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Abstract

Dengue fever is a major international public health concern, with more than 55% of the

world population at risk of infection. Recent climate changes related to global warming have

increased the potential risk of domestic outbreaks of dengue in Korea. In this study, we

develop a two-strain dengue model associated with climate-dependent parameters based

on Representative Concentration Pathway (RCP) scenarios provided by the Korea Meteo-

rological Administration. We assess the potential risks of dengue outbreaks by means of the

vector capacity and intensity under various RCP scenarios. A sensitivity analysis of the tem-

perature-dependent parameters is performed to explore the effects of climate change on

dengue transmission dynamics. Our results demonstrate that a higher temperature signifi-

cantly enhances the potential threat of domestic dengue outbreaks in Korea. Furthermore,

we investigate the effects of countermeasures on the cumulative incidence of humans and

vectors. The current main control measures (comprising only travel restrictions) for infected

humans in Korea are not as effective as combined control measures (travel restrictions and

vector control), dramatically reducing the possibilities of dengue outbreaks.

Introduction

Dengue fever is a mosquito-borne viral disease transmitted by Aedes mosquitoes. Dengue is

endemic in more than 100 countries, including African, American, Asian, and Western Pacific

countries with tropical climates. Dengue virus includes four serotypes (DEN 1-4), and DEN 2

and DEN 3 are prevalent in tropical countries [1]. Infection with one serotype confers perma-

nent immunity to that serotype, as well as temporary cross-immunity to other serotypes. Fur-

thermore, people reinfected by other serotypes are at risk of developing more serious diseases

such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) [2–4]. Every

year in South Korea, it is reported that a few hundred people are infected during travel to den-

gue-endemic countries. However, there have been no domestic infections reported so far [5].

Nevertheless, with a gradual change toward a subtropical climate owing to global warming,

Korea could face a spread of domestic dengue in the near future [6, 7].
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Climate factors such as temperature and precipitation significantly affect the life cycle of

dengue mosquitoes [8–15]; thus, these factors need to be included in mathematical models

of dengue transmission. Many studies have investigated the effects of climate factors on den-

gue transmission. Climate change impacts factors relevant to the mosquito population. In

particular, the temperature has a strong influence on dengue transmission and the Aedes
mosquito population [8–10]. Chen and Hsieh investigated the impact of temperature varia-

tion on dengue transmission dynamics in a single-strain model [11]. A susceptible-exposed-

infectious-recovered (SEIR) model with four dengue strains has been employed to study the

seasonal population dynamics of mosquitoes [12]. Dengue incidences in Thailand, Taiwan,

Singapore, and Brazil are associated with seasonal patterns in temperature, relative humid-

ity, and rainfall [11–14]. Statistical approaches have revealed that these seasonal patterns

play a significant role in dengue transmission [8, 16]. A two-patch dengue transmission

model incorporating seasonality has been employed to explore the impact of different patch-

specific control strategies [17]. In [18, 19], the temperature-dependent parameters obtained

from laboratory data ranged from 10˚C to 37˚C. Moreover, the amount of rainfall may affect

the larval population size [15], and the rainfall pattern has a certain effect on the larval den-

sity [20]. A recent study by ten Bosch et al. considered six different dengue models, with

important dengue characteristics such as cross-immunity, antibody-dependent enhance-

ment and seasonal forcing [21]. The authors adopted a pattern-oriented modeling strategy

to capture dengue dynamics such as multi-annual fluctuations and the mean duration

between peaks.

In South Korea, 1,331 cases of dengue fever were reported in the period 2010–2016 [5], and

all infected people were travelers who returned from endemic countries such as Thailand, Phil-

ippines, Vietnam, and Indonesia [5, 22]. Several studies demonstrated that the risk of an

autochthonous dengue outbreak increases as international travel to endemic areas increases

[23, 24]. Because Aedes mosquitoes have been found on Jeju Island, which has a humid sub-

tropical climate and is warmer than other regions in Korea [25, 26], and the inflow of travelers

to the island has recently increased [27], the potential for autochthonous dengue transmission

on Jeju Island is greater than in other regions of Korea. Therefore, we formulate single-strain

and two-strain dengue transmission models with a focus on Jeju Island, and explore the impact

of climate change on the dengue transmission dynamics under Representative Concentration

Pathway (RCP) scenarios. Furthermore, we assess the potential risks of dengue outbreaks via

the vectorial capacity and intensity, and investigate the effects of control measures for infected

humans and vectors.

Methods

In this section, we develop single-strain and two-strain dengue transmission models using a

system of nonlinear differential equations.

Single-strain dengue transmission model

The single-strain model includes various states of mosquito larvae (classes that are susceptible

(Se) and infectious (Ie) by vertical infection), female adult mosquitoes (susceptible (Sv), infected

but not infectious (Ev), and infectious (Iv)), and the humans (susceptible (Sh), infected and not

infectious (Eh), infectious (Ih), and recovered (Rh)). The total larva population, female adult

mosquito population, and total human population are denoted by Ne, Nv, and Nh, such that

Ne = Se + Ie, Nv = Sv + Ev + Iv, and Nh = Sh + Eh + Ih + Rh. A schematic diagram of this model is

presented in Fig 1.
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The dynamics of the model are described by a system consisting of nine ordinary differen-

tial equations, shown in (1):

dSe
dt

¼ dð1 � nIv=NvÞ � oSe � mlSe

dIe
dt
¼ dnIv=Nv � oIe � mlIe

dSv
dt

¼ oSe � bhvSvIh=Nh � mvSv

dEv

dt
¼ bhvSvIh=Nh � εEv � mvEv

dIv
dt
¼ εEv þ oIe � mvIv

dSh
dt

¼ mhbNh � bvhShIv=Nh � ZSh � mhdSh

dEh

dt
¼ bvhShIv=Nh þ ZSh � aEh � mhdEh

dIh
dt

¼ aEh � gIh � mhdIh

dRh

dt
¼ gIh � mhdRh:

ð1Þ

Fig 1. Single-strain dengue transmission model.

https://doi.org/10.1371/journal.pone.0199205.g001
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In the system (1), the parameters related to larvae and mosquitoes include the number δ
of new recruits in the larva stage, the maturation rate ω of pre-adult mosquitos, the mortality

rate μv of adult mosquitos, and the mortality rate μl of larvae, defined by μl = μ0(1 + Ne/kl),

where μ0 is the minimum mortality rate and kl is the carrying capacity of larvae in the envi-

ronment [15]. Here, 1/ε refers to the extrinsic incubation period, and ν represents the rate of

vertical infection from infected mosquitoes to eggs. The parameters bm and bh represent the

probability of infection (human to mosquito) per bite and the probability of infection (mos-

quito to human) per bite, respectively, βvh = x1bbh is the transmissible rate from mosquito to

human, and βhv = x2bbm is transmissible rate from human to mosquito, where b is the daily

biting rate of a mosquito and x1 and x2 are the transmission probabilities, which can be

obtained by data fitting. The parameters μhb and μhd represent the human birth rate and

death rate, respectively, and 1/α and 1/γ are the latent period and infectious period for

humans, respectively. The inflow rate of infection due to international travelers is defined

by η.

The seasonal reproduction number of the system (1) at time t in the absence of the inflow

rate of international travelers (i.e., η = 0) is given by the next generation matrix, as follows (for

a detailed derivation, see Section A in S1 Appendix):

Rs ¼
A
2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4L
p

A ¼
dðtÞklðtÞoðtÞn

mvðtÞNvðtÞðklðtÞðm0 þ oðtÞÞ þ m0SeðtÞÞ
;

L ¼
abhvðtÞbvhðtÞεðtÞShðtÞSvðtÞ

ðaþ mhdÞmvðtÞðεðtÞ þ mvðtÞÞðmhd þ gÞNhðtÞ
2

Two-strain dengue transmission model

Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) affect possible reinfec-

tions with another serotype, owing to the effects of antibody-dependent enhancement (ADE)

[28]. In the two-strain model, we distinguish two strains as the major strain 1 and minor strain

2, such that the human population consists of 12 compartments: susceptible (Sh), exposed to

strain i (Ehi), infectious with strain i (Ihi), recovered from infection with strain i (Rhi), exposed

(Ihij) to strain j from Rhi, infectious (Ihij) with strain j from Rhi, and finally the recovered and

life-long immune population against the two strains (R). Thus, the total human population is

Nh = Sh + Eh1 + Eh2 + Ih1 + Ih2 + Rh1 + Rh2 + Eh12 + Eh21 + Ih12 + Ih21 + R. The female mosquito

population, denoted by Nv, is divided into five compartments: susceptible Sv, infected but not

infectious Evi, and infectious Ivi for strain i. Thus, Nv = Sv + Ev1 + Ev2 + Iv1 + Iv2. Similarly, the

larva population is denoted by Ne = Se + Ie1 + Ie2. The full diagram of the dengue transmission

model with two strains is presented in Fig 2.

The model is described by a system of 21 differential equations in (2) and (3). In this model,

the parameters 1/αi and 1/γi represent the latent and infectious periods for humans with strain

i, respectively. The ADE factor ϕ is the rate contributing to the force of secondary infection.

The parameter ωi denotes the maturation rate of a pre-adult mosquito for each strain i, where

ω1 + ω2 = ω. We assume that ωi = 0.5ω. The inflow rate of infected international travelers with

the primary (secondary) infection is denoted by ηi (κi) for strain i. Furthermore, f represents

the fatality rate for the secondary infection, and deaths by the secondary infection are
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represented by D in (3).

Vector

dSe
dt

¼ d 1 � n
X2

i¼1

Ivi=Nv

 !

� ðo1 þ o2ÞSe � mlSe

dIei
dt

¼ dn
Ivi
Nv
� oiIei � mlIei

dSv
dt

¼ ðo1 þ o2ÞSe � Sv
X2

i¼1;i6¼j

bhvðIhi þ �IhjiÞ=Nh � mvSv

dEvi

dt
¼ bhvSvðIhi þ �IhjiÞ=Nh � εEvi � mvEvi

dIvi
dt

¼ oiIei þ εEvi � mvIvi

ð2Þ

Host

dSh
dt

¼ mhbNh � Sh
X2

i¼1

bvhIvi=Nh �
X2

i¼1

ðZi þ kiÞSh � mhdSh

dEhi

dt
¼ bvhShIvi=Nh þ ZiSh � ðai þ mhdÞEhi

dIhi
dt

¼ aiEhi � giIhi � mhdIhi
dRhi

dt
¼ giIhi � bvhRhiIvj=Nh � mhdRhi

dEhij

dt
¼ bvhRhiIvj=Nh þ kjSh � ajEhij � mhdEhij

dIhij
dt

¼ ajEhij � ðgj þ mhd þ f ÞIhij
dR
dt
¼ ðg2Ih12 þ g1Ih21Þ � mhdR

dD
dt

¼ f ðIh12 þ Ih21Þ

ð3Þ

The seasonal reproduction number for the systems (2) and (3) in the absence of the inflow

of international travelers (i.e., ηi = κi = 0) is given by the next generation matrix, as follows (for

the derivation, see Section A in S1 Appendix):

Rs ¼ maxðRs1;Rs2Þ

Rs1 ¼
A
2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4L1

p
; Rs2 ¼

A
2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4L2

p

where A ¼
dðtÞklðtÞoiðtÞn

mvðtÞNvðtÞðklðtÞðm0 þ oiðtÞÞ þ m0SeðtÞÞ
;

Li ¼
aibhvðtÞbvhðtÞεðtÞShðtÞSvðtÞ

ðai þ mhdÞmvðtÞðεðtÞ þ mvðtÞÞðmhd þ giÞNhðtÞ
2
; for i ¼ 1; 2:
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RCP scenarios

For its fifth Assessment Report in 2014, the Intergovernmental Panel on Climate Change

(IPCC) developed four greenhouse gas concentration trajectories (Representative Concen-

tration Pathways (RCPs)) to facilitate future assessments of climate change, including emis-

sions mitigation. RCPs are named according to the radiative forcing levels from 2.6 to 8.5 W/

m2 shown in Table 1. These comprise the lowest forcing level scenario (RCP 2.6), two

medium stabilization scenarios (RCP 4.5/RCP 6.0), and the high-end baseline emission sce-

nario (RCP 8.5). The Korea Meteorological Administration (KMA) provides future climate

data generated from RCP scenarios [29]. We compare the dynamics of dengue prevalence

between the four types of climate change scenario RCP 2.6, 4.5, 6.0, and 8.5 to investigate the

effect of climate change on dengue outbreaks. Temperature and precipitation data for Jeju

Island under the assumption of the RCP scenarios consist of the average values estimated for

the four regions Jeju, Seoguipo, Sungsan, and Gosan, which are located in a warm temperate

zone [29]. While the climate zones of Jeju Island are divided into a warm temperate zone,

grassland zone, and cool temperature zone according to the altitude, more than 98% of the

population of Jeju Island lives in the warm temperate area, which is less than 200 m above

Fig 2. Two-strain dengue transmission model.

https://doi.org/10.1371/journal.pone.0199205.g002

Table 1. Representative Concentration Pathway scenarios.

Scenarios Description CO2 (ppm)

RCP 2.6 Peak in radiative forcing at * 3W/m before year 2100 and decline 420

RCP 4.5 Stabilization without an overshoot pathway to * 4.5W/m at stabilization after year 2100 540

RCP 6.0 Stabilization without an overshoot pathway to * 6W/m at stabilization after year 2100 670

RCP 8.5 Rising radiative forcing pathway leading to 8.5 W/m in year 2100 940

https://doi.org/10.1371/journal.pone.0199205.t001
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sea level [30]. Thus, our model focuses on the warm temperate area using the climate data

provided by KMA. Fig 3(a) illustrates the average daily temperature for five year intervals

from 2020 to 2099. According to the RCP 4.5 and RCP 8.5 scenarios, the average temperature

on Jeju Island in Korea will increase by 2.02˚C in RCP 4.5 and 4.13˚C in RCP 8.5 over 80

years. Fig 3(b) illustrates the average daily precipitation for five year intervals on Jeju Island

from 2020 to 2099.

Parameter estimation

Climate-independent parameters. No indigenous dengue cases have been reported in

Korea. All those diagnosed in Korea have returned after visiting to an endemic area. The den-

gue virus can invade new areas with the potential for risks. Global warming and globalization

effects such as increased international travel, trade, and transportation affect the spread of den-

gue proliferation [24, 31, 32]. Jeju Island is located at the southern end of Korea, which has a

borderline subtropical climate, and the larvae of the Aedes albopictus mosquito have been

found on Jeju Island since 2010, which suggests that a dengue outbreak could occur on Jeju

Island in the near future. Increased international travel and climate change could be important

factors in dengue fever outbreaks in Korean territory, including Jeju Island. The Korea Centers

for Disease Control and Prevention (KCDC) provided annual reports between 2001 and 2016

and monthly reports between 2012 and 2016 on cases of dengue fever [5]. According to the

data from the KCDC, the number of infected international travelers has gradually increased

since 2001. We estimate the inflow rate for each year between 2020 and 2070 by fitting the

annual data in Table 2 with the logistic function 897.9035 × (1 + e−0.2398(x−2018.8))−1 for the year

x, and compute the daily inflow rate by interpolating the monthly data in Table 3. The daily

inflow rate, or daily new infection rate by immigration, is denoted by η in the single-strain

model (1) and ηi, κi in the two-strain model (3). Let ηi = ξiη, κi = τiη, where ξi, τi are weights

satisfying
X2

i¼1

ðxi þ tiÞ ¼ 1 and Z ¼
X2

i¼1

ðZi þ kiÞ. We assume ξi = 0.3 and τi = 0.2 to satisfy

ξi> τi for i, j = 1, 2. Demographic parameters, such as the human birth rate (μhb) and death

Fig 3. Temperature based on RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 climate change scenarios on Jeju Island: (a) the five-year average daily temperature from

2020 to 2099, and (b) the five-year average daily precipitation from 2020 to 2099.

https://doi.org/10.1371/journal.pone.0199205.g003
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rate (μhd) on Jeju Island, were obtained from Statistics Korea [30]. These climate-independent

parameters are listed in Table 4.

Climate-dependent parameters. As described in the introduction, it is important to

include more realistic parameters for dengue transmission. We incorporate the following tem-

perature-dependent parameters: (1) b, the biting rate of an Aedes mosquito; (2) bm, the proba-

bility of infection from human to mosquito per bite; and (3) bh, the probability of infection

from mosquito to human per bite. We include mosquito life cycle parameters, such as (4) μv,
the mortality rate and (5) ω, the pre-adult maturation rate. The biting rate b is described by a

Brière function function [38]. Other parameter functions have been described over a tempera-

ture range of 10˚C� T� 33˚C in [18]. However, in Korea the average temperature in the win-

ter is much lower than 10˚C, and thus we estimate the parameter functions over a wider range

of temperatures T. We also include (6) ε, the virus incubation rate, which is estimated from

experimental data on the extrinsic incubation period for the range 13˚C–35˚C [40]; and (7) μl,
the larva mortality rate, which is related to the precipitation [15]. The expressions of these

parameter functions are as follows:

1. The biting rate b is

bðTÞ ¼
0:000202TðT � 13:35Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40:08 � T
p

ð13:35�C � T � 40:08�CÞ

0 ðT < 13:35�C;T > 40:08�CÞ

8
<

:

2. The probability bh of infection from mosquito to human per bite is

bhðTÞ ¼
0:001044TðT � 12:286Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32:461 � T
p

ð12:286�C � T � 32:461�CÞ

0 ðT < 12:286�C;T > 32:461�CÞ

8
<

:

Table 2. Reports on yearly cases of dengue fever from 2001–2016 (unit: cases per year).

Year 2001 2002 2003 2004 2005 2006 2007 2008

Cases 6 9 14 16 34 35 97 51

Year 2009 2010 2011 2012 2013 2014 2015 2016

Cases 59 125 72 149 252 154 255 313

https://doi.org/10.1371/journal.pone.0199205.t002

Table 3. Reports on monthly cases of dengue fever from 2012–2016 (unit: cases per month).

Year Total Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2012 149 4 7 5 6 3 9 20 26 24 18 16 11

2013 252 14 13 8 7 10 15 37 58 34 33 14 9

2014 165 13 8 5 6 10 14 32 26 11 18 17 5

2015 255 11 12 15 10 15 10 22 36 24 41 39 20

2016 313 32 36 32 23 18 22 39 42 24 13 18 14

Avr. 226.8 14.8 15.2 13 10.4 11.2 14 30 37.6 23.4 24.6 20.8 11.8

https://doi.org/10.1371/journal.pone.0199205.t003
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3. The probability bm of infection from human to mosquito per bite is

bmðTÞ ¼

� 0:9037þ 0:0729T ð12:4�C � T < 26:1�CÞ

1 ð26:1�C � T � 32:5�CÞ

0 ðT < 12:4�C;T > 32:5�CÞ

8
>>><

>>>:

4. Mortality rate μv of the adult mosquito is

mvðTÞ ¼ 8:692� 10� 1 � 1:590� 10� 1T þ 1:116� 10� 2T2 � 3:408� 10� 4T3 þ 3:809� 10� 6T4

Table 4. Descriptions and values of parameters.

Symbol Description Value Reference

ν Vertical infection rate of Aedes albopictus mosquitoes 0.004 [33]

1/α Latent period for human (day) 5 [34]

1/γ Infectious period for human (day) 7 [11, 33, 35]

1/αi Latent period for human with strain i (day) 5 [34]

1/γi Infectious period for human with strain i (day) 7 [11, 33, 35]

ϕ Effect of antibody-dependent enhancement 1.5 [36]

f Disease-induced mortality rate 0.005 [37]

μhb Human birth rate (day−1) 0.000020 [30]

μhd Human death rate (day−1) 0.000022 [30]

Nv(0) Initial number of mosquitoes 676000×2 [11, 30]

Nh(0) Initial number of human 676000 [30]

x1 Mosquito-to-human transmission probability 0.3841 estimated

x2 Human-to-mosquito transmission probability 1 estimated

θ Insecticide control rate for vectors (day−1) 0-0.02

b Biting rate (day−1) �� [38]

bh Probability of transmission of the virus per bite (v!h) (day−1) �� [39]

bm Probability of transmission of the virus per bite (h!v) (day−1) �� [39]

μl Mortality rates of the larvae (day−1) �� [15]

μv Mortality rates of the mosquitoes (day−1) �� [18]

ω Pre-adult maturation rate (day−1) �� [18]

ε Virus incubation rate (day−1) �� [40]

βvh Transmissible rate (v!h) (day−1) x1bbh [39]

βhv Transmissible rate (h!v) (day−1) x2bbm [39]

δ Number of new recruits in the larvae stage (day−1) μv Nv + μl Ne [33]

η New infection rate by immigration (day−1) �� [5]

ηi New primary infection rate by immigration for strain i (day−1) �� [5]

κi New secondary infection rate by immigration for strain i (day−1) �� [5]

(�� refer to the time-dependent parameters estimated in the climate-dependent parameters section. The vector control rate θ refers to increase in the death rate of

mosquitoes as μv(1 + θ).)

https://doi.org/10.1371/journal.pone.0199205.t004
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5. The pre-adult maturation rate ω is

oðTÞ ¼ 0:1310 � 0:05723T þ 0:01164T2 � 0:001341T3 þ 0:8723� 10� 4T4

� 0:3017� 10� 5T5 þ 0:5153� 10� 7T6 þ 0:342� 10� 6T7

Note that ω is zero for T�10˚C, because a larva cannot develop into a mosquito in this tem-

perature range [18].

6. The virus incubation rate ε is

εðTÞ ¼ � 1:678þ 0:344T � 2:422� 10� 2T2 þ 7:252� 10� 4T3 � 7:713� 10� 6T4

7. The mortality rate μl of a larva is

ml ¼ m0 1þ
Ne

kl

� �

Here, μ0 = 0.08 is the minimum mortality rate and kl = k0(Pnorm + 1), where k0 = 250, 000 is

the standard carry capacity in the environment for larvae, and Pnorm, whose value is

between 0 and 1, is the normalized value of the amount of rainfall summed over the prior

two-week period [15].

In Fig 4, the temperature-dependent functions are displayed as black dots, and the extended

functions fitted over a wider range of temperatures are displayed as red or blue dashed curves.

Transmission rates are defined as βvh = x1bbh and βhv = x2bbm, with transmission probabilities

x1 and x2, respectively. The transmission probabilities x1 = 0.3841 and x2 = 1 are estimated

from the 2014 dengue cases in Taiwan [41, 42] (see Fig 4(c), and refer to Section B in S1

Appendix for a detailed estimation). South Korea is located in East Asia, and Jeju Island expe-

riences warmer and milder weather than other parts of South Korea. Hence, we assume that

Jeju Island could have a similar climate to Taiwan over the next few decades. This is one reason

that we used Taiwan dengue cases to estimate the transmission probabilities in our model.

To estimate the virus incubation rate ε, we employ a 4th-order polynomial function to fit

the data with a zero value for the range T� 10.3˚C. Fig 4(f) illustrates the virus incubation rate

depending on the temperature.

In the winter season, especially when the temperature is below 10 ˚C, the biting and trans-

missible rates are almost zero, and the mortality rate of adult mosquitoes is high. Thus, during

this time period (below 10 ˚C), virus transmission rarely occurs between vectors and humans,

although infected humans can still be present owing to infected international travelers return-

ing from outside of South Korea.

Results

The simulation results predict the climate-dependent behavior of dengue outbreaks for human

and mosquito populations on Jeju Island, Korea. Climate changes are estimated for the RCP

2.6, RCP 4.5, RCP 6.0, and RCP 8.5 climate change scenarios. The total population size of the

island is 676,000, as estimated from [30]. The birth and death rates per day are 0.000020 and

0.000022, respectively [30]. The initial human and mosquito population sizes are given by

Nh = 676000 and Nv = 676000 × 2, respectively (concerning the results on different values of

Nv(0)/Nh(0), refer to Section C in S1 Appendix). We assume that the initial numbers of

Potential effects of climate change on dengue transmission dynamics in Korea
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infected mosquitoes and humans are zero so that the first infection is initiated by an inflow of

infected international travelers.

Dengue transmission dynamics based on RCP scenarios

In this section, we investigate the impact of various RCP scenarios on infectious mosquitoes

and infectious humans for 50 years from June 1, 2020. Fig 5 shows the time evolution of infec-

tious mosquitoes and the human incidence for the single-strain model. This demonstrates that

dengue outbreaks for humans and mosquitoes exhibit recurrent seasonal patterns. Fig 6

depicts the annual cumulative number of infectious mosquitoes and the cumulative number of

infectious humans over the 50 years in the single-strain model. This shows that higher-num-

bered RCP scenarios exhibit a tendency towards higher annual cumulative numbers of both

infectious mosquitoes and humans on a long-term scale.

Fig 7 shows the annual cumulative number of infectious mosquitoes and cumulative inci-

dence of humans over the 50 years in the two-strain model. From the results, we see that there

will be more infected mosquitoes and humans and fatalities in the RCP 8.5 scenario than the

other scenarios on a long-term scale.

Vectorial capacity and intensity under RCP scenarios

The vectorial capacity (VC) is a quantity describing the epidemic potential of a vector-born

disease, which represents the average number of potentially infectious contacts occurring for

the vector population per infectious host per unit time [9, 43]. Liu-Helmersson et al. [44]

investigated the effects of climate change on dengue transmission in Europe for the RCP

Fig 4. Temperature-dependent entomological parameters are displayed for various temperatures within the range 0˚C to 40˚C.

In (a)—(e), red dashed and blue solid curves represent the extended parameters for a wider temperature range, and the black dots are

values of fitting functions over the given temperature range. In (f), the red dashed curve represents the equation fitted using the black

dotted experimental data.

https://doi.org/10.1371/journal.pone.0199205.g004
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scenarios 2.6 and 8.5. They provided an explicit form of the VC with six temperature-depen-

dent parameters:

VC ¼
mb2bhbme�

mv
�

mv

ð4Þ

where m ¼ Nv
Nh

is the female vector-to-human population ratio and other parameters are

defined as in Table 4. Moreover, the basic reproduction number R0 of a vector-born disease

Fig 5. Single-strain model: (a) infectious mosquitoes and (b) incidence of humans are displayed over 50 years based on RCP 2.6

(black solid line), RCP 4.5 (green dashed line), RCP 6.0 (blue dotted line), and RCP 8.5 (red dash-dotted line). The initial conditions

are set to Ih(0) = 0, Iv(0) = 0, Nh(0) = 676000, and Nv(0) = 2 × 676000.

https://doi.org/10.1371/journal.pone.0199205.g005

Fig 6. Single-strain model: (a) annual cumulative number of infectious mosquitoes and (b) annual cumulative incidence of

humans are displayed over 50 years based on RCP 2.6 (black solid line), RCP 4.5 (green dashed line), RCP 6.0 (blue dotted line),

and RCP 8.5 (red dash-dotted line). The initial conditions are set to Ih(0) = 0, Iv(0) = 0, Nh(0) = 676000, and Nv(0) = 2 × 676000.

https://doi.org/10.1371/journal.pone.0199205.g006
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can be written as

R0 ¼
mb2bhbme�

mv
�

mvg
¼
VC
g
; ð5Þ

where γ is the recovery rate for humans [45]. Because an outbreak of the disease occurs when

R0 > 1 and it becomes extinct when R0 < 1, the critical value of the VC for a dengue epidemic

is VC� = γ. In order to observe changes in the potential for a dengue outbreak in our model, we

consider two factors: the expected duration of an epidemic risk as the number of days for

which VC> VC�, and the intensity of the VC defined as the average VC over the highest con-

secutive three months [44]. Fig 8 illustrates the average expected duration of epidemics and

the average VC for five years for each RCP scenario. The expected duration of epidemics

increases under all RCP scenarios, and increases by more than 30 days for the RCP 6.0 and 8.5

cases. Moreover, the intensity of the VC also increases in each RCP scenario, and it increases

more than two-fold for the RCP 6.0 and 8.5 cases. This implies that the dengue epidemic risk

increases if there is no control, and thus it is necessary to implement control strategies to

reduce the risk of dengue outbreak.

Correlation between cumulative dengue incidence and temperature

Fig 9 illustrates the relationship between the annual cumulative incidence of infected mosqui-

toes and the temperature based on the RCP 4.5 and 8.5 scenarios. Fig 9 implies that the annual

cumulative number of infected mosquitoes and the temperature exhibit a strong relationship.

To investigate this further, we compute the correlation between the annual cumulative number

of infected mosquitoes and the temperature based on the two RCP scenarios. This correlation

Fig 7. Two-strain model: (a) primary cumulative incidence of humans, (b) secondary cumulative incidence of humans,

(c) cumulative number of infectious mosquitoes, and (d) cumulative fatality cases are displayed over 50 years based on

RCP 2.6 (black), RCP 4.5 (green), RCP 6.0 (blue), and RCP 8.5 (red). The initial conditions are set to Iv1(0) = Iv2(0) = 0,

Ih1(0) = 0, Ih2(0) = 0, Nh(0) = 676000, and Nv(0) = 2 × 676000.

https://doi.org/10.1371/journal.pone.0199205.g007
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is commonly used to measure the strength of an association between two variables. As the

value of the correlation coefficient approaches 1, the relationship between the two variables

becomes stronger, and the directions of the relationship are sign + and sign −, which indicate a

positive and negative relationship, respectively. We carry out two measures of non-parametric

rank correlations: Spearman’s ρ and Kendall’s τ rank correlation coefficients [46]. Table 5 indi-

cates that the temperature and cumulative number of infectious mosquitoes exhibit a signifi-

cantly strong relationship.

Fig 8. Two-strain model: (a) The five-year average of the numbers of days that have a higher VC than γ is displayed for each year.

(b) The intensity is computed based on the average VC over the highest sequential three months for each five-year period.

https://doi.org/10.1371/journal.pone.0199205.g008

Fig 9. Two-strain model: Relationship between the cumulative number of infectious mosquitoes and temperature

based on the RCP 4.5 (green) and RCP 8.5 (red) scenarios.

https://doi.org/10.1371/journal.pone.0199205.g009

Potential effects of climate change on dengue transmission dynamics in Korea

PLOS ONE | https://doi.org/10.1371/journal.pone.0199205 June 28, 2018 14 / 23

https://doi.org/10.1371/journal.pone.0199205.g008
https://doi.org/10.1371/journal.pone.0199205.g009
https://doi.org/10.1371/journal.pone.0199205


The effects of travel restrictions and vector controls

Global warming combined with increases in the number of international travelers may trigger

a potential risk for dengue outbreaks on Jeju Island. Here, we investigate the effects of two con-

trol strategies that should be implemented as countermeasures. The first control restricts infec-

tious international travelers to Jeju Island, and the second reduces the vector population size

by spraying insecticides. The first control can be achieved through multiplying the inflow rate

of travelers by (1 − u). For the single-strain model, η is replaced by η(1 − u), where u is the

reduction rate of a control strategy (0� u� 1). Likewise, in the case of our two-strain model

ηi and κi are replaced by ηi(1 − u) and κi(1 − u), respectively. Similarly, the insecticide control

for vectors can be modeled by increasing the death rates of vectors as μv(1 + θ) with a small

positive number θ in both the single-strain and two-strain models.

We explore the effects of travel restriction and vector controls on cumulative dengue cases

for vectors and humans. First, the results for the single-strain model are presented in Fig 10. In

the upper left subfigure of Fig 10, the annual cumulative incidences for vectors and humans

are displayed using three different levels of travel restriction controls (u = 0: no control, u = 0.5

and u = 0.9: 50% and 90% reduction in the travel inflow rate, respectively). Clearly, the annual

cumulative incidence decreases as u increases. Moreover, Fig 10 illustrates the results under

combined control scenarios (travel restrictions and vector controls). Combined control is

highly effective. Even a 0.5% increase in the vector control leads to a significant reduction in

the annual cumulative incidence of humans (see the top panels with θ = 0.005). Moreover, the

average Rs over all months decreases to under 1 as θ increases to 2%. Fig 11 and Table 6 display

the effects of both controls on cumulative dengue cases in the two-strain model. These results

indicate that the implementation of both intensive controls reduces the number of dengue

cases dramatically. Therefore, travel restrictions alone are insufficient, and must be combined

with vector controls.

Sensitivity analysis

We perform a sensitivity analysis on both the constant and temperature-dependent parame-

ters. We define the normalized forward sensitivity index of the cumulative incidence as follows

[47]:

rðCIÞp ¼
@ðCIÞ
@p
�

p
ðCIÞ

:

We randomly select 100 sets from a uniform distribution in the range of ± 10% of the base-

line constant parameters in Table 4. Fig 12 shows the elasticity of the cumulative incidence

(CI) with respect to the parameters. Setting June 1, 2020 as day 1, we compute the CI of infec-

tious humans from day 1 to day 365 (one year). Fig 12 illustrates the elasticity of the cumulative

Table 5. Correlation between cumulative number of infectious mosquitoes and RCP scenarios.

Spearman Kendall Spearman Kendall

RCP ρ p τ p ρ p τ p
2.6 0.658 4.840 1E-7 0.473 1.33 1E-6 0.648 7.92 1E-7 0.466 1.86 1E-6

4.5 0.914 0 0.752 1.41 1E-14 0.924 0 0.765 4.90 1E-15

6.0 0.819 0 0.628 1.33 1E-10 0.821 0 0.631 1.06 1E-10

8.5 0.907 0 0.744 2.70 1E-14 0.912 0 0.755 1.08 1E-14

(a) Single-strain model (b) Two-strain model

https://doi.org/10.1371/journal.pone.0199205.t005
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incidence in the two-strain model. The cumulative incidence from day t1 to day t2 is defined as
R t2
t1
ða1Eh1ðtÞ þ a2Eh2ðtÞ þ a1Eh21ðtÞ þ a2Eh12ðtÞÞdt, where t1 = 1, t2 = 365. Here, αi and ϕ are

weakly positive influential parameters. Moreover, γi exerts the strongest negative influence on

the CI among all the constant parameters. If γi is relatively increased by 20%, then the CI

decreases by about 10%.

Sensitivity analysis of temperature-dependent parameters. We investigate the effects of

temperature-dependent parameters on the seasonal reproduction number (Rs). Fig 13 illus-

trates the changes in the temperature-dependent parameters under the RCP 8.5 scenario over

365 days beginning June 1, 2020. The maturation rate (ω), virus incubation rate (ε), and

Fig 10. Single-strain model: (a) the annual cumulative incidence for humans and (b) the monthly averaged Rs are compared corresponding to θ =

0 (top), θ = 0.005 (second row), θ = 0.01 (third row), and θ = 0.02 (bottom). The climate data is based on the RCP 8.5 scenario.

https://doi.org/10.1371/journal.pone.0199205.g010
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transmissible rates (βhv and βvh) are maintained at high levels between day 1 and day 100, dur-

ing the summer season. On the other hand, the mortality rate of mosquitoes (μv) is close to

zero during this time interval.

Fig 14(a) shows the daily temperature (˚C) for RCP 8.5 and the range of a random sampling

for each temperature. Fig 14(b) investigates the relationships between the parameters on Rs at

Fig 11. Two-strain model: (a) the annual cumulative incidence for humans and (b) cumulative number of infectious

mosquitoes are compared corresponding to θ = 0 (top), θ = 0.005 (second row), θ = 0.01 (third row), and θ = 0.02 (bottom) over

50 years depending on u = 0 (black), 0.5 (blue), 0.9 (red) to control the inflow rate of travelers. The climate data is based on the

RCP 8.5 scenario.

https://doi.org/10.1371/journal.pone.0199205.g011

Table 6. Two-strain model: The total number of cumulative incidences depending on control scenarios of dengue

mosquitoes and infected travelers.

θ = 0 θ = 0.005 θ = 0.01 θ = 0.02

u = 0 29138 2732 1311 815

u = 0.5 14917 1368 656 408

u = 0.9 3042 274 131 82

https://doi.org/10.1371/journal.pone.0199205.t006

Potential effects of climate change on dengue transmission dynamics in Korea

PLOS ONE | https://doi.org/10.1371/journal.pone.0199205 June 28, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0199205.g011
https://doi.org/10.1371/journal.pone.0199205.t006
https://doi.org/10.1371/journal.pone.0199205


a specific time point. We clearly observe that the mortality rate is a negative parameter, but the

other parameters are positive parameters on Rs at day 150.

Discussion

Recently, the climate of South Korea has changed from a warm temperate climate to a subtrop-

ical climate [48, 49], and this will make South Korea environmentally suited to the life cycles of

mosquitos in the near future [50, 51]. In particular, dengue fever is predicted to be one of the

most likely infectious diseases to threaten public health in Korea [6]. Recently, Japan, which is

a neighboring country of Korea, has suffered an unexpected autochthonous dengue outbreak

[52]. In the case of Korea, no indigenous dengue case has occurred so far, and all cases of infec-

tion have been diagnosed in travelers returning from endemic countries [5, 7]. However, it has

been reported that the imported dengue cases in Korea and Japan exhibit a similar pattern [7],

and the climate change and growing tendency in dengue cases for overseas travelers may trig-

ger an autochthonous outbreak in South Korea [6, 7]. To the best of our knowledge, there has

been no prior modeling study concerning the risk analysis for autochthonous dengue out-

breaks associated with climate change in South Korea.

In order to investigate the risk of autochthonous dengue outbreaks in South Korea, we first

constructed dengue transmission models for primary and secondary infections with climate-

dependent parameters. These climate-dependent parameters were estimated from previous

studies (experimental data and actual dengue cases). To estimate the transmission probabilities

between mosquitoes and humans, we used dengue incidence data from Taiwan, because there

Fig 12. Elasticity of the cumulative incidence of humans: The two-strain model under the initial conditions

Iv1(0) = Iv2(0) = 0, Ih1(0) = 0, Ih2(0) = 0, Nh(0) = 676000, and Nv(0) = 2×676000.

https://doi.org/10.1371/journal.pone.0199205.g012
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have not yet been any indigenous dengue cases in Korea. The transmission probabilities could

be estimated more accurately if indigenous dengue cases in Korea occur in the future.

Most of the modeling studies on dengue transmission associated with climate factors have

focused on investigating the effects of temperature on the disease transmission [8–11, 18, 19,

38]. In this work, we incorporated the effects of rainfall as well as the temperature into our

models. In particular, mosquito larvae inhabit bodies of water such as rivers, lakes, ponds, and

Fig 14. Random sampling: (a) Daily temperature based on RCP 8.5 (red solid) and the range of sampling for each

temperature (blue line). (b) Partial rank correlation coefficients on Rs at day 150.

https://doi.org/10.1371/journal.pone.0199205.g014

Fig 13. Daily temperature-dependent parameters are displayed over time based on the RCP 8.5 scenario starting on

June 1, 2020. (a) Pre-adult maturation rate (ω), (b) transmissible rate (βhv, βhv), (c) virus incubation rate (ε), and (d)

mortality rate (μv).

https://doi.org/10.1371/journal.pone.0199205.g013
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swamps, and their mortality rate depends strongly on the amount of rainfall [15]. Thus, in our

models we represented the larval mortality rate as a function of the amount of rainfall, so that

the rainfall can affect the dynamics of dengue transmission.

Our study focused on Jeju Island, which has a warmer climate than other parts of South

Korea. Thus, Jeju Island has a higher chance of having a favorable climate for Aedes mosqui-

toes [26, 51]. RCP scenario-based climate data for all city areas in Korea are currently pro-

vided by the Korea Meteorological Administration (KMA), and using these data the

modeling approach presented in this paper could also be used to investigate the potential

risks of dengue outbreak associated with climate change in other areas, such as subtropical

southern city areas in Korea other than Jeju. Recent research has shown that over 20% of

mosquitoes collected in South Korea are Aedes mosquitoes, and in particular the propor-

tions of Aedes mosquitoes in park or hill areas are higher than those in dwelling areas [53].

Thus, one possible application of our modeling approach and a direction for our future

work is motivated by the recent domestic dengue outbreak in Yoyogi Park, Tokyo, Japan

[54]. This would consist of developing a two-patch model of dengue transmission [17] for

dengue outbreaks between park/hill and dwelling areas in big cities such as Seoul or Busan

in Korea.

Using the developed models, we illustrated the impact of climate change on the dynamics

of dengue transmission in Jeju Island under various RCP scenarios provided by the KMA.

Based on the RCP scenarios, the potential risk of dengue outbreak was assessed via the vecto-

rial capacity (VC) over the next 50 years. We found that the intensity of the VC increases for

higher RCP scenarios, which implies that the increase in average temperature owing to cli-

mate change may trigger a major dengue outbreak in Korea. It was also observed that the

cumulative incidence of dengue mosquitoes and the temperature based on RCP scenarios

exhibit a strong positive correlation. In particular, in case of RCP 8.5 a gradual increase in the

temperature was predicted over the next 50 years, and massive dengue outbreaks may occur

if adequate controls are not implemented. Concerning the controls of dengue transmission,

we investigated the effects of controls for adult mosquitoes and infected travelers. If the cost-

effectiveness of the two controls can be computed in future work, this would be of further

help to the disease prevention authorities in implementing timely and effective control

measures.

Conclusion

In this paper, we developed dengue transmission models for primary and secondary infec-

tions with climate-dependent parameters to incorporate global warming effects into vector

dynamics. We explored the impact of climate change on dengue transmission dynamics

under Representative Concentration Pathway (RCP) scenarios. Moreover, we assessed the

potential risks for dengue outbreaks via vectorial capacity and intensity, and we derived a for-

mula for the seasonal reproduction number Rs, which can be useful for analyzing the effects

of climate change on the dengue transmission dynamics. Furthermore, we investigated the

effects of controls by modifying two important factors of dengue transmission: the inflow

rate of international travelers into Korea and the death rate of dengue mosquitoes. Control-

ling the inflow rate of infected international travelers is the main current control policy

implemented by Korean governmental agents. However, controlling dengue mosquitoes in

combination with the control of the inflow rate is highly effective. The results suggest that

governmental agents should increase their efforts and budgets for controlling Aedes mosqui-

toes as well as infected humans, to reduce the risk of a dengue outbreak in Korea in the near

future owing to climate change.
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