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ABSTRACT

Objectives: Classifying hospital admissions into various acute myocardial infarction phenotypes in electronic

health records (EHRs) is a challenging task with strong research implications that remains unsolved. To our

knowledge, this study is the first study to design and validate phenotyping algorithms using cardiac catheteriza-

tions to identify not only patients with a ST-elevation myocardial infarction (STEMI), but the specific encounter

when it occurred.

Materials and Methods: We design and validate multi-modal algorithms to phenotype STEMI on a multicenter

EHR containing 5.1 million patients and 115 million patient encounters by using discharge summaries, diagno-

sis codes, electrocardiography readings, and the presence of cardiac catheterizations on the encounter.

Results: We demonstrate that robustly phenotyping STEMIs by selecting discharge summaries containing

“STEM” has the potential to capture the most number of STEMIs (positive predictive value [PPV] ¼ 0.36,

N¼2110), but that addition of a STEMI-related International Classification of Disease (ICD) code and cardiac

catheterizations to these summaries yields the highest precision (PPV ¼ 0.94, N¼952).

Discussion and Conclusion: In this study, we demonstrate that the incorporation of percutaneous coronary in-

tervention increases the PPV for detecting STEMI-related patient encounters from the EHR.
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INTRODUCTION

With the introduction of electronic health records (EHRs) into

health systems, there has been a substantial increase in the accessi-

bility of patient data for development of decision support systems

and new avenues of clinical research.1–5 However, EHRs are primar-

ily architected for optimal clinical workflow and to organize docu-

mentation for billing, which does not seamlessly integrate with most

research pipelines.6 Disease cohorts are often primarily defined

through International Classification of Disease (ICD) billing codes,

and while relatively straightforward, often are not sufficiently accu-
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rate.7,8 Pre-existing electronic phenotyping algorithms utilize vari-

ous modalities of clinical data, such as ICD codes, hospital-specific

diagnosis and procedure codes, patient notes, medications, labora-

tory values, imaging, and biopsy results,1,7,9,10 to design rule-based

systems. However, these algorithms need to be manually built and

validated by experts; thus, extracting clinically relevant insights that

are broadly applicable from these large repositories becomes tenu-

ous.4,11

In particular, while cardiovascular medicine has benefited from

EHR-based research,12–15 significant challenges still remain in this

domain.15 Of note, phenotyping disease severity is paramount given

the impact that different subtypes of a single disease can have on

clinical management. Many cardiovascular disease states such as

heart failure, atrial fibrillation, and acute coronary syndrome cover

a spectrum of clinical diagnoses that are not limited to a single phe-

notype, which makes identifying them from EHRs particularly diffi-

cult.15 For example, the classical diagnosis of a “heart attack” is

actually composed of multiple phenotypes under the broad category

of acute coronary syndromes (ACS): ST-elevation myocardial infarc-

tions (STEMIs), non-ST-elevation myocardial infarctions (NSTE-

MIs), and unstable angina (UA). While each of these diseases fall

under the broad category of ACS, they manifest different ways and

generally require different treatment courses. Notably, STEMIs are

diagnosed when elevated biomarkers of cardiac injury (troponins)

are present in conjunction with symptoms of myocardial ischemia

(ie, retrosternal chest pain) and/or ST-segment elevations greater

than 1.5 mV on a patient’s electrocardiogram (ECG).16 However,

implementing this clinical rule broadly in EHRs is non-specific to

STEMI patients, since nearly 47% of patients have normal troponin

values on admission.17 Symptomatology is further difficult to cap-

ture sensitively, since certain patient subgroups (eg, females, dia-

betics) can present atypically without chest pain. Furthermore, since

an ECG is not as natively integrated into an EHR as other types of

data (eg, patient notes, labs, ICD codes), past studies have failed to

evaluate the performance of incorporating clinician-confirmed read-

ings into their phenotyping algorithms. To our knowledge, current

algorithms have achieved positive predictive values (PPVs) of no

greater than 82%, indicating the lack of a gold standard to robustly

identify STEMIs from EHRs at scale using commonly available mo-

dalities.18 Previous studies have also identified patients with a his-

tory of a myocardial infarction, but some have failed to assess

performance during unique hospital admissions or encounters when

these STEMIs took place.18

In order to further refine the occurrence of a STEMI to a single

patient encounter, which can enable building cohorts of patient hos-

pitalizations from which diagnostic, therapeutic, and quality im-

provement analytics may be obtained, the downstream clinical

actions carry valuable insight that can be leveraged either as solitary

markers in EHRs for diagnosing STEMIs. Utilizing the clinical

course of a patient engenders greater specificity in these pre-existing

algorithms to increase their PPVs without making large trade-offs

in sensitivity. In large hospital systems which have cardiac catheteri-

zation laboratories, the management of a STEMI is an emergent

percutaneous coronary intervention, which includes cardiac cathe-

terization of a patient to visualize the coronary arterial tree and

perform an intervention (ie, angioplasty, stenting) to liberate the ob-

struction causing the STEMI. In this study, we take advantage of

EHR data, specifically a cardiac catheterization procedure record in

a patient’s hospital admission, to investigate the benefits it affords

for identifying hospital admissions for STEMIs from a large, multi-

center health system. Additionally, we focus on isolating by unique

patient encounters (ie, hospital admissions) associated with a

STEMI, not only patients who have ever had a STEMI on any or

their first patient encounter.

MATERIALS AND METHODS

Data sources
This study was conducted at the Mount Sinai Health System (MSHS),

which is a comprehensive, multicenter hospital system based in New

York City. We utilized an EHR from the diverse patient population at

MSHS which contains records for over 5.1 million individuals and 115

million encounters, between January 2000 and June 2020. These

records contain a variety of patient data, such as patient demographics,

diagnosis codes, encounter details, provider notes, laboratory data, and

procedure codes. Each of these data elements are linked with a hospital

encounter and unique patient ID; however, association to the appropri-

ate hospital encounter during which the STEMI took place may be sub-

ject to errors and are addressed in details below. This study was

approved by the Institutional Review Board at the Icahn School of

Medicine at Mount Sinai.

Identification of STEMI
Potential cases of STEMI were identified by querying the EHR data-

base for all records until June 17, 2020 using broad criteria such as

indications of a STEMI in an ECG, ICD codes, or discharge diagno-

sis (Figure 1). These criteria were selected based on consultation on

STEMI identification criteria in the clinical setting with two clini-

cians (one board certified Internal Medicine chief resident and one

Anesthesiology resident) and review of prior algorithms.15 Although

a STEMI can be a part of a patient’s past medical history, the utility

of diagnosing it for the purposes of this study was to identify the

specific patient encounter in which the STEMI took place, not

whether a patient had ever previously been diagnosed with a

STEMI. Therefore, encounters requiring multiple criteria to be met

LAY SUMMARY

Classifying acute myocardial infarction phenotypes in electronic health records remains an unsolved problem. Disease

cohorts defined through International Classification of Disease (ICD) billing codes are often imprecise, while more complex

rule-based systems which leverage mult-imodal data require expert clinical input and are difficult to implement at scale.

However, filtering for the presence of certain downstream clinical actions can increase specificity without making large

trade-offs in sensitivity. We designed and validated algorithms to phenotype ST-elevation myocardial infarction (STEMI) by

using discharge summaries, diagnosis codes, electrocardiography readings, and the presence of cardiac catheterizations on

the encounter. Our algorithms use cardiac catheterizations to identify not only patients with an STEMI, but the specific en-

counter when it occurred.

2 JAMIA Open, 2021, Vol. 4, No. 3



were merged based on the start date of the associated hospital en-

counter for that particular data element. For example, an ICD diag-

nosis code must have been assigned on the same encounter where a

discharge summary containing the string “STEMI” was present, not

on different encounters but for the same patient. Additional nuances

of the date used for merging are discussed below for each criterion

where appropriate. To simplify the analysis, we only assess for STE-

MIs that occurred during a formal hospital admission (eg, eliminat-

ing office visits where a STEMI could have occurred and was

assigned but required subsequent hospitalization with another en-

counter as well) by filtering for all encounters with a discharge sum-

mary note type present.

Processing catheterizations
Catheterizations were retrieved from the EHR by querying for all

encounters that were associated with two unique, database-specific

procedure IDs. Manual inspection revealed that the associated Encoun-

ter ID (EID) of a catheterization was not always linked with the actual

EID associated with the hospitalization where the potential STEMI

took place. For this reason, the date of the catheterization was used for

merging with other criteria by associating this catheterization to the in-

hospital patient encounter that took place within 24 h of the catheteri-

zation date. Since catheterizations were merged with other criteria on a

basis of time difference between the date of procedure and date of the

concomitant criterion, we performed a sensitivity analysis to investigate

the effect of increasing the time difference for filtering out non-

qualifying encounters. These concomitant criterion included STEMI-

associated ICD code, ECG read with “STEMI” keywords, and the

presence of an associated hospital encounter. The number of unique

patient encounters were calculated at varying absolute time differences

of one, two, and four days for each secondary event.

Processing ICD codes
To identify STEMIs by ICD codes, the following ICD-9 and ICD-10

codes were used: 410, 410.21, 410.31, 410.41, 410.01, 410.11,

410.51, 410.61, 410.81, 410.91, I21, I21.11, I21.19, I21.21,

Figure 1. Phenotyping algorithm and validation procedure.
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I21.01, I21.02, I21.09, I21.29, and I21.3.19,20 The EID associated

with the ICD code assignment was also recorded, but was not al-

ways reliable. Since these ICD codes were part of the physician-

recorded “Problem List,” but not necessarily linked to the ICD

codes assigned for an encounter after discharge for billing purposes,

our ICD data tables contained codes that were assigned to patients

for a principal STEMI-related encounter on a subsequent encounter

(thus different EID than the STEMI-related encounter), thus prohib-

iting the use of the EID link between the ICD code and the relevant

STEMI-related encounter. To limit this issue, all ICD codes were fil-

tered to ensure that the start date of the encounter when the ICD

code assigned was within 24 h of an inpatient hospital admission or

emergency department visit that patient had in their medical record.

Processing discharge summaries
To identify STEMIs by provider-written notes, we filtered the EHR

system by all discharge summaries in the EHR that included the fol-

lowing regular expression criteria: case-insensitive “STEMI” or

case-insensitive “ST*elevat” or case-insensitive “ST*segment,”

where * is a wild-card character that can take on any value. Each of

the expressions was used in every algorithm that included regular

expressions, unless otherwise specified, to capture the greatest num-

ber of true positive patients. Heuristically, because discharge sum-

maries were more rigorously linked to patient encounters than the

ICD codes and catheterizations (above), the start date of the encoun-

ter associated with discharge summaries was set as the start date of

the associated hospital encounter in the EHR.

Retrieval of electrocardiograph reads
Generally, ECGs contain basic patient record information, key dem-

ographics, vital signs, automated cardiac parameters (eg, heart rate,

interval lengths), and automatically generated, but clinician con-

firmed, annotations of the ECG (“ECG reads”). To identify STEMIs

by ECG reads, we filtered the ECG read by all case-insensitive men-

tions of the word “STEMI” in the ECG read. Empirically, we also

noted that many patient encounters with STEMI were captured with

less specific keywords. For this reason, we also investigated the pres-

ence of “ACUTE MI” in the ECG read as another criterion for eval-

uation. Only ECGs taken within 24 h of admission were retained for

analysis to avoid capturing STEMIs as secondary complications in

the hospital stay.

Data post-processing
All criteria were processed to include unique encounters, as defined

by the Medical Record Number (MRN) and admission date. Addi-

tionally, several patients received multiple ECG readings within the

same encounter and sometimes even the same day. If a patient en-

counter had at least one ECG read with “STEMI” in the text, the en-

counter was marked as a positive case and included only once in the

filtered sample to then undergo the validation process as a true or

false positive.

Algorithm validation
A randomized sample of approximately 50 unique encounters for 50

unique patients were retrieved for each criteria and manually investi-

gated in the patient chart, using the following patient information:

ECG reads, catheterization notes, and discharge summaries to con-

firm the presence or absence of a STEMI.19,21 These criteria were se-

lected through consultation with expert clinicians and review of

prior algorithms. For criteria that included a positive case of cathe-

terization in the patient encounter, we further evaluated a more ex-

haustive set of 150 records to more robustly estimate PPV for those

criteria. In order to estimate the efficacy of sample size in determin-

ing PPV, we compared the PPV from a randomly selected first set of

50 cases for each set of criteria to the overall PPV of the full 150

cases. A complete overview of this analysis is included in the Supple-

mentary Methods and Table S1. During validation, records that

were inaccessible due to access privilege issues or those without a

clear diagnosis or absence of STEMI were excluded from the batch

of 50 without replacement from the original pool. To eliminate vari-

ation in the interpretation of chart evaluation, a single reviewer

assessed each case for a clearly identified diagnosis, as indicated

within the catheterization notes, discharge summaries, and evalua-

tion of the ECG. Cases that resulted in a diagnosis other than

STEMI were labeled as a false positive and diagnoses that were sig-

nificantly ambiguous (ie, discharge notes reference both NSTEMI

and STEMI throughout course of admission) were excluded from

analysis without replacement. Full details on the clinical protocol

and examples of true-positive and false-positive cases are presented

in the Supplementary Methods and Figures S1–S6.

Statistical analyses
PPVs were calculated for all criteria as the proportion of confirmed

STEMI cases (true positives) relative to all potential STEMI cases

(true positives and false positives). PPVs were generated for the

following filtering criteria: STEMI-related ICD diagnosis codes,

“STEMI” in discharge summary, “STEMI” in ECG read, “ACUTE

MI” in the ECG read; STEMI-related ICD diagnosis code AND

“STEMI” in discharge summary; STEMI-related ICD diagnosis code

AND “STEMI” in ECG read; and “STEMI” in ECG read AND

“STEMI” in discharge summary. Additionally, PPVs were calculated

for all mentioned criteria when merged with catheterizations as well.

To assess for how many potential STEMIs each criteria may have

been captured if applied across the entire EHR rather than just in the

validated sample, a theoretical number of STEMIs captured by the

criteria was extrapolated from multiplying the estimated PPV by the

number of total encounters across the entire EHR for that criterion.

RESULTS

A total of 315 402 466 procedures, 68 257 221 patient diagnoses, 4

709 334 discharge summaries, and 1 441 671 ECGs from a total of 4

913 952 patients were available for query from the EHR database. A

total of 54 750 catheterizations associated with a hospital encounter;

737 and 655 encounters with ECG reads with the appropriate

“ACUTE MI” and “STEMI” keyword, respectively; 4677 encounters

with discharge summaries containing the appropriate STEMI key-

words; and 1803 encounters with a STEMI-associated ICD diagnosis

codes resulted from our query and used for downstream analysis.

Impact of catheterization window time
In Figure 2, the number of patient encounters totaled 54 750 for 1

day; 58 607 for 2 days; and 62 807 for 4 days when the time differ-

ence was varied between catheterization date and hospital admission

date for the associated encounter. For catheterization date and ICD

code assignment date, the number of patient encounters were 1469

for a time difference of 1 day; 1532 for 2 days; and 1609 for 4 days.

Finally, the number of encounters resulted for catheterization date

and ECG read date were 437 for 1 day; 481 for 2 days; and 520 for

4 days.

4 JAMIA Open, 2021, Vol. 4, No. 3

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab068#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab068#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooab068#supplementary-data


Evaluation of independent criteria
Table 1 showcases the results of the first stage of manual validation

for individual phenotyping criteria, as well as the increase in PPV

afforded by inclusion of the presence of a cardiac catheterization on

the encounter. The PPV for encounters associated with an ICD-10

diagnosis code for STEMI was 0.43, which captured 775 STEMIs in

the EHR. Augmentation of this criteria with catheterizations in-

creased the PPV to 0.76, which captured 1146 STEMIs despite low-

ering the total number of resulting records to 1469 from 1803.

From the 4677 discharge summaries containing the appropriate

search terms for a STEMI, a PPV of 0.36 was found on validation,

which captured 2110 STEMIs. By the addition of a catheterization

on the encounter, the PPV jumped to 0.73, with a total of 2285

encounters and 1168 STEMIs captured. Next, 737 ECGs were cap-

tured by a supported diagnosis of “ACUTE MI” on the ECG read,

with a PPV of 0.33 that improved to 0.44 with the addition of the

cardiac catheterization requirement to the encounter. Finally, 655

ECGs were captured by a supposed diagnosis of “STEMI” on the

ECG read, with a PPV of 0.43 that resulted in 229 STEMIs being

captured. Unlike other criteria, the addition of the catheterization

constraint decreased the PPV to 0.36 and the number of STEMIs

captured to 157, while also lowering the number of resulting records

to 437.

Combining multiple criteria
We also assessed the ability to phenotype STEMIs by combining

multiple criteria (Table 1). In addition, Figure 3 demonstrates the ef-

fect of merging these criteria on the total number of unique patient

encounters for all combinations within the set, with and without

catheterizations for each criteria. Filtering across the EHR for all

records with an ICD code of STEMI and discharge summary

returned 1243 encounters, with a PPV of 0.86 indicating that 1078

of them were STEMIs. Addition of the catheterization constraint in-

creased the PPV to 0.94, but decreased the number of returning

results to 1007 encounters with 952 potentially confirmed for

STEMI based on this PPV. Next, the indicator of a STEMI in an

ECG read was combined with STEMI ICD codes and found to have

a PPV of 0.91 and a total of 163 potential STEMIs from 178 total

resulting encounters. The addition of the catheterization constraint

lowered the PPV to 0.86 and reduced the number of potential

STEMI cases from ECG reads to 144 out of a total 169 resulting

records. Finally, permutation of the above criteria to revolve

encounters with a STEMI in the ECG read and STEMI in the

discharge summary yielded 211 records, with a PPV of 0.75 and po-

tential of 188 STEMI encounters. Augmentation with the catheteri-

zation constraint increased the PPV to 0.88, but with a lower total

resulting encounters at 172 with only 155 of those as potential STE-

MIs. Though not incorporated as a potential phenotyping algo-

rithm, the combination of all three criteria—ICD codes, discharge

summaries, and “STEMI” ECG reads—yielded a total of 146 unique

patient encounters, with only 137 resulting after the triad was com-

bined with catheterizations.

DISCUSSION

This study aims to create and assess techniques to phenotype

STEMI-related encounters from a multicenter EHR by examining

the contribution of admission-specific procedures, ICD diagnosis

codes, ECG reads, and discharge summaries in capturing STEMIs.

Furthermore, we novely considered the effect of using catheteriza-

tion in a patient encounter to augment performance. These criteria

are nonspecific to MSHS and are generally applied at many large

institutions, thus allowing for the translation of this algorithm

across health systems. While the addition of catheterizations did de-

crease the number of unique patient encounters for a given set of cri-

teria, the scale of decrease was not substantial (Figure 3). PPVs

across all criteria without catheterizations ranged from 0.33 to 0.91,

which rose to 0.36 to 0.94 with the incorporation of catheteriza-

tions. The magnitude of STEMIs captured from these algorithms is

consistent with epidemiological data for the occurrence of STEMIs

for the Northeastern United States.22 To our knowledge, this is the

first study to investigate the role of cardiac catheterizations, which is

part of the first-line treatment for many patients with a STEMI, to

increase the PPV of pre-existing criteria in determining hospital

admissions associated with a STEMI.

Each individual criterion (eg, ICD codes, discharge summaries,

and ECG reads) improved its PPV in characterizing STEMIs when

requiring that the patient had a cardiac catheterization on that en-

counter. There was a significant improvement, for example, with

ICD codes plus catheterization, in both PPV and number of STEMIs

captured, despite a loss in the total number of resulting encounters.

The same trend did not hold for the presence of STEMI in discharge

summaries. Despite an increase in PPV, the total number of STEMI

encounters captured was nearly 19% less than without incorporat-

ing catheterizations in the filtering criteria. This may likely be be-

cause the date of the catheterization was around the start of the

hospital encounter, whereas discharge summaries may capture STE-

MIs that developed as complications during the inpatient stay or

from various procedures. For the presence of “STEMI” in the ECG

reads, the increase in total number of STEMIs captured, while mar-

Figure 2. Effect of time (days) between catheterizations and secondary criteria on number of captured encounters.
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ginal, held when augmented with the requirement of a concomitant

catheterization on that encounter. Additionally, we use the change

in PPV (DPPV) to assess the marginal contribution of each criterion

in our final algorithm and as a proxy for the importance of each cri-

terion. We find that the greatest change in PPV occurs from incorpo-

ration of STEMI-related ICD-10 codes (DPPV 0.21), followed by

STEMI in the discharge summary (DPPV 0.18) and catheterizations

on the encounter (DPPV 0.08).

We also investigated the false positives for each of the criteria.

Most patients that had a false positive encounter for a STEMI when

filtered by STEMI-related ICD codes had so because the ICD code

itself was assigned not on the encounter when the STEMI actually

took place, but rather on a follow-up visit for the STEMI after the

acute recovery of that event. The overwhelmingly predominant

source of false negatives in the discharge summaries were patients

who had a history of a STEMI. With the addition of catheteriza-

tions, inconsistent documentation (ie, record of a STEMI in certain

parts of the encounter vs. NSTEMI in others) became the new and

most predominant source of false positives.

Finally, the source of most false positives in ECG reads came

from a confirmed reading indicating a STEMI had taken place, but

the ECG criteria (>1.5 mm elevation in ST-segment in females, >2

mm elevation in ST-segment in males) for diagnosis had not been

met. This is a reasonable finding, given that automatic reads from

ECG systems must be extremely sensitive to STEMIs, since the con-

sequences of missing a STEMI in a patient would be dire; therefore,

Table 1. Performance of each phenotyping algorithm, as measured by PPV and the resulting total number of potential STEMIs captured in

the EHR

Catheterization Number of

encounters

validated

Number of

encounters

excluded

from

validation

Total

resulting

encounters

PPV Potential

STEMIs

captured

Potential

false

positives

ICD-10 Codes No 49 1 1803 0.43 775 1028

Yes 136 14 1456 0.76 1146 310

“STEMI” in Discharge Summary No 47 3 4694 0.36 2110 2584

Yes 143 7 2200 0.73 1668 532

ICD Codes þ Discharge Summary No 49 1 1243 0.86 1078 165

Yes 145 5 1007 0.94 952 55

“ACUTE MI” in ECG Read No 48 2 737 0.33 243 494

Yes 143 7 458 0.44 179 279

“STEMI” in ECG Read No 49 1 655 0.43 229 426

Yes 137 13 437 0.36 157 280

“STEMI” in ECG Read þ ICD Codes No 45 5 178 0.91 163 15

Yes 140 10 169 0.86 144 25

“STEMI” in ECG Read þ Discharge

Summary

No 48 2 211 0.75 188 23

Yes 136 14 172 0.88 155 17

Figure 3. Venn diagrams demonstrating the overlap in encounters for each criteria both without (left) and with (right) associated catheterizations.
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these systems are calibrated to operate with increased sensitivity at

the cost of losing specificity.23 From investigating ECGs in other cri-

teria during chart review, it is worth noting that many STEMIs were

described on the ECG to have an “ST-segment abnormality” or

“Consider wall ischemia” as key terms. Incorporation of these

highly non-specific terms could increase the sensitivity of capturing

STEMIs in ECGs, but at the risk that expanding the boundary to a

broader term like “ischemia” or “acute myocardial infarction”

would inadvertently capture NSTEMIs and unstable angina, the

prevalence of which is much higher and the management (percutane-

ous coronary intervention) may be the same at academic centers like

ours with large cardiac catheterization capabilities.

By PPV, the best performing query criteria was the combination

of encounters with STEMI-related ICD codes, the presence of STEMI

keyword in the discharge summary, and a cardiac catheterization on

the encounter. Notably, without the presence of a cardiac catheteri-

zation, the predominant source of false positive cases came from

patients who had a past history of a STEMI (a problem common to

both of these filtering criteria), which suggests that the addition of a

peri-encounter cardiac catheterization offers a complementary way

of narrowing down likely encounters where an actual STEMI took

place. While these results are promising and superior to those

achieved in other studies in the United States by magnitude of poten-

tial STEMIs captured,18 there is also a strong opportunity to improve

the free-text search result by incorporating more formal natural lan-

guage processing techniques to catch spelling errors, negations, medi-

cal colloquialisms, and modifier terms (such as “history of”) to

create more sophisticated algorithms for parsing for the appropriate

note. We further note that algorithms in European systems using

ICD codes achieve remarkable performance in phenotyping STEMI

(PPV 0.96–1.00),19 these algorithms fail to generalize well to our

healthcare system (ICD-10 PPV 0.43),24 likely from international dif-

ferences between health and healthcare systems.25–27

There are several limitations to this study. Given that access to

ICD codes at the hospital financial level was not available, the ICD

codes used in this study were those that were captured in the patient

chart by manual entry from physicians, which may not be as

well captured as the nosologists working in billing departments

who work full-time to this cause.28,29 Additionally, augmenting the

presence of a cardiac catheterization to improve the PPV is biased

toward large medical centers with vast cardiac catheterization capa-

bilities. The application of this algorithm in a rural setting may not

be as well-captured, where the patient may present to a community-

based hospital and be transferred to a larger hospital for the inter-

ventional management of their STEMI. Additionally, there exists no

“gold standard” for validating the performance of these criteria be-

yond PPV, since other classification metrics (eg, sensitivity, specific-

ity) require true- and false-negative counts that would be extremely

laborious to ascertain. Validating on a small sample risks introduc-

ing sampling bias in the results of this study. Institutional practices

that affect patient records leading to incomplete cases, patient trans-

fers to outside hospitals, and provider bias may impede generaliz-

ability to other health systems. While we choose features in our

algorithm that are clinically prevalent and oriented toward guide-

line-directed management of STEMIs at hospital centers with cathe-

terization capabilities and test its performance in a large, urban,

five-hospital health system, this algorithm has not been validated at

an external institution to confirm its external validity. Finally, this

study is biased toward hospital admissions with principal, admission

diagnoses of STEMI given that the merging operations (namely, the

association of a cardiac catheterization to an encounter) take place

on the encounter admission date, which prohibits capturing STEMIs

that occur as complications of an inpatient hospital stay.

CONCLUSION

Currently, no gold standard exists to identify specific hospital admis-

sions with STEMIs from EHRs, particularly when attempting to dis-

tinguish between other acute coronary syndromes and other STEMI

mimickers. In this study, we explore how incorporation of treatment

strategy, namely a percutaneous coronary intervention (left heart

cardiac catheterization), can increase the PPV of capturing STEMIs.

While the strongest performing criteria for capturing STEMIs was

the presence of “STEMI” in a discharge summary, its remarkably

low PPV (0.36) gives way to favor augmentation of that filtering cri-

teria with the presence of a cardiac catheterization, which achieves a

PPV of 0.73. Additionally, the combination of STEMI-related ICD

codes, the presence of STEMI keyword in the discharge summary,

and a cardiac catheterization on the encounter yielded the highest

PPV, further supporting the role of cardiac catheterization as a viable

adjunct for phenotyping STEMIs. While more extensive and sophis-

ticated algorithms can be designed to better parse out free text docu-

ments such as ECG reads and discharge summaries, the addition of a

cardiac catheterization provides a unique type of informative content

that can improve the specificity of an algorithm by removing false

positives that may otherwise not be identifiable by other analytical

means intrinsic to the original filtering criteria.
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