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I would like to address two key issues related to the 

 

Per-
spectives on Ion Permeation

 

. The first is the estimate of the
size of the physical forces relevant for ion transport.
Any good physical model of ion permeation requires
the identification of the dominant forces. The second
subject concerns a careful definition of the terms
“mean field” and “mean field approximation.” Several
articles in the field of ion permeation show consider-
able confusion about the mean field concept.

 

The Size of the Forces

 

What is the relative size of the forces that ions experi-
ence while passing through a channel? To enter the
channel ions have to become partly, if not completely
dehydrated. Highly polar and even charged functional
groups forming the channel walls compensate for this
loss of hydration energy. In addition, there are two
kinds of strong ion–ion forces: long range electrostatic
forces and short range hard core interactions leading
to volume exclusion effects.

Considerable simplifications are necessary to com-
pute current–voltage curves of physical model chan-
nels. At present only two theories of ion transport are
sufficiently simple for direct comparison between the-
ory and experiment. These two theories consider dif-
ferent parts of the relevant forces as the most strong
ones. In reaction-rate theories, also designated barrier
models, the interaction of the ion with its environment
and volume exclusion effects among ions are consid-
ered to dominate. Neglecting electrostatic ion–ion in-
teractions, the rates of barrier crossing can be com-
puted from first principles (Laio and Torre, 1999). In
contrast, Poisson-Nernst-Planck (PNP) theory assumes
that electrostatic forces between the ions determine
ion transport.

Reaction-rate theories apply only if environmental
forces surpass the electrostatic forces between ions.
Otherwise, environmental interactions would not de-
termine ion transport. Consequently, typical energies
of electrostatic ion–ion interactions inside the channel

represent lower limits for the energy differences be-
tween barriers and wells. Using a simple Coulomb law
with a dielectric constant of 10, the energy required to
bring two positively charged monovalent ions as close
as 0.58 nm requires at least 250 milli electron volts (10

 

kT

 

). Thus, environmental forces only dominate if the
barrier energies are much larger.

Reaction-rate theories explain the saturation of the
channel conductance with increasing external concen-
trations by hard core ion–ion interactions. To experi-
ence the short range volume exclusion interactions,
the ions must come rather close to each other. The dis-
tances of closest approach between ions including a
single intermediate water molecule are in the order of
0.3–0.5 nm. Consequently, reaction-rate theories pre-
dicting conductance saturation automatically involve
strong electrostatic ion–ion interactions. Thus, even
single ion channels require large barriers to dominate
these electrostatic forces between ions. A more general
discussion of the forces important for ion transport was
published recently (Syganow and von Kitzing, 1999a).

The identification of the dominant forces is crucial
for understanding ion transport. Only those models of
ion permeation that include the strongest interactions
can provide a reasonable picture of what is going on in-
side biological ion channels.

 

Mean Fields and Mean Field Approximation

 

In his editorial, Andersen (1999) questions the applica-
bility of the mean field approximation for the situation
of ions in the narrow pore of the channel: “Finally, not-
withstanding the utility of the mean field approxima-
tion, is it appropriate for narrow channels that are oc-
cupied by only a few ions?” Similar doubts are men-

 

tioned in other 

 

Perspectives

 

. Therefore, a critical inspection
of the concepts of mean fields and mean field approxi-
mation in statistical physics applied to biological ion
channels is timely. Whereas the introduction of mean
fields generally does not involve any approximation,
the mean field approximation is necessary to account
for the nonlinear long-range electrostatic interaction
between permeant ions.

 

During a 10-pA, 1-s channel opening, 6.3

 

 

 

? 

 

10

 

7

 

 ions
pass the channel. With a time resolution in the millisec-
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ond range, the experimental mean current samples

 

.

 

60,000 ions. Passing the bottleneck of the channel
each of those ions will see different forces. Side chains
at the channel wall may change their orientations be-
tween the passage of two ions, and sometimes they even
block the path. Also, the position of other ions differs
at different ion passages, resulting in different electro-
static forces. For instance, the forces seen by an ion en-
tering a channel differ considerably whether the chan-
nel is occupied by another ion or not. However, these
very different forces add up linearly. If the channel is
50% occupied by other ions, on the average the incom-
ing ion sees a half-occupied channel. The average of
10

 

5

 

 different configurations results in a mean force.
The absolute value of the force seen at each passage is
generally large compared with that of the mean force.
What is important for the measured mean current is
the mean force, the linear average over all those very
different contributions.

We do not measure mean forces, but their integrals
over the paths of the ions. Current–voltage relations
represent integral properties of the channel (Syganow
and von Kitzing, 1999b). Many particularities of the
channel structure are averaged out. This explains why
extremely simple theories, such as reaction-rate theories
with few barriers or PNP equations without particular
structural elements, often can reproduce experimental
data. Since we are measuring integral channel proper-
ties averaged over many configurations, mean fields are
the appropriate physical tools to mathematically de-
scribe ion transport through biological ion channels.

Unfortunately, the introduction of mean forces is not
sufficient to handle the strong, long-range electrostatic
ion–ion interactions. To describe the behavior of plas-
mas, Vlasov (1938) approximated the mean condi-
tional force seen by a single ion by the mean force, the
electric force of the mean charge density. This approxi-
mation generalizes the Gouy-Chapman theory (Gouy,
1910; Chapman, 1913) to nonequilibrium systems.
What is the difference between the mean force and the
conditional mean force? One of the oldest problems in
physical chemistry is the nonlinear concentration de-
pendence of the conductivity of electrolytes. In 1926,
Onsager (1926, 1927) explained this effect by the dif-
ference between the mean force (due to the electric
field across the electrolyte) and the conditional mean
force (the mean force seen by a single ion). The non-
linear deviation originates from the fact that the mo-
tion and distribution of ions in solution is correlated.
This correlation leads to two mechanisms: electro-
phoresis and electropolarization. Each moving ion
pushes a part of the solvent molecules, and thus in-
duces hydrodynamic ion–ion forces. This electrophore-
sis results in a modified effective mobility of the ions in
the solvent (Hubbard, 1987). The electric field de-

 

forms the counter ion cloud around each ion. This po-
larized counter ion cloud produces a local electric field
that shields its host ion from the external electric field.
Recently, Lehmani et al. (1997) included ion–ion cor-
relations in the conductivity of ion-exchange mem-
branes with large pores.

Also within biological ion channels, one should ex-
pect effects because of ion–ion correlations. Solvent-
mediated ion–ion interactions lead to single filing. This
“electrophoretic” effect may be strong in channels such
as the potassium channel. Consequently, PNP theories
need to implement this mechanism, as for instance sug-
gested by Conti and Eisenman (1966). Also, electropo-
larization may influence ion transport. Because of long-
range strong electrostatic interactions, the occupancy
of the channel depends on whether an ion is placed at
the channel entrance or not. Therefore, the electric
field due to the other mobile ions seen by the ion ready
to enter differs from the field of the mean ion distribu-
tion at the same position.

How reliable are these mean field approximations?
In physics, such mean field approximations are fre-
quently employed with different success. Unfortu-
nately, the comparison (Cooper et al., 1985) between
the ion concentrations obtained from PNP and Brown-
ian dynamics cannot be used to evaluate the PNP solu-
tion because the two ion channel models employed dif-
ferent forms of electrostatic interactions (Syganow and
von Kitzing, 1999a). However, excellent tools to test the
quality of mean field approximations are the so-called
sum rules (Henderson, 1992). These are exact rela-
tions generally derived for equilibrium systems; any ex-
act theory strictly obeys these rules. There are two rules
that are particularly relevant for homogeneous and
inhomogeneous electrolytes (Blum and Henderson,
1992). The screening sum rule state that all charges, di-
poles, and higher multipoles within an electrolyte sys-
tem are screened by respective counter charges, di-
poles, or higher multipoles. It has been shown (Blum
and Henderson, 1992) that the PNP theory fulfills this
rule exactly. The other important sum rule is the con-
tact theorem. It relates the electric field at a certain
boundary to the respective ion concentrations. PNP fol-
lows this rule only approximately (Henderson et al.,
1979; Blum and Henderson, 1992). The agreement be-
comes almost exact in the case of strong electric fields.
Because both sum rules apply to equilibrium, they jus-
tify to some extent the neglect of the counter ion cloud
polarization. However, they say nothing about the im-
portance of single filing. 

Thus, in accord with the estimates of the size of the
forces inside the channel, the PNP theory, using the
mean field approximation for the electrostatic interac-
tions, is the method of choice for modeling ion chan-
nels dominated by strong electrostatic fields. This the-
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ory obeys two important sum rules derived in statistical
physics. The fact that the current–voltage relations
used to compare theory with experiment are integral
properties of the channel renders the judgment of the
sum rules particularly valid. In contrast, commonly
used reaction-rate theories obey none of these rules.
Therefore, they cannot account correctly for strong,
long range electrostatic interactions.

 

Perspectives and Outlook

 

McCleskey (1999) and Miller (1999) discuss the value
of reaction-rate and PNP2 theories according to their
ability to reproduce particular experimental current–
voltage curves. They neglect the question of whether
the basic physical assumptions of those theories are sat-
isfied or not. As shown above, the applicability of any of
the two theories depends critically on the size of electro-
static interactions compared with environmental forces.

To study the fundamentals of ion permeation, sim-
pler channels than the potassium or calcium channel
should also be considered. For instance, the kind and
position of mutations in the acetylcholine receptor
channel (Konno et al., 1991) has no correlation with
the obtained barrier energy profile. Such correlation,
however, would be expected if this profile is assumed to
represent the interactions of the ions with their envi-
ronment. Random changes of the parameters of reac-
tion-rate theories generally lead to nonlinear current–
voltage curves (Levitt, 1986). If reaction-rate theories
represented the physics of ion channels such as the ace-
tylcholine receptor channel, most single point muta-
tions should result in nonlinear current–voltage curves.
In contrast, nearly all mutations in this channel lead to
fairly linear current–voltage curves. Such behavior is
characteristic for ion channels dominated by electro-
static interactions (Syganow and von Kitzing, 1999b).

Today, the formulation of the Gouy–Chapman theory
(Gouy, 1910; Chapman, 1913) is considered as an im-
portant first step in understanding the behavior of
strong, inhomogeneous electrolytes. Since then, elec-
trolyte theories have considerably improved (Blum and
Henderson, 1992). In the same sense, PNP theory
should be considered as a first step to describe strong,
long range electrostatic interactions in ion channels.
The inclusion of ion size effects such as single filing
must be one of the next steps.
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