and
a-catenin to regulate the cytoskeleton and maintain intercel-
lular adhesion. A small amount of unbound (3-catenin in the
free state is ubiquitinated by the degradation complex via
amino-terminal phosphorylation and recognized by the E3
ubiquitin ligase B-transducin repeat-containing protein, which
eventually leads to its degradation by the proteasome. The
cytoplasm contains low levels of 3-catenin in the free state.
Therefore, it cannot enter the nucleus to initiate transcription
of T cell factor/lymphoid enhancer factor (TCF/LEF), blocking
the expression of downstream target genes (6). This blockage
inactivates the Wnt pathway. In the presence of extracellular
Wht ligands, Wnt proteins bind to FZD and LRP5/6 to activate
disheveled (DVL) proteins in the cytoplasm. Activated DVL
inhibits GSK-3p in the degradation complex. Inactive GSK-3f3
cannot phosphorylate $-catenin, which gradually accumulates
in the cytoplasm. When [-catenin reaches a certain level, it
is transferred to the nucleus and initiates the transcription
of c-Myc, cyclin D1, Dickkopf-associated protein 1, matrix
metalloproteinase (MMP)-7, axin 2 and other downstream
target genes by binding to TCF/LEF in the nucleus, leading to
abnormal cell proliferation and resistance to apoptosis, thereby
inducing tumor formation (7). Tumors are induced during this
process.

Non-classical Wnt signaling. By contrast with activation of the
classical Wnt/B-catenin pathway, activation of non-classical
Wnt signaling is not dependent on [-catenin. Activation of
the Wnt/PCP pathway is initiated by binding of cell-secreted
Wnt ligand proteins to the cell membrane receptor FZD
and co-receptors receptor-like tyrosine kinase and receptor
tyrosine-kinase-like orphan receptor. These co-receptors
control activity of small GTPases and regulate cytoskeletal
remodeling (8). The binding of Wnt proteins to FZD recruits
DVL to the cell membrane for activation (8). DVL activates
DVL-associated activator of morphogenesis 1. This process
is followed by activation of oGTPase, which further activates
myosin and g-associated kinase, thereby altering actin and
cytoskeletal rearrangement in the presence of activated Rac
GTPase. Activated Rac stimulates c-Jun amino-terminal
kinase activation, leading to downstream target gene expres-
sion (9). Moreover, Wnt/Ca?* signaling is activated when
Whnt binds to FZD, recruiting DVL to the cell membrane via
guanine nucleotide-binding proteins. This activates phospholi-
pase C and calmodulin-dependent kinase II, causing increased
intracellular calcium ion release and further regulating
downstream signaling pathways (10).

3. Role of Wnt signaling in tumors
Whnt signaling plays an important role in the development of

many types of tumors, including non-small cell lung cancer
(NSCLC). Smoking is a key risk factor for lung cancer and

cigarette smoke can activate Wnt signaling (11). In a mouse
lung cancer model with KRAS mutations, activation of
the P-catenin pathway accelerates growth of lung cancer
tumors (12). B-catenin, a key component of the classical
Whnt/f-catenin pathway, is often aberrantly expressed in
lung cancer (13). B-catenin levels in Wntl-positive NSCLC
are higher than those in Wntl-negative NSCLC (14).
Odd-skipped related 1 (OSR1) decreases Wnt signaling
activity by inhibiting [3-catenin expression in lung cancer
OSR1-overexpressing H1299 cells (15). Furthermore,
immunohistochemical staining shows that Wntl and Wnt5a
are highly expressed in NSCLC. Overexpression of Wntl is
causes more aggressive NSCLC by inducing expression of
survivin (16), whereas Wnt7a is considerably decreased in
NSCLC cell lines and lung tumors. Contrastingly, Wnt7a
interacts directly with the Wnt receptor FZD9 (17). The
total DVL expression is high in NSCLC cells but negative
in normal bronchial and alveolar epithelial cells, suggesting
DVL could promote the progression of NSCLC (18).
Pygopus2, a downstream functional protein in Wnt/B-catenin
signaling, is more elevated in the nucleus of NSCLC
compared with normal lung tissues (19). In addition to lung
cancer, 3-catenin abnormalities are found in some diges-
tive system cancers, such as liver, gastric and colorectal
cancer (20-22). The gene catenin beta 1 (CTNNBI), which
encodes [-catenin, is commonly mutated in hepatocellular
carcinoma (23), whereas CTNNBI, TCF7L2 and APC are
mutated in gastric cancer (24). Similarly, APC is mutated in
colorectal cancer (22). Overexpression of Wntl1 may antago-
nize classical Wnt signaling by phosphorylating [3-catenin
in human hepatocellular carcinoma cells (25). However,
activation or inhibition of Wnt signaling in hepatocellular
carcinoma depends on the differentiation status of hepato-
cellular carcinoma cells. Classical and non-classical Wnt
signaling serve complementary roles, with classical signaling
inducing tumors and non-classical signaling promoting
tumor progression (26). Overexpression of Wnt and [3-catenin
nuclear translocation are observed in gastric cancer (27).
The localization of f-catenin from the cell membrane to
the cytoplasm and nucleus has also been observed during
colorectal cancer development (28). Similarly, Wntl0a
and Wnt6 mRNA are detected in gastric cancer cell lines.
Furthermore, upregulation of Wntl0a expression activates
Wnt/B-catenin/TCF signaling, which is involved in gastric
carcinogenesis (29). The expression of runt-related transcrip-
tion factor 1 (RUNX]I) is upregulated in colorectal cancer
tissue. RUNXI1 directly interacts with [3-catenin to activate
Wnt/B-catenin signaling (30). Wnt signaling is also aber-
rant in tumors common in female patients, such as breast
and ovarian cancers (31,32). One study used microarray
analysis to compare molecular changes in Wnt signaling in
triple-negative breast cancer (TNBC) and non-TNBC (33).
FZD7, LRP6 and TCF7 are overexpressed in TNBC. In
addition, classical Wnt signaling associated with TCF7 is
essential for breast carcinogenesis (33). Yoshioka er al (34)
examined all Wnt ligands in malignant ovarian tumors and
normal ovarian tissue and found high expression of Wnt7a and
Wnt7b and low expression of Wnt3 and Wnt4. Additionally,
Wntl, Wnt5a, and Frizzled-1 levels are markedly higher in
ovarian cancer than in normal ovaries (35).
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Figure 1. Wnt signaling is involved in tumorigenesis, cancer stem cells,
chemoradiotherapy resistance and tumor metastasis, therapy and immunity.

4. Wnt signaling and CSCs

Tumors comprise a heterogeneous population of tumor
cells, a small group of which are CSCs. Similar to normal
SCs, CSCs have a self-renewal capacity and differentiation
potential, two properties that make tumor cell populations
heterogeneous. CSCs have high oncogenic potential and serve
a major role in tumor initiation, metastasis, drug resistance and
tumor recurrence (36). Wnt signaling maintains stemness in
CSCs (37-39).

Wnt signaling and lung CSCs. SOX2 participates in various
stages of embryonic development by activating Wnt signaling
and maintaining CSC stemness. Colon cancer-associated
transcript 1 (CCATI) elevates the expression of SOX2 and
activates Wnt signaling in A549 and H460 lung cancer cells.
However, the self-renewal capacity of lung CSCs is lost when
microRNA (miR)-Let-7¢ binds CCAT1 (40). In NSCLC cell
lines, nuclear-enriched abundant transcript 1 may activate the
Whnt pathway and promote the CSC phenotype by inhibiting
epigallocatechin gallate-upregulated copper transporter 1 (41).
Octamer binding transcription factor 4 (OCT-4) is a lung
cancer surface marker of SCs whose expression is regulated by
Wht signaling. When cisplatin-resistant human lung adenocar-
cinoma A549/DDP cells are stimulated with lithium chloride,
an inhibitor of GSK-3f, expression of Wnt signaling target
genes Cyclin D1 and OCT-4 is upregulated. Moreover, the
proliferation, clonogenic ability, migration and drug resistance
of A549/DDP cells is enhanced (42).

Wnt signaling and gastric CSCs. Wnt signaling is also
involved in the maintenance of gastric cancer stemness.
Stable overexpression of Wntl increases proliferation and
tumor sphere formation in the human gastric adenocarci-
noma cell line AGS. Additionally, AGS cells express the

CSC surface markers OCT-4 and CD44. Activation of Wntl
accelerates gastric CSC proliferation, suggesting that Wnt
signaling contributes to self-renewal of gastric CSCs (37).
Human epidermal growth factor 2 (HER2)-overexpressing
gastric cancer cells induce increased stemness by regulating
Wnt/B-catenin signaling (43). Placental growth factor (PIGF)
is associated with gastric carcinogenesis. Thus, knockdown
of PIGF expression induces apoptosis through Wnt signaling
in gastric CSCs (44). Ring finger protein 43 is a member of
the E3 ubiquitin ligase family and was originally identified in
SCs. It attenuates the stemness of gastric CSC-like cells via
Wnt/B-catenin signaling (45). The expression of bromodomain
and extra-terminal domain protein is frequently upregulated in
gastric cancer tissue and also promotes the stemness of gastric
cancer cells by activating Wnt/B-catenin signaling (46).

Wnt signaling and colorectal CSCs. Colorectal carcinogenesis
and disease progression are caused by progressive accu-
mulation of genetic mutations. APC or [3-catenin mutations
activate Wnt/B-catenin signaling and initiate tumor formation.
This suggests that Wnt signaling serve a central role in the
regulation of colorectal CSCs (47-49). Markers on the surface
of colon CSCs include CD44, CD133, CD24, CD29, CD26,
CD166, leucine-rich repeat-containing G-protein-coupled
receptor 5 (Lgr5) and aldehyde dehydrogenase 1 (ALDH1) (50).
ALDHI1BI is a member of the ALDHI1 family that is highly
expressed in colon cancer cells. It can activate Wnt/fB-catenin
signaling and may be involved in tumorigenesis of colon
CSCs (51). Higher B-catenin expression levels induce the
expansion of Lgr5(+) cells in colonic crypts and the formation
of crypts (52). The transcription factor GATAG is a key regu-
lator of Wnt signaling in colorectal cancer. It directly drives
Lgr5 expression in adenoma SCs. Moreover, GATA6 achieves
CSC self-renewal by competing with (3-catenin/TCF4 to bind
the distal regulatory region of the bone morphogenetic protein
locus (38). Homeobox A5 abrogates the self-renewal properties
of CSC and blocks tumor growth and metastasis by inhibiting
Wnat signaling in colon cancer (53).

Wnt signaling and breast CSCs. Wnt/f-catenin signaling
contributes to the maintenance of breast CSC stemness. B cell
lymphoma factor 11A (BCLI1A) is overexpressed in TNBC
cells and participates in tumorigenesis and invasion (54). The
high expression of this transcription factor causes SC-like
characteristics and maintains stemness in breast CSCs by
activating Wnt/B-catenin signaling (39). Similarly, Lgr4
is frequently overexpressed in BC and is associated with
poor prognosis. Lgr4 regulates Wnt/f-catenin signaling by
mediating breast CSC maintenance (55). The expression of
calmodulin 11 (CDH11), a type II calmodulin and mesen-
chymal protein marker, is positively correlated with 3-catenin
and Wnt2 in breast cancer (56). When CDHI11 is inhibited, it
may suppress the mammary CSC-like phenotype by regulating
the Wnt/B-catenin pathway (56).

Wnt signaling and ovarian CSCs. The surface markers
of ovarian CSCs include CD24, CD44, CD117, CD133,
ALDH, SOX2, OCT-4, NANOG and epithelial cell adhe-
sion molecule, also known as CD326, a single channel
type I membrane glycoprotein. Increased expression of these



4 WANG et al: Wnt SIGNALING AND TUMORS

markers enables ovarian CSCs to become sphere-forming
in vitro and tumorigenic in vivo, promoting development of
epithelial ovarian cancer (EOC). This makes these cells more
resistant to drugs and produces tumor progenitor cells that
lead to tumor progression, metastasis and recurrence (57).
Mounting evidence demonstrates Wnt/B-catenin signaling
involvement in the acquisition of stemness in ovarian cancer
cells (57-59). In one study, ALDH1A1l was overexpressed
in cultured ovarian cancer spheres in vitro and was directly
associated with key components of f-catenin signaling. This
suggests that B-catenin-regulated ALDH1AI maintains the
sphere-forming ability of ovarian cancer cells (58). Another
study confirmed that miR-1207 overexpression increases
ovarian CSC-like properties in vitro and in vivo. The effects
of miR-1207 are caused by Wnt/f3-catenin signaling activation
via inhibition of negative regulators of this pathway, such as
secreted Frizzled-related protein 1 (SFRP1), axin 2, f-catenin
inhibitor and TCF4 (59).

5. Wnt signaling and tumor metastasis

Metastasis is a characteristic of advanced cancer and a major
challenge in cancer treatment. Epithelial-mesenchymal transi-
tion (EMT) refers to loss of intercellular adhesion and acquisition
of mesenchymal cell characteristics by epithelial cells. This
enhances cancer cell invasion and metastasis (60). Activation
of Wnt/B-catenin signaling can increase expression of adhesion
molecule suppressors by reducing E-cadherin and increasing
Snail, Slug, Twist, zinc finger E-box-binding homeobox
(ZEB)1 and ZEB2 expression (61). Several molecules, such
as forkhead box protein P3 (FOXP3), long non-coding RNA
(IncRNA) JPX and WD repeat-containing protein 74 (WDR74)
contribute to lung cancer metastasis via Wnt signaling (62-64).
In previous in vitro and in vivo studies, FOXP3 promoted
lung tumor growth and metastasis via FOX3-mediated
Whnt/B-catenin signaling activation (62,65). Some biomol-
ecules, such as serpin family H member 1 (SERPINHI1),
IncRNA miR-4435-2HG and LINCO01606, cyclin G2 and Zic
family member 1 contribute to EMT and invasive metas-
tasis of gastric cancer via Wnt/f-catenin signaling (66-70).
SERPINHI is a member of the serine protease inhibitor H
subfamily. Furthermore, expression of Wnt/f3-catenin signaling
proteins f-catenin, Wnt2, GSK-3f, Snail, Slug and Twist is
downregulated in the SERPINHI1-silenced gastric cell line
SGC-7901. This suggests that SERPINHI1 regulates gastric
cancer progression via Wnt/B-catenin signaling (66). Tumor
metastasis in female patients is associated with Wnt/B-catenin
signaling abnormalities. Overexpression of SFRP attenuates
Whnt signaling in cervical cancer CaSki cells and increases
E-cadherin expression by repressing Slug, Twist, and Snail (71).
By contrast, cysteine-rich intestinal protein 1 activates Wnt/p
catenin signaling and promotes cervical cancer cell migration
and invasion by increasing expression of c-Myc, cyclin D1
and cytoplasmic B-catenin (72). The early dissemination and
metastasis of HER2(+) breast cancer depends on non-classical
Wnt (Wnt5a, Wnt5b and Wntll) signaling (73). In addition,
Wnt/B-catenin signaling is involved in remodeling of the EOC
extracellular matrix,a MMP-mediated process. MMP-2 expres-
sion is upregulated in ovarian cancer and promotes cancer cell
invasion and metastasis (74).

6. Wnt signaling and chemoradiotherapy resistance

Chemoradiotherapy resistance often leads to tumor treat-
ment failure. The causes of chemoradiotherapy resistance
are complex and associated with tumor heterogeneity, drug
efflux/inactivation and survival pathway activation (75). Wnt
signaling can enhance tumor resistance to chemotherapeutic
agents or radiotherapy. Furthermore, inhibitors of Wnt
signaling can reverse this resistance and restore treatment
sensitivity (76,77).

Whnt signaling and chemoradiotherapy resistance in lung
cancer. Cancer cells expressing Wntl resist drug-induced
apoptosis. Moreover, Wnt/B-catenin signaling induces
transcription of drug resistance factors such as multidrug
resistance 1 (MDR-1) thatis amembrane glycoprotein encoded
by the MDR gene, survivin and livin (76). Platinum-based
chemotherapy is the first-line treatment option for advanced
NSCLC. However, acquired cisplatin resistance is preva-
lent in patients with NSCLC (78). One study reported that
cytoplasmic inhibition of GSK-3f3 activates Wnt/f3-catenin
signaling and upregulates survivin expression, leading to
cisplatin resistance in NSCLC (79). In another study, c-Myc,
a downstream target gene of 3-catenin, regulated A549/DDP
resistance to cisplatin (80). Examination of -catenin expres-
sion in NSCLC cell line PC9 and gefitinib-resistant cell
line PC9/AB (2) revealed increased nuclear transloca-
tion of pB-catenin in PC9/AB (2) compared with PC9. In
addition, expression of certain components of 3-catenin
signaling (phosphorylated-GSK-3f, DVLI1, c-Myc, c-JUN)
increases (81). GDK-100017, a 2,3,6-trisubstituted quinoxa-
line derivative, inhibits Wnt/B-catenin signaling, blocks
B-catenin-TCF/LEF interactions and increases sensitivity
of A549/Wnt2 cells to radiotherapy (82). FZDS is a member
of the frizzled Wnt ligand-receptor family. Disruption of
FZDS increases the sensitivity of lung cancer cells to the
chemotherapeutic drug paclitaxel (83).

Wnt signaling and chemoradiotherapy resistance in gastric
cancer. Several molecules are involved in resistance to
chemoradiotherapy in gastric cancer. Caveolin-1 (Cav-1)
increases cisplatin resistance in gastric cancer cells by
activating Wnt signaling (84). Similarly, DOCKG®6, a guanine
nucleotide exchange factor, promotes radiotherapy resistance
in gastric cancer by regulating Wnt signaling (85). ICG-001,
an inhibitor of B-catenin, reduces the chemoresistance of
gastric cancer cells by binding to CREB-binding protein
(CBP) and interfering with its interaction with f-catenin,
thereby inhibiting Wnt signaling (86). Cheng et al (87)
investigated the mechanisms underlying regulation of
cisplatin resistance by homologous cassette gene transcript
antisense RNA (HOTAIR) in gastric cancer cells. Low
HOTAIR expression attenuates cisplatin resistance in
gastric cancer cells by inhibiting Wnt signaling. The long
noncoding RNA FAMS83H-antisense RNA 1 silencing also
increases the chemosensitivity of gastric cancer cells via Wnt
signaling (88). Similarly, basic leucine zipper ATF-like tran-
scription factor 2, a member of the type I activator protein-1
family, reverses multidrug resistance in gastric cancer cells
by inactivating Wnt signaling (89).
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Whnt signaling and chemoradiotherapy resistance in BC. Wnt
signaling plays a key role in chemoradiotherapy resistance
in BC. The MDRI1 gene encodes permeability glycoprotein,
a transmembrane transporter glycoprotein that is a member
of the ATP-binding cassette (ABC) transporter protein super-
family. This protein superfamily mediates drug efflux and is
associated with tumor drug resistance. Pygo2 expression is
upregulated in drug-resistant BC cells and activates MDRI
via Wnt signaling, thereby mediating chemoresistance in
BC (90). The expression of the membrane transporter protein
Cav-1 is upregulated in BC chemoresistance. Cav-1 promotes
drug resistance in breast CSCs via p-catenin/ABCG2
signaling (91). Activation of classical and non-classical Wnt
signaling pathways is detected in the tamoxifen-resistant
estrogen receptor (ER)(+) breast cancer cell line MCF7.
Furthermore, Wnt3a increases tamoxifen resistance in
MCFT7 cells (92). Follistatin like protein 1, an extracellular
matrix glycoprotein, is associated with regulation of cellular
signaling pathways. Its expression is considerably upregu-
lated in drug-resistant BC cells. Moreover, this gene can act
through integrin 3-induced activation of Wnt signaling (93).
Similarly, IncAFAP1-ASI1 can induce radiotherapy resistance
in TNBC via Wnt signaling (94).

Whnt signaling and chemoradiotherapy resistance in ovarian
cancer. In addition to its involvement in BC resistance,
abnormal ABCG2 expression is associated with drug resis-
tance in ovarian cancer. The SC-associated receptor tyrosine
kinase c-kit promotes ovarian cancer drug resistance via the
Wnt/pB-catenin/ABCG2 signaling axis. Low c-kit expression
increases ovarian cancer cell sensitivity to chemotherapeutic
agents such as cisplatin and paclitaxel (95). One study showed
that chemoresistance in high-grade plasma ovarian cancer
is associated with Wnt signaling activation. In addition, the
sensitization of ovarian cancer-initiating cells to cisplatin is
restored by a Wnt signaling inhibitor (96). Human copper
transporter 1 is a transmembrane transporter that allows
copper and cisplatin to enter cells through the membrane
barrier. Wnt/B-catenin signaling inhibits expression of this
protein in cisplatin-resistant EOC cells (97). MMP-10 is
highly expressed in cancer stem-like/carcinoma-initiating
cells in EOC and is associated with platinum resistance. It acts
by inhibiting Wnt5a activation during Wnt signaling (98).

Wnt signaling and cervical cancer chemoradiotherapy
resistance. Several studies have shown that Wnt signaling
is associated with chemoradiotherapy resistance in cervical
cancer (99-102). Therefore, f-catenin nuclear expression
can be used as a predictive marker of chemoradiotherapy
resistance in cervical squamous carcinoma (99). Fat mass
and obesity-associated protein, an N6-methyladenine
demethylase with upregulated mRNA expression in cervical
squamous carcinoma tissue, enhances radiotherapy resis-
tance by regulating f-catenin (100). One study showed that
chemotherapeutic drugs activate Wnt/p-catenin signaling in a
eukaryotic translation initiation factor 4 E (eIF4E)-dependent
manner. This suggests that eIF4E/f3-catenin signaling serves
a positive regulatory role in chemoresistance in cervical
cancer (101). Similarly, LGRS acts as a cancer-promoting
factor by activating Wnt signaling in cervical cancer.

Thus, high LGRS expression in cervical cancer cells promotes
cisplatin resistance (102).

7. Wnt signaling and tumor immunity

The tumor microenvironment (TME) consists of immune
cells, peripheral blood vessels, fibroblasts, signaling molecules
and extracellular matrix (103). The overexpression of immune
checkpoint molecules in the TME serves a key role in tumor
immune escape and progression. Tumor immunotherapy
is a novel approach for treating tumors and it activates or
reactivates tumor immune circuits (104). Several immune
checkpoint inhibitors (ICIs), such as ibritumomab, nabumab,
pembrolizumab and atezumab, have been approved for cancer
therapy. Ibritumomab is an anti-cytotoxic T lymphocyte-asso-
ciated protein 4 antibody (anti-CTLA4), whereas nabumab
and pembrolizumab are anti-programmed death receptor 1
antibodies (anti-PD-1). By contrast, atezumab is an anti-PD
ligand 1 antibody (anti-PD-L1). Anti-PD-1/PD-L1 antibodies
have clinical utility in 15 types of cancer (lung cancer, cervical
cancer, gastric cancer, etc.). However, most patients with
advanced cancers do not derive clinical benefits from these
agents (105). This suggests that immunosuppressive mecha-
nisms in the TME may limit the efficacy of ICIs (105).
Growing evidence demonstrates that Wnt signaling blocks
all steps of the tumor immune cycle, including tumor antigen
release and presentation, T cell initiation, activation and infil-
tration and clearance of tumor cells (106,107). The first step
in the tumor immune cycle is processing of tumor antigens
by dendritic cells (DCs) for presentation to effector T cells.
Wat signaling regulates maturation and activity of these DCs.
One study on lung adenocarcinoma found that Wntl causes
transcriptional silencing of CC/CXC chemokines, T cell rejec-
tion and cross-tolerance in classical DCs. Furthermore, Wntl
target gene expression is upregulated in classical DCs within
tumors and downregulated when Wntl is silenced through
enhanced T cell toxicity (108). Another study revealed that
Whnt5a suppresses CD14 (*/low) monocyte-derived myeloid
DC production and promotes CD14*/**CD16* monocyte
production (109). CD8* T cells are the primary effector cells
in the tumor immune cycle and can be activated by DCs and
costimulatory molecules that infiltrate the tumor site to kill
cancer cells (110). However, tumor cells evade immune clear-
ance and reject or inactivate CD8* T cells to prevent CD8*
T cell infiltration during tumor progression (111). Therefore,
Wnat signaling is essential for T cell differentiation, polariza-
tion, effector function and migration (112). Tumor-infiltrating
T cells substantially overexpress Wnt3a and (3-catenin, leading
to dysfunction and memory T cell depletion (113). In addition,
Wnt-mediated 3-catenin/TCF1 activation inhibits naive T cell
and terminal differentiation of effector CD8* T cells (113).
Helper T (Th) cells mainly contribute to CD8* T cell antitumor
responses by releasing cytokines. Wnt signaling also regulates
Th cell development and function (114) by suppressing Th
cells and impairing antitumor immunity. In colorectal cancer,
B-catenin is activated and attenuates CD4* T antitumor
immunity by suppressing interferon y and elevating IL-17a
expression (115). Autoimmune encephalomyelitis-induced
endothelial Wnt signaling limits CD4* T cell infiltration, which
is restored when signaling is suppressed (116). These findings



6 WANG et al: Wnt SIGNALING AND TUMORS

demonstrate that Wnt signaling serves a non-negligible role in
immune cell function. Therefore, the influence of this pathway
warrants consideration in tumor immunotherapy, especially
when efficacy is poor.

8. Wnt signaling and tumor therapy

Numerous studies have confirmed involvement of Wnt
signaling in onset, progression, metastasis and drug resis-
tance of various cancers (75,117,118). Moreover, strategies
targeting this pathway for cancer treatment are gaining atten-
tion (75,118). Preclinical research has revealed four approaches
that target Wnt signaling: i) Blocking ligand-receptor
interactions, ii) blocking FZD/LRP5/6 signaling [porcupine
(PORCN) inhibitors], iii) promoting [-catenin degradation
(tankyrase (TNKS) enzymes or inhibitors) and iv) blocking
[-catenin-TCF interactions (f-catenin inhibitors) (119).

Blocking Wnt ligand-receptor interactions. Different tumors
express specific Wnt ligands. Therefore, blocking specific
Wnt ligand-receptor interactions can inhibit tumor cell
proliferation (120,121). In one study, addition of anti-Wntl
monoclonal antibodies to human NSCLC, BC, mesothelioma
and sarcoma cell lines led to apoptosis. In addition, the anti-
bodies inhibited tumor growth in vivo (122). Another study
showed that Wnt2 inhibitors decrease clone formation and
transplanted tumor volume in NSCLC cell lines (123). After
transferring interfering RNA of Wnt5a into the human lung
squamous carcinoma cell line H157 and human lung adeno-
carcinoma cell line A549, the proliferative capacity of both
cell lines was decreased (124). The recombinant fusion protein
ipafricept (known as OMP-54F28) is formed by fusing the
cysteine-rich structural domain of FZD8 with the structural
domain of immunoglobulin Fc, which blocks Wnt signaling
by binding to Wnt ligands. Preclinical studies have shown that
OMP-54F28 slows tumor growth and has a synergistic effect
when combined with chemotherapeutic agents (125,126). This
human monoclonal antibody interacts with five FZD receptors
to block classical Wnt signaling and clinical trials have shown
that it has good tolerability (125,127).

Blocking FZD-LRP5/6 signaling. PORCN is a membrane-
bound O-acetyltransferase that modifies Wnt proteins via
palmitoylation; only such modified Wnt proteins can be
secreted outside the cellular membrane to activate Wnt
signaling by interacting with its co-receptors LRP5/6 and
FZD (128). LGK974 is a small-molecule PORCN inhibitor
that blocks Wnt signaling and induces tumor regression in
MMTV-Wntl mice. In addition, LGK974 considerably attenu-
ates clone formation in human head and neck cancer cell line
HN30 (129). ETC-159 is another PORCN inhibitor that blocks
secretion and activation of Wnt proteins. Preclinical studies
have shown that ETC-159 is highly effective in treating
mouse-transplanted tumors with R-spondin translocations in
patients with colon cancer (127,130). In another preclinical
study, combination of the PORCN inhibitor RX004 and
anti-PD-1 enhanced antitumor immune effects (131). PORCN
inhibitors have shown therapeutic potential in colorectal,
pancreatic, hepatocellular and head and neck tumors. To date,
no PORCN inhibitors have entered clinical use; only LGK974,

ETC159, CGX1321 and RXC004 have been investigated in
phase I clinical trials (132-135).

Promotion of pB-catenin degradation. End-anchored
polymerase (TNKS) is a member of the poly ADP-ribose
polymerase (PARP) family, which includes two isoforms,
TNKSI1 (PARP5a) and TNKS2 (PARP5b). These isoforms
regulate classical Wnt signaling via poly ADP-ribosylated
axin proteins. TNKS inhibitors promote [-catenin degrada-
tion by increasing axin levels (120). Treatment of the NSCLC
cell line A549 with XAV939 inhibits cell proliferation
and migratory capacity. Furthermore, it decreases TNKS,
[B-catenin and c-Myc protein levels (136). This TNKS inhibitor
also decreases proliferative capacity of the SCLC cell line
H446 by inhibiting Wnt signaling (137). The combination
of XAV939 and chemotherapeutic agent paclitaxel induces
apoptosis and inhibits Wnt signaling in BC cells. In addition,
this treatment suppresses EMT and angiogenesis. Similarly,
combined XAV939 and low-dose (20 nM) paclitaxel results in
comparable therapeutic effects in BC cell lines compared with
high-dose (200 nM) paclitaxel alone (138). NVP-TNKS656,
another TNKS inhibitor, decreases [3-catenin protein expres-
sion in the nucleus of colorectal cancer cells when combined
with PI3K or AKT inhibitors, thereby reversing resistance to
PI3K or AKT inhibitors and inhibiting tumor growth (139).
Moreover, the TNKS inhibitor GOO7-LK has a sensitizing
effect on anti-PD-1 antitumor therapy (140).

Blocking f-catenin and TCF interactions. An effective way
of targeting the classical Wnt signaling pathway is to block
the interaction of f-catenin with downstream transcription
factors (120,121). TCF4 is a member of the TCF/LEF family
and binds to B-catenin to initiate target gene transcription
when Wnt signaling is activated. Inhibitors of B-catenin-TCF4
interactions include PKF115-584, CGP049090, PKF222-815,
PKF118-744, PKF118-310, ZTM000990, iCRT3/5/14, NC043,
LF3 and UU-T02/03 (141). PKF115-584 inhibits -catenin
transcription and proliferation in the adrenocortical tumor
cell line H295R in a dose-dependent manner (142). Similarly,
CGP049090 and PKF115-584 effectively kill chronic lympho-
cytic leukemia cells (143). Three inhibitors, PKF118-310,
PKF115-584 and CGP049090, downregulate the expression of
TCF4/B-catenin target genes c-Myc, cyclin DI and survivin in
hepatocellular carcinoma. These inhibitors also induce apop-
tosis and cell cycle arrest and inhibit the growth of transplanted
tumors in mice (144).

In addition, 3-catenin can also interact with p300/CBP and
BCLO (141). Thus, pharmacological blockade of Wnt signaling
seems promising in preclinical models (141-144).

9. Conclusion

The dysregulation of classical and non-classical Wnt signaling
pathways in tumors has been extensively studied in recent
years (117,118,132-134). The present review provides an over-
view of the role of Wnt signaling in tumorigenesis, progression,
metastasis, CSCs, chemoradiotherapy resistance and anti-
tumor immunity as well as inhibitors targeting Wnt signaling.
Wnt signaling is increasingly recognized as an anticancer
therapeutic target and several studies have demonstrated the
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effectiveness of Wnt signaling inhibitors alone or in combina-
tion with other chemotherapeutic agents and ICIs in antitumor
therapy (118,132-134,138). Furthermore, some Wnt signaling
inhibitors (LGK974, ETC159, CGX1321, and RXC004)
have been tested in phase I clinical trials (132,134,145,146).
However, Wnt signaling serves an important role in physiolog-
ical processes and the possible side effects after blockade are
not well understood. Therefore, pharmacological effects and
mechanisms underlying Wnt signaling and its inhibitors for
early clinical application warrant further study. An in-depth
understanding of these processes may improve prognosis in
patients with cancer.
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