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Abstract
Tuberculosis (TB) is a contagious disease that predominantly affects the lungs, but can also spread to other organs via the 
bloodstream. TB affects about one-fourth population of the world. With age, the effectiveness of Bacillus Calmette-Guérin 
(BCG), the only authorized TB vaccine, decreases. In the quest for a prophylactic and immunotherapeutic vaccine, in 
this study, a hypothetical mRNA vaccine is delineated, named MT. P495, implementing in silico and immunoinformatics 
approaches to evaluate key aspects and immunogenic epitopes across the PstS1, a highly conserved periplasmic protein of 
Mycobacterium tuberculosis (Mtb). PstS1 elicited the potential to generate 99.9% population coverage worldwide. The pres-
ence of T- and B-cell epitopes across the PstS1 protein were validated using several computational prediction tools. Molecular 
docking and dynamics simulation confirmed stable epitope-allele interaction. Immune cell response to the antigen clearance 
rate was verified by the in silico analysis of immune simulation. Codon optimization confirmed the efficient translation of 
the mRNA in the host cell. With Toll-like receptors, the vaccine exhibited stable and strong interactions. Findings suggest 
that the MT. P495 vaccine probably will elicit specific immune responses against Mtb. This mRNA vaccine model is a ready 
source for further wet-lab validation to confirm the efficacy of this proposed vaccine candidate.
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Introduction

Tuberculosis (TB) is a transmissible disease that is charac-
terized by the infection of the opportunistic bacterial spe-
cies Mycobacterium tuberculosis (Mtb), primarily targeting 
the lung [1, 2]. TB is initiated when Mtb is deposited onto 
the surface of the lung alveoli from the airborne droplets 
containing the pathogen. Pathogen-containing droplets are 
mostly dispersed by people with active pulmonary or laryn-
geal TB. Inhalation of these droplets results in symptoms 
such as persistent cough, fever and night sweats [3, 4].

The most common cause of mortality caused by a single 
infectious agent is TB [5]. In 2020, 1.44 million individuals 
died, with 214,000 of them being HIV-positive [6]. Around 
1.7 billion people were latently infected with Mtb in 2014, 
almost a quarter of the world population [7]. Generally, 
individuals with a healthy immune system can suppress the 
growth of Mtb, but the situation gets complicated for immu-
nocompromised patients (e.g. HIV infected or patients with 

diabetes) who cannot generate enough immune response to 
suppress the progression of infection [1, 4, 5, 8].

Pulmonary macrophages play a critical role in the pri-
mary immune response against Mtb upon entry while a 
minimum of 12 days are required for the CD4+ T-cells after 
aerosol infection to respond [9–11]. During this period, Mtb 
increases its population number by > 20,000-fold [9]. Mtb is 
readily phagocytized by the macrophages present in alveoli. 
Most often the entering bacteria are killed by these mac-
rophages. But some bacteria can escape from being phago-
cytized and they start to proliferate within the macrophage 
as an intracellular parasites [10].

To provide better protection against Mtb, vaccination is 
a must as the adaptive immune system requires a lot of time 
to be activated against this pathogen. Moreover, studies on 
Mtb infected patients have revealed the presence of various 
multidrug-resistant strains as well as extensively drug-resist-
ant strains [12]. Currently, the only available approved vac-
cine against TB is Bacillus Calmette-Guérin, BCG [12, 13]. 
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BCG is generally injected into newborn babies which pro-
tects them from Mtb till the age of 10 years [8]. For adults, 
the efficacy of the BCG vaccine varies greatly between 0 
and 80% [12]. Several vaccines are in clinical trial, showing 
promising results. For instance, the M72/AS01E vaccine, a 
subunit vaccine, is showing very good results in its clinical 
trial [14]. Although there are several vaccines in the clinical 
trial phase, currently there is no mRNA-based vaccine devel-
oped for TB, neither in the clinical trial phase nor licensed.

mRNA vaccines are a rapidly developing area. A vast 
amount of preclinical evidence has been obtained recently, 
and several human clinical trials have begun [15]. Based on 
this evidence, mRNA is now considered a safe and effec-
tive alternative to (subunit) protein, chimeric virus, and even 
DNA-based therapies in the form of vaccination [16]. The 
transient expression and accumulation of selected antigens 
in the cytoplasm are induced by mRNA.

The proteasome in the cytoplasm of antigen-presenting 
cells (APCs) can breakdown the antigen into peptides. In the 
endoplasmic reticulum, the peptides with antigenic prop-
erties, are complexed with nascent major histocompatibil-
ity complex (MHC) class I molecules. The peptide–MHC 
complexes can then activate CD8+ cytotoxic T (Tc) cells 
when they are expressed on the surface of the cell membrane 
of APCs. CD4+ helper T (Th) cells are activated by MHC 
class II–peptide complexes expressed on the surface of the 
cell membrane of APCs. Antigens, secreted by, or released 
from dead cells that have uptaken and translated the exog-
enous mRNA, can bind with B-cells within the extracel-
lular matrix, activating these cells. As a result, all adaptive 
immune effectors, including B lymphocytes, Tc-cells and 
Th-cells, will be activated by mRNA-based vaccines [16, 
17].

In silico analysis of target proteins has simplified the 
identification of immunogenic B- and T-cell epitopes in the 
proteins, facilitating the detection of the antigenic epitopes 
specifically having the potential of eliciting an immune 
response in particular [18]. Because in silico predictions can 
minimize the number of experiments required, this strategy 
is both cost-effective and convenient [19, 20]. However, in 
silico vaccine design strategy seems to be quite effective, 
but it might not be efficient enough to catch pace with the 
advent of newer pathogens. All findings must be thoroughly 
and extensively analyzed in order to identify antigenic 
regions for designing an effective vaccine, which presents 
a substantial overhead and can be time-intensive [21]. This 
technique has been successfully implemented to develop a 
vaccine against various pathogens, for example, serogroup 
B Neisseria meningitides (MenB) [22].

In this study, an mRNA vaccine has been modeled, named 
MT. P495, using several bioinformatics tools targeting the 
phosphate-binding protein PstS1 of Mtb and also has been 
tested computationally for its ability to elicit immunogenic 

response and safety, predicted several types of T-cell and 
B-cell epitopes present within this antigen and their ability 
to generate an immune response within the host body. PstS1 
protein is an immunodominant, TLR-2 agonist, inorganic 
phosphate up-taking lipoprotein found on the cell membrane 
surface of Mtb and also exhibits function as an adhesion 
molecule that facilitates binding with macrophage through 
mannose receptor (MR). This mRNA vaccine model thus 
serves as ready to test model in vivo by experimentalists 
and industries.

Materials and methods

A graphical depiction of the workflow is represented in 
Fig. 1A.

Retrieval of protein sequence and 3D structure

A total of 3470 sequences of phosphate-binding protein 
PstS1 of Mtb were retrieved from the NCBI [23] data-
base. The retrieved protein sequences had a length of 374 
amino acids. The first 23 amino acids were the signal pep-
tide and the rest of them encoded the PstS1 protein. Mul-
tiple sequence alignment (MSA) between the retrieved 
sequences was performed using the Clustal Omega [24] 
and the result was analyzed using the JalView [25]. The 
consensus sequence was retrieved from JalView and was 
used for sequence-based epitope prediction. The consensus 
sequence was 100% identical to the reference sequence of 
PstS1 retrieved from UniProt [26] (UniProtKB accession 
number P9WGU1). The X-ray crystal structure Mtb H37Rv 
PstS1 was obtained from RCSB PDB [27] (PDB ID-1PC3) 
for the prediction of structure-based discontinuous B-cell 
epitope.

Identification of cytotoxic T‑lymphocyte (CTL) 
epitopes

To predict CD8+ CTL epitopes, NetCTL 1.2 Server [28] 
was used. The NetCTL server predicts CTL epitopes in a 
given protein sequence using the stabilized matrix base 
method [29]. The threshold level for prediction of a CTL 
epitope was set at 0.5 with a specificity of 0.94 along with a 
sensitivity of 0.89. Further analysis was performed on pre-
dicted epitopes with a higher combined score.

SMMPMBEC prediction method [30] of the T-cell 
epitope prediction resource of the Immune Epitope Database 
(IEDB) [31] was utilized to predict both types of MHC-
I-binding alleles, occurring frequently as well as non-fre-
quently. The half-maximal inhibitory concentration  (IC50) 
threshold was set at 250 nM.
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Fig. 1  Graphical presentation of A steps involved in modeling an mRNA-based vaccine and B mRNA of the MT. P495 vaccine
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Helper T‑lymphocyte (HTL) epitopes identification

The T-cell epitope prediction resource of the IEDB server 
was used to predict promiscuous CD4+ HTL epitopes. The 
NN-align 2.3 (NetMHCII 2.3) method [32] was employed in 
this study to predict MHC-II-binding alleles. Peptide length 
was set to be 15. For further analysis, predicted peptides hav-
ing an  IC50 value less than 50 nM were considered.

Evaluation of the selected epitopes

For the analysis of antigenic, allergenic and toxic properties 
of all predicted epitopes, VaxiJen v2.0 server [33], AllerTOP 
v.2.0 server [34] and ToxinPred server [35] were employed 
respectively. Based on an alignment-independent manner, 
VaxiJen predicts the antigenic probability of a given peptide 
[33]. In this study, the target organism was set to bacteria and 
the threshold was set to 0.5. For the categorization of aller-
genic and nonallergenic peptides, AllerTOP v.2.0 utilizes 
the k-nearest neighbours (kNN) method [34]. Employing 
both the dipeptide-based SVM algorithm and the MEME/
MAST algorithm, the ToxinPred can predict the toxicity of 
the given peptide [35]. Using the IEDB conservancy analysis 
tool, the conservancy of the epitopes was determined [36] 
using a 100% sequence identity threshold.

Cytokine inducing ability of the HTL epitopes was sub-
ject to further assessment. IL4pred server [37] was used 
to predict the interleukin-4 (IL4) inducing ability of the 
selected peptides while Interleukin-10 (IL10) inducing abil-
ity was assessed using the IL10pred server [38]. Another 
property that was assessed of the HTL peptides was the 
interferon-γ (IFN-γ) inducing probability. IFNepitope server 
[39] was used in this study.

Estimation of population coverage

The population coverage of the selected CTL and HTL 
epitopes was evaluated. Employing the population cover-
age tool [40] of the IEDB server, population coverage of 
the selected epitopes and their corresponding MHC HLA-
binding alleles was predicted.

Prediction of three‑dimensional (3D) structure 
of the epitopes and HLA proteins

After confirmation of epitope antigenicity, non-allergenic-
ity, non-toxicity, conservancy and the availability of alleles, 
the 3D structure of the selected 8 CTL peptides, as well 
as 3 HTL peptides, were predicted using the PEP-FOLD 
server at the Ressource Parisienne en Bioinformatique Struc-
turale (RPBS) Mobyle Portal [41]. The five most probable 

structures were predicted by the server for each peptide 
sequence. For further investigation, the best-predicted struc-
ture with the lowest energy model was chosen.

In this study, HLA-C*12:03 and HLA-DRB1*01:01 were 
used for the validation of the binding of selected epitope 
and HLA molecules. The 3D structure of HLA-DRB1*01:01 
was retrieved from RCSB PDB (PDB ID 4I5B). 3D struc-
ture of HLA-C*12:03 being unavailable in PDB, SWISS-
MODEL server [42] that performs homology-based mod-
eling, was used for the prediction of the 3D structure of this 
molecule. The sequence of the HLA-C*12:03 was retrieved 
from IPD-IMGT/HLA Database [43] (IMGT/HLA Acces-
sion No. HLA00455). The predicted structure was validated 
using PROCHECK [44], MolProbity [45], ProSA-web [46] 
and QMEAN [47].

Molecular docking of the selected epitopes

To confirm the interaction between the selected alleles 
and their respective epitopes, at the DINC 2.0 web-server 
[48], molecular docking was carried out following the pro-
tocol described elsewhere [49]. The box centre was set at 
13.7, − 60.0, and − 20.2 Å in the X, Y, and Z axes, respec-
tively, to predict the binding energy of HLA-C*12:03 with 
an epitope. Similarly, to predict the binding affinity of 
HLA-DRB1*01:01 with an epitope, the box centre, in this 
case, was set at 39.9, 47.5 and 93.0 Å in the X, Y, and Z 
axes, respectively. In both cases, box size was also set to 
automatic (based on ligand). Results from this server were 
further analyzed using BIOVIA Discovery Studio [50] and 
UCSF Chimera [51].

Molecular dynamics simulation

Following a procedure described elsewhere [49], MD sim-
ulations were carried out employing GROMACS (v2021) 
[52]. For the simulation process, CHARMM36 all-atom 
additive force field [53] was used. The protein was cleaned 
using UCSF Chimera dock prep functionality, and then 
missing residues were added by using the Dunbrack rotamer 
Library, employing an in-house python script. GROMACS 
pdb2gmx tool was used in order to add hydrogens to the 
protein. The GROMACS program was used to generate 
the protein topology for HLA and epitope. The system 
was contained within a cubic box of a simple point charge 
extended (SPC/E) water model [53], with a minimum dis-
tance of 1.0 nm between the wall and any component of the 
protein. The system was neutralized by adding an aqueous 
solution of  Na+ (sodium) and  Cl− (chloride) to a 0.15 M 
ionic strength.

For 100 picoseconds (ps), the system was equilibrated 
utilizing the NVT and NPT ensemble. For the next 100 ps 
under an isothermal ensemble, soft coupling with the 
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Berendsen thermostat (NVT) [54] was used to progressively 
heat the minimized system to target temperatures. Position 
restrictions to the ligand were imposed before performing 
NVT simulations to prevent the ligand from drifting away 
from the protein during equilibration. Employing the LINCS 
algorithm [55], all of the bonds were restricted. At a tem-
perature of 300 K, the NPT ensemble (constant pressure, and 
constant temperature simulation criteria) was performed, 
employing periodic boundary conditions (PBC).

The system was then coupled to a Parrinello–Rahman 
barostat [56] for an equilibration period of 100 ps at 1 bar 
of pressure. The Particle Mesh Ewald (PME) method was 
employed to process the electrostatic interactions. With 
a cutoff of 1.0 nm, the short-range van der Waals cutoff 
(rvdW) interactions were computed. Simulations were run 
for 100 ns. GROMACS was used to compute the root mean 
square deviation (RMSD), root mean square fluctuation 
(RMSF), radius of gyration (Rg), solvent accessible surface 
area (SASA) (using van der Waals Volumes and Radii) [57] 
and hydrogen bond (H-bond). In-house Python script with 
Matplotlib [58] and NumPy [59] library, as well as [R] (ver-
sion 3.6.3) [60] Peptides library [61] were used to generate 
trajectory plots and figures.

Conformational B‑cell epitopes identification

The conformational B-cell epitopes were identified by using 
the ElliPro [62] tool of the IEDB. ElliPro can identify both 
the linear and conformational B-cell epitopes based on the 
3D structure of the given protein. In this study, the minimum 
PI (protrusion index) score was set to 0.5 and the maximum 
distance was set to 6 Å for the prediction of conformational 
B-cell epitopes.

Linear B‑cell (LBL) epitopes identification

To predict LBL epitope, linear B-cell epitope prediction 
tool from IEDB was used. Epitopes were predicted using 
Emini surface accessibility prediction [63], BepiPred Linear 
Epitope Prediction 2.0 [64], Kolaskar and Tongaonkar anti-
genicity [65] and Karplus and Schulz flexibility prediction 
method [66], present at the IEDB server. Epitopes having a 
length between 10 and 40 amino acids were selected. Linear 
epitopes predicted by ElliPro were also selected. Antigenic-
ity, allergenicity, toxicity and conservancy of the selected 
epitopes were assessed as described earlier.

Immune simulation of the epitopes

At the C-ImmSim server [67], in silico immune simula-
tion was carried out for the characterization of the immune 
response profile of the selected peptides. Two injections 
of the target antigen were administered 4 weeks apart at 1 

and 84 time-steps (wherein, the first dose is administered at 
time = 0 and each time-step is corresponding to 8 h in real 
life) with a dose of 1000 antigen proteins each, containing 
no LPS. The simulation was conducted for 5000 simulation 
steps. Host HLAs were selected according to their occurring 
frequency. Frequently occurring HLA alleles were selected 
to perform the study. Other simulation parameters were kept 
default.

Designing the vaccine mRNA construct

The open reading frame (ORF) of a conventional mRNA-
based vaccine consists of five fundamental parts. The target 
antigen, also known as the gene of interest (GOI) is linked 
with an adjuvant by a linker. This construct is flanked by 5′ 
and 3′ untranslated regions (UTRs) and a terminal poly(A) 
tail. The 5′ end is capped by Cap1 (m7GpppNm) Cap. In 
this study, PstS1 was used as the GOI which exhibited high 
immunogenic activity in several studies [68–70]. As an adju-
vant, 50S ribosomal protein L7/L12 (UniProtKB accession 
number P9WHE3) from Mtb was used while the signal pep-
tide from the tissue plasminogen activator (tPA, UniProtKB 
accession number P00750) of Homo sapiens was also used.

Two peptide linkers were used to join the polypeptide 
chains. GGGGSEAAAKGGGGS linker was used to link 
the GOI and the adjuvant. Another peptide linker, AAY 
was used between the signal peptide and the adjuvant. In 
this study, the 5′ UTR from human β-globin gene (NCBI 
accession number NM_000518.5) along with the 3′ UTR 
from rabbit β-globin gene (GenBank [71] accession number 
V00882.1) were used to flank the construct. A 120-nucleo-
tides (nts) long poly(A) tail was added to complete the vac-
cine construct (Fig. 1B). The construct was named MT. 
P495.

Optimizing codons and predicting secondary 
structure of the vaccine mRNA

For the vaccine mRNA to be efficiently translated by the host 
cells, codon optimization is important. Therefore, the codons 
of the final vaccine construct were optimized for efficient 
expression in human cells using several codon optimization 
tools; JCat [72], GeneArt Instant Designer by Thermofisher, 
GenSmart™ Codon optimization by GenScript (GS), Codon 
Optimization Tool by Integrated DNA Technologies (IDT). 
The quality of the optimized codons was analyzed Using 
Rare Codon Analysis tools by GS. This tool can predict the 
efficiency of the translation of the mRNA expressed as the 
codon adaptation index (CAI) value. Also, the presence 
of any tandem unusual codons can be detected, shown as 
codon frequency distribution (CFD). Based on these param-
eters, the best-optimized sequence was chosen for further 
assessment.
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The secondary structure of the mRNA construct was pre-
dicted using the RNAfold tool of ViennaRNA Package 2.0 
[73]. Both the minimum free energy (MFE) structure and the 
centroid secondary structure of the mRNA were obtained 
from this tool along with their MFE.

Physicochemical properties assessment 
of the vaccine peptide

For the assessment of physiochemical properties, several 
bioinformatics tools were used. tPA signal sequence was 
excluded as this segment will be cleaved by the protease, 
only the adjuvant and the target antigen were assessed for 
various properties. To predict the antigenicity of this peptide 
segment, VaxiJen v2.0 [33] and ANTIGENpro [74] were 
used. Allergenicity of the peptide was predicted using Aller-
TOP v.2.0 [34]. The toxicity of the peptide was predicted 
using ToxinPred [35]. Various physiochemical properties 
[i.e., theoretical isoelectric point (pI), instability index (II), 
aliphatic index (AI), and grand average of hydropathicity 
(GRAVY)] were predicted using ProtParam [75]. Adhesin 
probability was checked using Vaxign [76].

Prediction of secondary and three‑dimensional 
structure of vaccine peptide

To predict the secondary structure of the vaccine peptide 
the PSIPRED server was used [77]. The secondary structure 
of a particular protein sequence is predicted by this server 
employing position-specific scoring matrices [77, 78]. For 
the prediction of the 3D structure of the vaccine peptide, the 
Robetta server was utilized [79]. Robetta server predicts the 
3D structure of a given protein sequence by combining the 
data from SPIDER3, PSIPRED, DeepConCNF, DISOPRED 
and TMHMM server. The predicted structures were vali-
dated using PROCHECK [44], MolProbity [45], ProSA-web 
[46] and QMEAN [47].

Molecular docking of the vaccine peptide

To confirm the interaction between the vaccine peptide and 
Toll-like receptors (TLRs) and human MR, the molecular 
docking analysis was performed at the ClusPro server [80]. 
Crystal structure of TLR-2 (PDB ID 6NIG), TLR-4 (PDB ID 
4G8A) and CysR-CTLD3 fragment of human MR (PDB ID 
5XTS) were retrieved from PDB and were used in the dock-
ing analysis as the receptor molecule. The vaccine peptide 
was used as the ligand molecule.

The binding energy of receptor-ligand interaction was 
predicted using the PROtein binDIng enerGY prediction 
(PRODIGY) tool of the HADDOCK server [81] from their 
bound 3D structure. The binding free energy (ΔG), as well 
as the dissociation constant (Kd), can be predicted by the 

PRODIGY server, based on intermolecular contacts and 
properties obtained from non-interface surfaces.

Molecular dynamics simulation of the vaccine–TLR4 
complex

The molecular dynamics (MD) simulation was performed to 
check the stability of the vaccine–TLR4 complex employing 
the iMODS server [82]. The analysis of complex mobility 
(NMA B-factors), eigenvalues, deformability, covariance 
map and linking matrix based on the 3D structure of the 
given protein–protein complex were performed on this 
server.

In silico cloning

The manufacturing process of vaccine mRNA begins with 
the generation of a plasmid that contains a specific DNA-
dependent RNA polymerase promoter along with the 
sequence of the mRNA construct and in vitro transcription 
(IVT) approach is widely used for large-scale production 
of mRNA [83]. To generate a recombinant plasmid, under 
SpeI and NheI restriction sites at the N and C terminals, the 
codon-optimized vaccine construct sequence was created as 
a cloning insert for the pJAZZ-OK® vector. The promoter 
and termination sequence specific to the T7 polymerase was 
introduced to the cloning insert. The recombinant plasmid 
was designed by inserting the adapted codon sequence of the 
vaccine construct into the pJAZZ-OK® cloning vector using 
the SnapGene software (from Insightful Science; available 
at snapgene.com). The pJAZZ-OK®, a linear plasmid was 
used as the cloning vector. For IVT mRNA production, lin-
ear plasmids can be used for the successful propagation of 
poly(A) tracts up to ≃500 bp in length [84].

Results

Multiple sequence alignment of PstS1 revealed high 
conservancy

A total of 3470 complete PstS1 protein sequences (Supple-
mentary Table 1), available at NCBI, were retrieved and 
subject to MSA, which revealed that the PstS1 protein is 
highly conserved (Supplementary Fig. S1). Surprisingly, the 
consensus sequence was 100% identical with the reference 
sequence of that protein, retrieved from UniProt. The first 23 
amino acids of this protein are annotated as a signal peptide. 
The rest of the amino acids were subject to analysis for vac-
cine formulation.
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Several T‑cell epitopes were identified

CTL epitopes were identified using the NetCTL 1.2 server. 
A set of 98 epitopes that interact with any of the MHC 
class I allele supertype families with a combined score 
above 0.50 were primarily selected. The  IC50 value for the 
selected epitopes was predicted and all of them had an  IC50 
value less than 250 nM and were further analyzed.

The T-cell epitope prediction resource of the IEDB 
server was used for the identification of HTL epitopes. 
The NN-align 2.3 (NetMHCII 2.3) method was used for 
the identification. For further analysis, 162 epitopes with 
 IC50 values less than 50 nM were chosen.

For the vaccine to be effective against the various 
strains of the targeted protein, epitope conservation is 
important. An epitope with a higher conservancy would 
be a better target for improved vaccine design. Conserva-
tion of epitopes across antigen of the primarily selected 
epitopes was checked. A total of 44 CTL epitopes and 149 
HTL epitopes were identified with 100% conservancy and 
were analysed using VaxiJen to confirm their antigenicity.

The epitopes with antigenic potential were then ana-
lyzed employing AllerTOP v.2.0 as well as ToxinPred to 
ensure their safety as non-allergen and non-toxic, respec-
tively. Finally, 8 CTL epitopes (Supplementary Table 2) 
and 17 HTL epitopes (Supplementary Table 3) were found 
to be antigenic, non-allergen and non-toxic. The cytokine 
production inducing potential of the 17 HTL epitopes was 
also assessed. Among the 17 HTL epitopes, 6 epitopes 
have IFN-γ inducing ability, 7 epitopes have IL4-inducing 
ability and 9 epitopes have IL10-inducing ability (Sup-
plementary Table 3).

Population coverage estimation of the predicted 
epitopes

Around the world, HLA allele distribution varies by 
geographic region and ethnic group. As a result, when 
designing an effective, ethnically neutral vaccine, popula-
tion coverage must be taken into account. The population 
coverage tool predicted 99.92% world population cover-
age (Supplementary Fig. S2) for the selected 25 epitopes 
(class I and II combined, 80.66% for class I and 99.61% 
for class II). The class combined population coverage was 
predicted to be highest in Europe, North America and 
West Africa (100%) and lowest in South Africa (67.77%). 
Highest population coverage for separated class I was pre-
dicted in Europe (86.07%) and for class II, in Europe and 
West Africa (99.99%). The lowest population coverage for 
separated class II was predicted in Central America (0.0%) 
and for class II, in South Africa (8.42%).

Prediction of three‑dimensional structure 
of selected epitopes and HLA proteins

The potential of an epitope to interact with the MHC mol-
ecule and form a complex with it determines how effective 
a potential vaccine will be. As a response, corresponding 
alleles for the chosen epitopes were predicted and a docking 
analysis was conducted. Eight CTL epitopes and three HTL 
epitopes were selected for docking analysis. HLA-C*12:03 
and HLA-DRB1*01:01 were used as receptor molecules. 
The 3D structure of the selected epitopes was predicted 
using the PEP-FOLD (Supplementary Fig. S3).

The 3D structure of HLA-DRB1*01:01 was obtained 
from PDB. Unwanted molecules bound with the crystal 
structure of the protein were removed prior to docking. 
The 3D structure of HLA-C*12:03 was predicted using the 
SWISS-MODEL server (Supplementary Fig. S4A). With 
93.2% residues in most favoured regions, the Ramachandran 
plot indicated that the 3D structure of the allele is acceptable 
(Supplementary Fig. S4B). The Rama distribution Z-score 
(Supplementary Fig. S4C) from the MolProbity server was 
found to be 1.14 ± 0.49 and the QMEAN value (Supplemen-
tary Fig. S4D) from the SWISS-MODEL server was found 
to be 1.12. These findings confirmed the predicted 3D struc-
ture's high fidelity.

Molecular docking analysis confirmed binding 
of the selected epitopes with respective MHC 
molecule

The interaction of the epitope with MHC molecules was 
studied using the DINC 2.0 server. The side chains of the 
epitope protruded into pockets within the groove of the 
MHC molecules, according to docking analysis (Supple-
mentary Figs. S5, S6) through several types of bonds. Each 
epitope has different postures in which it can attach to its 
specific MHC allele. The docked poses were analyzed using 
BIOVIA Discovery Studio; the pose with the highest bind-
ing energy (Table 1) and no unfavorable bond was selected 
as the best pose.

Docking analysis revealed that  the epitope 
“FLFTQYLSK” binds with HLA-C*12:03 with the high-
est binding energy (− 8.1  kcal/mol) among the CTL 
epitopes. This indicates that HLA-C*12:03 and the epitope 
FLFTQYLSK have a strong affinity. The epitope was bound 
with three hydrogen bonds at GLN (A:70), GLU (A:152) 
and TYR (A:159) residues with the HLA molecule. Several 
other covalent bonds, in this case, attractive charge, Pi–Pi 
T-shaped, Pi–Pi stacked, alkyl and Pi-alkyl bonds, were 
observed in the ligand–receptor complex (Fig. 2, 1st row, 
1st column).

Again, the epitope “AALNPGVNLPGTAVV” binds 
with HLA-DRB1*01:01 with the highest binding energy 
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(− 6.7 kcal/mol) among the HTL epitopes. This epitope was 
bound with the MHC molecule by three hydrogen bonds at 
ARG (B:71), TRP (B:61) and ASN (A:69). Alkyl bonds and 
Pi-alkyl bonds were observed in the ligand–receptor com-
plex (Fig. 2, 1st row, 2nd column).

Molecular dynamics (MD) simulation indicated 
stability of HLA–epitope complexes

MD simulation was performed to understand how stably 
identified epitopes interact with HLAs. The RMSD of the 
HLA–epitope complexes indicated that the systems were sta-
bilized after 2 ns of simulation in both cases and tended to 
remain in the plateau phase (ranging from 0.15 to 0.25 nm) 
thereafter for the rest of the period (Fig. 2, 2nd row panel). 
The epitope had a similar RMSD pattern as well. A little 
bit of fluctuation in the RMSD plot of the MHC-II–epitope 
complex was observed after 80 ns which was again stabi-
lized after 90 ns at a higher RMSD. This suggests that the 
systems have already attained a state of relative equilibrium. 
The RMSF represents the fluctuation of each atom in the 
entire simulation (Fig. 2, 3rd row panel). In both cases, the 
average RMSF value was 0.1 nm. The SASA of protein is a 
measurement of the surface area accessibility by the com-
plex during the simulation (Fig. 2, 4th row panel). It can be 
observed that the complex's SASA is just slightly greater 
than HLAs alone. It indicates that the MHC is linked to the 
epitope. The minor rise in SASA values over time suggests 
a partial unfolding of the structure due to solvent exposure. 
Increased SASA values with epitope binding to MHC, on 
the other hand, indicate its accommodating tendency. As a 
measure of structural compactness, the radius of gyration 
(Rg) was calculated (Fig. 2, 5th row panel). If the protein is 
folded correctly, the Rg value will likely remain stable. The 
Rg of the MHC-I–epitope complex was about 1.7–1.75 nm 

and remained consistent over time; while the Rg of MHC-II, 
which has a big structure, was in the range of 2.8 to 2.9 nm. 
A slight fluctuation was observed in the case of the MHC-
II–epitope complex after 60 ns which becomes stable after 
80 ns. When the MHC protein is docked with the epitope, 
the total Rg value of the MHC protein increases somewhat, 
indicating that MHC opens up for the epitope. The trend of 
calculated hydrogen bonds over time (Fig. 2, 6th row panel) 
was similar to that of Rg. The steady interaction of com-
plexes was confirmed by all studies from the MD simulation 
of selective HLA–epitopes.

Presence of B‑cell epitopes was also observed

For conformational B-cell epitope prediction, the 3D struc-
ture of the protein is required. The X-ray crystal structure of 
the PstS1 was used for analysis using the ElliPro tool. This 
analysis revealed four conformational B-cell epitopes (Sup-
plementary Fig. S7) and nine linear B-cell epitopes.

Linear B-cell epitope prediction is done based on the 
sequence of the protein. To predict the linear epitopes, vari-
ous methods were used in this study (Supplementary Fig. 
S8). The BepiPred 2.0 method predicts the antigens based on 
a random forest algorithm. The threshold level was 0.5. For 
an effective binding of epitope and antibody, the epitopes 
need to be surface accessible. To predict surface accessi-
bility, Emini surface accessibility prediction was done at 
a 1.0 threshold level. Again, the flexibility of the epitope 
also plays a role in antigenicity. Karplus and Schulz flex-
ibility prediction was done at a threshold level of 1.001. The 
epitope is also influenced by the physicochemical proper-
ties of amino acid residues, as well as their frequency of 
occurrence. Kolaskar and Tongaonkar antigenicity predic-
tion method was used for this purpose which can detect the 
epitopes based on a semi-empirical method from the given 
protein sequence. The threshold level was 1.025. Among 22 
epitopes predicted, ranging from 10 to 40 residues in length, 
only 8 epitopes were highly conservancy, antigenic, non-
allergen and non-toxic (Supplementary Table 4).

Selected B‑ and T‑cell epitopes were able to elicit 
a strong immune response

The target antigen contained several conserved B- and 
T-cell epitopes. The immune response of the antigen was 
studied using the C-ImmSim server. Results from this 
analysis depict that the antigen elicits strong primary 
and secondary immune responses, characterized by high 
levels of IgM. The first antibody isotype that the B-cell 
secretes in response to a foreign antigen is IgM. With a 
subsequent decrease in antigen concentration, levels of 
different antibody subclasses (i.e., IgG1 + IgG2, IgM, as 
well as IgG + IgM) and B-cell populations increased in 

Table 1  Predicted binding energy of selected epitopes with their cor-
responding HLA molecule

MHC allele Epitope Binding 
energy (kcal/
mol)

HLA-C*12:03 AALNPGVNL  − 7.40
FLFTQYLSK  − 8.10
GLMNIALAI  − 7.10
KLSDALIAT  − 6.70
NIGASDAYL  − 7.20
QIAALNPGV  − 7.00
SQRGLGEAQ  − 6.00
VNIGASDAY  − 7.50

HLA-DRB1*01:01 AALNPGVNLPGTAVV  − 6.70
NPGVNLPGTAVVPLH  − 5.70
GLMNIALAISAQQVN  − 6.60
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the secondary and tertiary responses (Fig. 3A, B). This 
profile suggests the production of immune memory and, 
as a result, enhanced antigen clearance after subsequent 
exposures (Fig. 3C). The TH (helper) and TC (cytotoxic) 
cell populations showed a similarly high response, with 
corresponding memory production (Fig. 3C, D). Repeated 
administration with two injections (four weeks apart) 
resulted in increasing IgG1 levels and decreasing IgM 
levels, while IFN-γ concentration and TH-cell population 
remained high during the exposure period (Fig. 3E).

Optimizing codons and predicting secondary 
structure of the vaccine mRNA

An mRNA-based vaccination using the target antigen as 
the GOI was developed once the immunogenic potential of 
the target antigen had been established. Several tools were 
used to optimize the GOI codons for better expression in 
the human host, and the findings showed that the quality of 
the codons that were improved by merging the tools from 
IDT and GS was superior to the others (Supplementary 
Table 5). The mRNA sequence for the vaccine was 1856 nts 
long. The average GC content of the optimized sequence 
was 63%, suggesting that the vaccine candidate will be 
effectively expressed in humans. The range of 30 to 70% 
is the optimum percentage for GC content in human [85]. 
The potency of the optimized sequence was evaluated using 
the Rare Codon Analysis tools by GS (Supplementary Fig. 
S9A–C). The CAI value of the sequence was predicted to 
be 0.91, which is acceptable for the desired expression. The 
CFD was found to be 0%, indicating the absence of any tan-
dem unusual codons, which might have a minimizing effect 
on translation efficiency or even disengage the translational 
machinery.

The RNAfold server was used to predict the secondary 
structures of the delineated mRNA and their corresponding 
free energy. The minimum free energy of the MFE structure 
was found to be − 680.10 kcal/mol and the MFE of the cen-
troid secondary structure was found to be − 563.21 kcal/mol 
(Supplementary Fig. S9D, E). From the secondary struc-
tures, it could be concluded that the MT. P495 mRNA will 
be stable after being synthesized.

The vaccine peptide was predicted to be safe 
for human usage

To ensure the safety of the vaccine to be used for human 
usage, the antigenicity, allergenicity and toxicity of the 
antigen were analyzed and it was found that the antigen is 
antigenic, non-allergenic, and non-toxic and safe for the 
host body (Supplementary Table 6). The vaccine peptide 
contains 495 amino acids and has a molecular weight of 
50,323.60 Da. According to the predicted theoretical pI of 
4.71, the protein is acidic by nature. It was predicted that the 
peptide would have an II of 25.93, indicating that it would 
be stable in a test tube. The AI was determined to be 85.33. 
The predicted GRAVY for the GOI was 0.012. The posi-
tive GRAVY value indicates the hydrophobic nature of the 
protein. The half-life for the GOI was measured as 30 h for 
mammalian reticulocytes. The adhesin probability of the 
vaccine was 0.663.

Prediction and validation of the structure 
of the vaccine peptide

The secondary and 3D structure of the delineated vaccine 
peptide was predicted to perform the molecular dock-
ing analysis with the projected vaccine peptide. Using the 
PSIPRED server, the secondary structure was predicted. 
The structural features showed that the random coils are 
dominant in the structure with 263 amino acid residues 
in this region. 198 Residues were found in the alpha helix 
region while 61 residues were in the extended strands region 
(Fig. 4A, B).

Employing the Robetta server, the 3D structure of the 
vaccine peptide was estimated with a confidence score of 
0.67 (Fig. 4C). The Ramachandran plot (Fig. 4D) statistics 
showed 91.4% residues in most favoured regions and 8.6% 
in the additional allowed region. The MolProbity score was 
0.92 (100th percentile), indicating that among structures 
with the comparable resolution, this is the highest. ProSA-
web was used to review the protein 3D model for possible 
defects, and it projected a negative Z-score of 9.75 (Fig. 4E), 
suggesting that the model is of high consistency. For an envi-
ronmental profile graph for the vaccine structure, another 
assessment method QMEAN gave various scores (Fig. 4F).

The vaccine peptide had a strong binding affinity 
with the receptors

For the validation of the interaction of the vaccine peptide 
with its receptors, molecular docking analysis was per-
formed. For this purpose, two immune receptors, TLR2 
(PDB ID 6NIG) and TLR4 (PDB ID 4G8A), as well as the 
CysR-CTLD3 fragment of human MR (PDB ID 5XTS) 
were selected. The molecular docking was carried out at 

Fig. 2  Analysis of molecular docking and MD simulation trajectory 
plots: Bonds between HLA molecule and epitopes (1st row panel). 
Plot of root mean square deviation (RMSD, 2nd row panel), root 
mean square fluctuation (RMSF, 3rd row panel), solvent accessible 
surface area (SASA) with respect to time (ps, 4th row panel), radius 
of gyration (Rg, 5th row panel), and hydrogen bonds (6th row panel) 
during MD simulation of MHC-I/MHC-II in complex with respective 
selective epitope FLFTQYLSK (E1) and AALNPGVNLPGTAVV 
(E2). Red color indicates HLA–epitope complex, blue color for only 
HLA and green color for the epitope

◂
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the ClusPro server. TLRs and MR all were docked with the 
PstS1 protein as control (Supplementary Fig. S10). Using 
the PRODIGY server, the protein–protein complexes were 
further examined at 37 °C for binding affinities and disso-
ciation constants (Table 2). The results illustrate that the 
delineated vaccine construct has a lower dissociation con-
stant and a higher affinity for each of the studied receptors. 
Both of the ligand and peptide (vaccine and PstS1) showed 
a higher affinity and lower dissociation constant for TLR4 
than the others.

The vaccine–TLR4 complex was stable during MD 
simulation

For the evaluation of the stability of the vaccine–TLR 
complex as well as the physical motions of the atoms of 
the vaccine peptide, MD simulation was performed dur-
ing vaccine design. Normal mode analysis (NMA) of the 
vaccine–TLR4 docked complex (Fig. 5A) was performed. 
The deformable regions of the complex are displayed as 
peaks in the deformability graph (Fig. 5B). The deform-
ability plot shows the residues formed a coiled structure 
that provides flexibility to the complex. A visualization 
of the relation between the NMA and the PDB region of 
the docked complex is represented in the B-factor graph 
(Fig. 5C). The eigenvalue of the TLR4 was 6.823114E−06 

while the vaccine–TLR4 complex had an eigenvalue of 
6.435776E−05 (Fig. 5D). These findings suggest that 
complex structures have higher rigidity and are more 
stable with a low deformation index. The covariance 
matrix (Fig. 5F) depicts the relationship between amino 
acid duplets, with correlated residues highlighted in red, 
anti-correlated residues highlighted in white, and non-
correlated residues highlighted in blue, all interspersed 
in dynamical areas. The elastic network model (Fig. 5G), 
which can be visualized as a connecting matrix, catego-
rizes which atom pairs are bound by springs. Each of the 
individual chains of the complex showed higher rigid 
regions.

In silico cloning of the vaccine construct

So far, the previous analyses indicate that the MT. P495 
vaccine to be immunogenic and safe for human usage. For 
large-scale production and in silico cloning, a recombi-
nant plasmid was designed by inserting the cloning insert 
(vaccine mRNA construct and accessory sequences) with 
SpeI restriction site at N terminal and NheI restriction site 
at C terminal into the pJAZZ-OK® expression vector. The 
cloning insert was 1935 nts long. The recombinant vector 
(Fig. 5H) that resulted was 14,977 bp long.

Fig. 3  In silico simulation of the immunological response to the tar-
get antigen: A antigen and immunoglobulins, B B-cell population, C 
helper T-cell population, D cytotoxic T-cell population per state, and 

E cytokine and interleukin production with Simpson index (D) of the 
immune response
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Discussion

TB is currently one of the major causes of death in the world 
[6]. Although this pathogen infects nearly a quarter of the 
world's population, it develops a latent chronic infection that 
reactivates when immune responses are compromised [1, 4, 
5, 8]. BCG, the only approved Mtb vaccine, has been shown 
to have significant drawbacks, including failing to protect 
against TB in adults with pulmonary TB [86]. Live attenu-
ated or inactivated vaccines (such as BCG) have also had a 
significant effect on public health. Other drawbacks include 
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Fig. 4  Prediction and validation of structures of the vaccine peptide: A AnnotationGrid and B PSIPREDChart of the secondary structure. C 3D 
structure of the vaccine peptide, D Ramachandran plot analysis, Z-score analysis [E from Pro-SA web and F from QMEAN]

Table 2  Predicted binding affinity and dissociation constant of the 
vaccine–receptor complex

Ligand Receptor Binding affinity, 
ΔG (kcal/mol)

Dissociation 
constant, Kd 
(M)

Vaccine peptide 6NIG  − 13.7 2.4E−10
4G8A  − 23.3 3.9E−17
MR  − 10.1 8.1E−08

PstS1 6NIG  − 10.8 2.6E−08
4G8A  − 21.1 1.3E−15
MR  − 10.0 9.0E−08



 Molecular Diversity

1 3

the chance of the pathogen reverting to its virulent state. 
Complicated cell-based manufacturing processes can make 
them ineffective against some strains [87, 88].

Vaccines based on individual subunit antigens are less 
effective, and adjuvants are required to improve immune 
responses. Furthermore, these vaccines fail to elicit CD8+ 
T-cell responses in humans, which are critical for infec-
tion clearance [87, 88]. Studies on the M72/AS01E subunit 

vaccine also showed the failure of CD8+ T-cell activation 
by the vaccine [89]. Activation of CD8+ T-cells within 
the body of an HIV patient is essential to fight against TB 
as HIV infection causes a progressive decrease of CD4+ 
T-cells [90]. These weaknesses have prompted researchers 
to look at alternative vaccine strategies. It is important to 
create a vaccine that is both safer and more immunogenic, 
as well as one that offers longer-lasting safety.

Fig. 5  NMA analysis and in silico cloning of the vaccine peptide: A 
vaccine–TLR4 complex; red color for the vaccine and blue and green 
color for TLR4, B deformability, C B-factor, D eigenvalues, E vari-
ance against mode index, F covariance matrix (correlated residues in 

red, uncorrelated in white or anticorrelated in blue motions), G elas-
tic network model (darker gray regions indicate more stiffer regions) 
and H recombinant pJAZZOK® linear plasmid
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mRNA-based vaccines have the potential to become a 
more appealing choice than other types of vaccines. Dur-
ing the recent pandemic of SARS-CoV-2, mRNA vaccines 
against this deadly pathogen showed better protection than 
the conventional viral vector vaccine. The mRNA vac-
cines showed a higher efficacy (94.1% by mRNA-1273 
vaccine [91] and 95% by BNT162b2 vaccine [92]) while 
the viral vectored vaccine showed a lower efficacy (70·4% 
by ChAdOx1 nCoV-19 vaccine [93]). BNT162b2 mRNA 
vaccine has shown evidence of stimulating CD4+ and 
CD8+ T-cells [94, 95] as well as B lymphocytes [94–96].

Phosphate-binding protein PstS1 of Mtb was used as the 
target antigen in this study to model a theoretical mRNA 
vaccine. Surprisingly, after alignment, it was found that 
the protein is highly conserved among reported strains 
(Supplementary Fig. S1). PstS1 is a well-known periplas-
mic protein that can induce adaptive immune effectors. 
Although it is a polymorphic protein, a relative immune 
reaction in human is not likely to be affected by polymor-
phism [97]. Conserved residues across the antigen were 
analyzed using several bioinformatics tools to validate 
their potential for immune effectors activation.

One of the key elements that contribute to the antigenic-
ity of an antigen is the presence of T-cell epitopes. T-cell 
epitope immunogenicity is mostly determined by the inten-
sity of T-cell epitopes' interactions with HLA molecules 
[98]. Peptides with  IC50 value less than 50 nM are gener-
ally considered as high affinity while  IC50 value less than 
500 nM are considered intermediate affinity [99]. In this 
study, 98 CTL epitopes were identified with  IC50 values 
less than 250 nM and 162 HTL epitopes were identified 
with  IC50 values less than 50 nM. All of the identified 
T-cell epitopes were assessed using the IEDB conserv-
ancy analysis tool; 44 CTL epitopes, as well as 149 HTL 
epitopes, were observed to be 100% conserved all through 
the 3470 sequences. Antigenicity, allergenicity, and toxic-
ity of the peptides were assessed in order to confirm the 
safety of these epitopes (Supplementary Tables 2, 3). The 
potential of using the PstS1 antigen as a candidate for vac-
cine development against Mtb is highlighted by the exist-
ence of safe and highly immunogenic epitopes.

The most important cells in adaptive immunity are 
helper T-cells. They participate in the activation of B-cells 
to release antibodies, cytotoxic T-cells to kill infected tar-
get cells, and macrophages to destroy ingested pathogens 
by secreting cytokines [100]. Therefore, the cytokine pro-
duction inducing potential of the selected HTL epitopes 
was evaluated. Six of the selected 17 HTL epitopes dem-
onstrated IFN-inducing potential, 7 exhibited IL4-inducing 
potential, and 9 showed IL10-inducing potential (Sup-
plementary Table 3). According to a population cover-
age analysis, 99.92% of people worldwide are expected 

to elicit an immunological response to the T-cell epitopes 
reported in this study (Supplementary Fig. S2).

Several T-cell epitopes were previously identified by 
in  vivo experiments on human as host. Interestingly it 
was found that, among the HTL epitopes that were finally 
selected in this study, several epitopes overlapped with 
previously identified epitopes [101–107] (Supplementary 
Table 3). These evidences prove that the epitopes identi-
fied in this study will be able to stimulate CD4+ T-cells to 
secrete cytokines. Proof of CD8+ T-cell stimulation by this 
antigen was also provided by several studies [108–110]. The 
epitopes, identified by those studies, were also identified at 
the primary stage of this study. But they were not finally 
selected as they were found to be allergenic, non-antigenic 
or not 100% conserved. Although the lowest percentage of 
protein sequence matches at identity at the 100% thresh-
old was 98.10% (3404/3470) with a minimum identity of 
77.78% (data not shown).

For the validation of the binding of the identified CTL 
and HTL epitopes with their corresponding HLA molecules, 
molecular docking was performed and this study revealed 
that epitopes could bind with their respective HLA molecule 
with higher binding energy (Table 1). To further confirm 
the stability of the bonds between the epitope and HLA, 
MD simulation was carried out (Fig. 2). Two epitope-HLA 
complexes were selected for this analysis: FLFTQYLSK-
HLA-C*12:03 complex and AALNPGVNLPGTAVV-
HLA-DRB1*01:01 complex. Interestingly both complexes 
showed stability throughout the time the simulation study 
was carried out. RMSD analysis of the complexes showed a 
similar pattern with their corresponding HLA allele. RMSF 
and SASA also indicate the stability of the epitope–HLA 
complex.

In silico immune simulation was carried out to confirm 
the immunogenic potential of the target antigen. The anal-
ysis revealed the activation of both B- as well as T-cells 
(Fig. 3). The activated effector cells persisted throughout 
the time the study was performed. Also, the level of anti-
bodies was persistent, although a depletion was observed 
after 1100 days. The results also indicate a rise in the levels 
of IL-2 and IFN-γ, which are critical for immune system 
activation against any infection. These findings suggest that 
PstS1, an immunodominant protein from Mtb, has the poten-
tial to be used as a safe and effective antigen for developing 
a vaccine against Mtb.

Identification of the B-cell epitope is a vital step for vac-
cine design. Antibodies that are produced within the host 
body, bind to antigens at these sites. Conformational B-cell 
epitopes were identified based on the 3D structure of the 
antigen (Supplementary Fig. S7). Four epitopes were pre-
dicted; one of them consisted of 159 amino acid residues 
(Supplementary Fig. S8). A most recent study on human 
antibodies against Mtb revealed the presence of several 
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PstS1-specific antibodies. These antibodies were able to 
reduce the Mtb burden at the lung by 50% [111]. All the 
interacting amino acids of PstS1 with those antibodies 
were also identified in this study as conformational B-cell 
epitopes. MSA showed that most of the interacting residues 
were 100% conserved in all the isolates of Mtb. Twenty-two 
linear epitopes were also identified which were further ana-
lyzed for their antigenic, allergenic and toxicity profile. After 
analysis, eight epitopes were found to be safe and immu-
nogenic. Among them, several were found to overlap with 
previously identified epitopes [112, 113] (Supplementary 
Table 4). These evidences suggest that PstS1 would be able 
to efficiently stimulate the B-cell epitope.

In this study, a theoretical mRNA vaccine, MT. P495 was 
delineated against Mtb. To construct the MT. P495 mRNA, 
PstS1 was used as the GOI. To generate a stronger immune 
response, an adjuvant was added with the GOI. Adjuvant 
plays an important role in improving humoral and cellular 
immune response [114, 115]. 50S ribosomal protein L7/L12 
protein from Mtb was used as an adjuvant. 50S ribosomal 
protein L7/L12 itself is a TLR-4 agonist and has the poten-
tial to induce dendritic cell maturation [116]. The translation 
efficiency is also influenced by the length of the poly(A) 
tail. mRNAs with an  A120 tail showed increased, prolonged 
expression of the protein and a poly(A) tail longer than  A120 
did not show any significant effect on the expression of the 
target protein [117]. UTRs from two different genes were 
used in this vaccine construct: 5′ UTR of the human β-globin 
gene and 3′ UTR of the rabbit β-globin gene. These UTRs 
are important for the efficient translation of the mRNA. The 
UTRs of the human β-globin gene can increase the effi-
ciency of mRNA translation [118]. The 3′ UTR of rabbit 
β-globin gene can influence seroconversion, antibody titer 
and cytokine profiles [117, 119]. To cap the 5′ end, Cap1 
(m7GpppNm) was used. The half-life of mRNA is also 
increased as a result of a synergistic effect of 5′ end cap and 
3′ end poly(A) tail [120]. Another peptide chain, the signal 
peptide was obtained from the tPA of H. sapiens which can 
improve the immunogenicity of the vaccine [121]. Two dif-
ferent linkers were used to join different components of the 
vaccine construct. Linker molecules can join two polypep-
tide chains, the protein moieties [122]. They are also used 
for increasing the stability of the final mRNA product, the 
protein [122, 123]. The linker GGGGSEAAAKGGGGS can 
increase both the thermal as well as the pH stability of the 
fused protein [124]. Another linker, AAY is an in vivo cleav-
able linker that acts as a cleavage site of proteasomes [125]. 
The final length of the mRNA construct was 1856 nts.

The codons of the delineated mRNA were optimized 
for efficient translation and better expression in the host 
(Supplementary Fig. S9; Supplementary Table 5). The 
properties of the optimized sequence suggested that 
host cells will efficiently express the mRNA. No tandem 

unusual codons were identified which is also an indicator 
of efficient translation. For optimization of the codons, we 
integrated two different codon optimization tools. In vivo 
experiments also suggest that the combined use of these 
two tools can increase protein expression efficiency [126]. 
The optimized codons have been used for the prediction 
of the secondary structure of the mRNA. Predicted free 
energy and the structures indicated that the mRNA will 
be stable.

The physiochemical properties of the vaccine peptide 
were assessed to ensure the safety of the vaccine (Supple-
mentary Table 6). The peptide was predicted to be antigenic, 
non-allergenic, and non-toxic. So, it will be safe for human 
usage. Since the protein will have a longer half-life in mam-
malian reticulocytes, it is likely to remain stable inside the 
host cells and will be bioavailable for a long time. After the 
confirmation of safety in the host, the structure of the vaccine 
peptide (Fig. 4) was predicted to confirm the binding ability 
of the vaccine peptide with TLRs and MR by the molecular 
docking study. Both of the ligand peptides (adjuvant-linked 
GOI and GOI alone) could bind with the receptors with a 
high binding affinity (Table 2). The binding affinity also 
indicated that the vaccine peptide will be able to bind with 
the receptors with a higher binding affinity than the GOI 
alone. It was also found that our vaccine peptide could bind 
with the receptors 100 times more tightly than GOI. The sta-
bility of the receptor–ligand complex was checked (Fig. 5). 
To perform this analysis, the vaccine–TLR4 complex was 
selected. The deformability graph and covariance map indi-
cated that the complex will be stable.

Instead of using an in vivo method, IVT is a popular and 
preferred method for producing mRNA on a large-scale 
[127]. In this study, promoter and termination sequences 
specific to the T7 polymerase were used for the efficient syn-
thesis of RNA in IVT. Maintaining the homogenous length 
of the poly(A) tail is a major problem of this method. Most 
of the time, the poly(A) tails vary in length if the circular 
plasmid is used. To solve this problem, the pJAZZ-OK® 
linear plasmid was utilized as a cloning vector [84]. The total 
length of the recombinant plasmid was 14,977 bp.

All of the results above, as well as previous research on 
humans as hosts, suggest that the proposed mRNA vaccine 
candidate, MT. P495, will probably elicit a strong immune 
response, specific against Mtb. In order to develop a viable 
Mtb vaccine in the future, this modeled mRNA is an excel-
lent vaccine model that can be readily employed for labora-
tory testing, including in vitro as well as in vivo studies.
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