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1. Introduction

Pain and pain chronification are incompletely understood and
unresolved medical problems that continue to have a high
prevalence.14 It has been accepted that pain is a complex
phenomenon.2,32,72 Contemporary methods of computational
science51 can use complex clinical and experimental data to
better understand the complexity of pain. Among data science
techniques, machine learning is referred to as a set of methods
(Fig. 1) that can automatically detect patterns in data and then
use the uncovered patterns to predict or classify future data, to
observe structures such as subgroups in the data, or to extract
information from the data suitable to derive new knowledge.11,43

Together with (bio)statistics, artificial intelligence and machine
learning aim at learning from data.

Although statistics can be regarded as a branch of mathemat-
ics, artificial intelligence and machine learning have developed
from computer science (Ref. 58; see also https://en.wikipedia.
org/wiki/Artificial_intelligence). The initial definition of artificial
intelligence originates from Alan Turing who proposed an
experiment where 2 players, who can either be human or
artificial, try to convince a human third player, that they are also
humans.68 The test of artificial intelligence is passed if the third
player cannot tell who is the machine. Important steps in the
development of machine learning were the first creation of the
computer learning program, which was a checker game,54 and
the first neural network called the perceptron.53 Statistics uses
mathematical equations to model probability relationships
between data variables, whereas machine learning learns from
data without the necessity of previous knowledge. It aims at
optimization and performance of an algorithm rather than on the
analysis of the probabilities of observations, given a known
underlying data distribution. Nevertheless, both machine learning
and statistics techniques are working in concert for pattern

recognition, knowledge discovery, and data mining and share
partly the same methods such as regression, which is used
widely in statistics but is also considered as a classification
method in machine learning (Fig. 1).

In the present research context, when provided with pain-
related data, machine-learned methods are able to learn
a mapping of complex features to a known class, that is, to
predict a pain phenotype class from a complex pattern of
acquired parameters. After the machine has learned the
prediction of a pain-related phenotype, the algorithm can
subsequently be used on new data from which the class
membership of a novel yet unclassified subject can be identified.
However, machine learning methods can also be used for
pattern recognition in complex pain-related data to reveal traces
of an underlying molecular background or for knowledge
discovery in big data in a drug discovery or repurposing context.
The increasing use of contemporary methods of computational
science is reflected in the rising number of reports using
machine learning for pain research (Table 1). This review is
focused on machine-learned technologies applied to general
pain research that allow one to analyze and predict pain
phenotypes and to obtain knowledge from experimental and
clinical pain-related data.

2. Pain research involving machine learning

A literature search was conducted using PubMed at https://
www.ncbi.nlm.nih.gov/pubmed on July 22, 2017 for “([machine-
learn*] OR machine learn*) AND pain.” One hundred ten results
published between 2002 and 2017 with an increasing number of
publications over time were obtained (Table 1), and a few more
reports were obtained from reference tracking. After elimination of
editorials, reviews, repeated reports of the same machine-
learned analysis, 88 original reports of the use of machine
learning in a pain context were identified. Twenty-two articles that
regarded pain only as a symptom interesting in another context
such as chest pain as a diagnostic criterion for pneumonia10 or
coronary syndromes4 or phantom limb pain as an indicator or
prosthesis functioning1 were excluded as well as 14 reports
about neuroimaging of pain, a topic that has been reviewed
separately.26,39 This resulted in 52 reports that were analyzed for
the use of several different methods of machine learning in pain
research (Table 1). For a short description of the mentioned
machine learning methods, please refer to Box 1.

3. Pain phenotype prediction fromcomplex case data

Machine learning addresses the so-called data space including
an input space X comprising vectors xi 5 ,xi,1,…xi,d. with d .
0 different parameters (variables and features24) acquired from n
. 0 cases. In supervised machine learning, algorithms enable
amapping of the input parameters xi to the output classes yi in the
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data space D5 fðxi;   yiÞjxi2X;   yi2Y;   i5 1…ng. The information
consisting of several biomedical parameters is used to derive
a mapping that allows assigning future cases to the right class
(prediction and generalization Ref. 11), for example, the pain
phenotype group or a clinical diagnosis. The main types of
classifiers provided by supervised machine learning are sym-
bolic45 or subsymbolic63 classifiers.

In symbolic classifiers, the decision how a classification is
obtained can be interpreted by a domain expert as a combi-
nation of conditions on the features. For example, a symbolic45

classifier composed of a decision tree was created to predict
patient-controlled analgesia consumption from approximately
30 acquired features including demographic (age, sex, and
weight), biomedical (eg, blood pressure, diabetes, and arterial
hypertension), surgery-related therapy (eg, type of surgery,
duration, and details of anesthesia) and analgesic-related
therapy (eg, consumption of analgesics before the surgery and
dose demands during the first 24 hours after surgery)
parameters.27 Importantly, for each of the parameters, the
value range underlying the decision with respect to analgesics

demands remained accessible (see Tables 1 and 11 in Ref.
27). In decision trees, the features are also weighted according
to their importance (most important first). Another example of
a symbolic classifier is the creation of a Bayesian diagnostic
tool from demographic-, pain-, and surgery-related parame-
ters for the prediction of persistence of pain in a breast cancer
surgery context. It provided a sensitivity and specificity of 33%
and 95%, respectively.61 Again, the classification procedure
was accessible to direct interpretation through the Bayesian
decision limits calculated for the single parameters.

In subsymbolic classifiers, a better performance of a ma-
chine learned algorithm is sought by waiving the possibility of
understanding the details, that is, it is impossible to obtain
biomedical explanations for the functioning of the algorithm.
For example, random forests use hundreds or thousands of
simple decision trees that escape interpretation; the classifi-
cation is obtained through the complete set of trees, that is, the
“forest.”6 Such a classifier was created from various stool-
based markers to diagnose a bladder pain syndrome.5

Similarly, a projection method for high-dimensional data,

Figure 1.Overview and classification of machine learning methods, selected for their use in a pain research context. The figure structures machine learning for its
main uses comprising (1) classification tasks used for example to obtain a clinical diagnosis, (2) data structure detection including the identification of clusters, and
(3) knowledge discovery in experimental or clinical data or in large databases structured hierarchically such as ontologies. Short descriptions of key methods are
provided in Box 1. The icons at the right of each main application field symbolize respective typical machine learning methods, that is, from top to bottom: (1) SVM
where the grouping (classification) is obtained by placing a border (hyperplane) between classes (subsymbolic classifier), (2) a decision tree where the classification
is obtained through hierarchical rules (symbolic classifier), (3) an emergent self-organizing maps as an unsupervised machine learning method able to find an
interesting structure in high-dimensional data such as clusters. In this figure, the map was colored using a geographical analogy with brown (up to snow-covered)
heights and green valleys, on which clusters can be separated (from Ref. 36). Finally, (4) a directed acyclic graph is drafted depicting the polyhierarchy of, for
example, the functions of pain-relevant genes (from Ref. 69). CART, classification and regression tree; DAG, directed acyclic graph; DT, decision tree; ESOM,
emergent self-organizing map; HMM, hidden Markov models; k-NN, k nearest neighbor; LVQ, learning vector quantization; MLP, multilayer perceptron; PCA,
principal component analysis; SVM, support vector machine.
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Table 1

Reports of pain research in the order of the year of publication, where machine-learned methods were used.

Pain context Main data analysis and machine learning
methods

Ref.

Thermal nociception (genetic and other

influencing factors)

Decision tree methods and linear regression 9

Chronic fatigue syndrome Nonlinear regression 19

Classification of neuropathic pain by proteomic

profiles

Focusing projection 8

Neonate pain intensity assessment using digital

image analyses

Relevance and SVM; Bayesian classifier 18

Neonatal pain detection SVM 44

Identifying an optimal set of features from

questionnaires for supporting self-management

of persistent pain

Decision tree methods, SVM, Bayesian classifier,

MLP

28

Irritable bowel syndrome, including associated

pains

Clustering and random forest 55

A need for femoral nerve block after ACL

reconstruction

Logistic regression, Bayesian classifier, neural

networks, SVM, and decision tree methods

64

Postsurgery analgesic consumption and patient-

controlled analgesia readjustment

Decision tree methods 27

Persistent pain after breast cancer surgery Logistic regression and Bayesian classifier 61

Extraction of concepts from clinical dictations of

secondary pain care medical letters

NLP 31

Requests for preoperative acute pain service

consultations

Bayesian classifier, other neural networks, SVM, k

nearest-neighbors (k-NN, logistic regression,

decision tree methods, random forests, and others

66

Gait patterns in complex regional pain syndrome MLP 77

Experimental pain phenotypes and underlying

complex genotypes

ESOM 38

Severity and prognosis of knee osteoarthritis SVM 78

Outcome prediction of acupuncture for neck

pain

Decision tree methods, k nearest-neighbors (k-NN) 79

Pain status of patients to assess the

effectiveness of complementary and alternative

therapies

NLP and SVM 7

Personal coaching system in the treatment of

neck/shoulder pain

k nearest-neighbors (k-NN) and SVM 25

Painful face expressions Hidden Markov models 40

Opioid analgesia and EEG data SVM 22

“Objective” measurement of pain SVM 23

Physiological signals for recognition of boredom,

pain, and surprise emotions

Discriminant analysis, decision tree methods, SOM,

Bayesian classifier, and SVM

29

Experimental pain stimuli ESOM and decision tree methods 35

Experimental pain stimuli ESOM decision tree methods, and PCA 12

Pain level in critically ill patients NLP 48

Low back pain management MLP 49

Fibromyalgia Bayesian classifier, logistic regression, and k

nearest-neighbors (k-NN)

52

Postoperative pain in children Logistic and linear regression models 59

Forecasting of acute postoperative pain Regression methods, SVM, decision tree methods,

k-nearest neighbor, and MLP

65

Phantom limb pain SVM, random forests, discriminant analysis,

Bayesian classifier, k nearest-neighbors (k-NN)

1

(continued on next page)
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specifically, minimum curvilinear embedding, was applied to
obtain from complex proteomics data a clustering of patients
with neuropathic pain from controls and a further separation of
different types of neuropathy such as neuropathy associated
with amyotrophic lateral sclerosis and peripheral neuropathy
with or without or pain.8 Machine-learned algorithms were
further applied to predict thermal pain sensitivity from
bioresponses acquired through electromyography, skin con-
ductance level, and electrocardiography.23 Specifically, using
support vector machines (SVMs56), individual pain threshold
and tolerance to thermal stimulation could be predicted from
the noninvasive measurements at accuracies of .91% and
79%, respectively.23 This aimed at obtaining information about
pain in subjects with verbal and/or cognitive impairments in
whom queries of pain such as standard visual rating scales
cannot be applied. Moreover, predicting which patients
required high opioid doses for analgesia, based on a next-
generation sequencing–derived opioid receptor genotype,
was achieved with a subsymbolic classifier based on k-
nearest neighbors calculations.34 Another application of

subsymbolic classifiers has been implemented as neural
networks. The so-called elastic net regression models and
SVMs predicted pain scores measured between 40 and 120
minutes after the administration of 10 mg oxycodone from
interpolated pain score values before drug administration.46

The elastic net regression model provided pain scores that had
a correlation coefficient of 0.6 with the observed scores.

4. Structure detection in complex pain-related data

Detecting structures in the d-dimensional data space
Du 5 fxijxi2X ;   i5 1…ng pointing at patterns or subgroups
accessible to biomedical interpretation is a typical application of
unsupervised machine learning. In contrast to the supervised
learning setting, the class information Y is absent or ignored; the
task is to find “interesting” data structures that can be interpreted
as subgroups (clusters and strata) in the studied cases or made
accessible for biomedical interpretation by domain experts,
including the discovery of new knowledge in data-driven research
approaches.

Table 1 (continued)

Pain context Main data analysis and machine learning
methods

Ref.

Bladder pain syndrome and stool-based

biomarker creation

Random forests 5

Neuropathic pain and response to pregabalin Nonlinear regression, decision tree methods, and

others (not detailed out; abstract)

15

Acute postoperative pain and analgesic

response

Regression (elastic net/logistic regression), SVM,

and MLP,

46

High opioid dosing demands k nearest-neighbors (k-NN) 34

Painful chronic pancreatitis Logistic regression and SVM 47

Near-infrared spectroscopy signal response to

noxious stimuli

SVM 50

Fibromyalgia SVM, decision tree methods, and Bayesian

classifier

57

Genetics of persistent pain Ontology DAGs 69

Patient-controlled epidural analgesia for

postoperative pain

Logistic regression and SVM 74

Analgesic drug discovery and conotoxins SVM 75

Pain in severely brain-injured patients Artificial neural network, PCA, and LDA 76

Laser-evoked nociceptive pain SVM 67

Migraine Decision tree methods, random forest, SVM, and

Bayesian classifier

16

Postoperative opioid analgesia SVM 21

Rehabilitation in chronic low back pain SVM 30

Pain perception and EEG data SVM 41

Neuropathic pain Logistic regression 42

Back pain Discriminant analysis 60

Esophageal pain Logistic regression and SVM 80

Hypersensitization in experimental human pain Random forest, decision tree methods, ESOM 36

Opioid use in knee arthroplasty NLP 3

Genetics of insensitivity to pain Ontology DAGs 37

The list has been obtained from a PubMed search at https://www.ncbi.nlm.nih.gov/pubmed on July 22, 2017, for “([machine-learn*] OR machine learn*) AND pain,” followed by data cleaning for nonoriginal reports,

neuroimaging studies, and assessments where pain was not in the focus of interest but a symptom used as a predictive feature for a clinical entity different from pain. Short descriptions of key methods are provided in Box 1.

ACL, anterior cruciate ligament; DAG, directed acyclic graph; ESOM, emergent self-organizing maps; LDA, linear discriminant analysis; MLP, multilayer perceptron; NLP, natural language processing; PCA, principal component

analysis; SVM, support vector machine.
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For example, in a data matrix comprising several quanti-
tative sensory testing (QST) parameters acquired from
healthy subjects, a pattern was detected allowing one to
identify a subgroup of healthy subjects who reacted to
hypersensitization with topical capsaicin with a shift in QST
parameters that resembled the parameter pattern observed
in patients with neuropathic pain.35 Similarly, in a set of pain
phenotype data comprising responses to experimental heat,
cold, mechanical, and electrical pain stimuli applied in 125
healthy subjects, structures were detected using unsuper-
vised machine learning implemented as emergent
self-organizing maps.71 These data structures could be
associated with a complex genotype composed of 30
reportedly pain relevant variants in 10 genes, which was able
to correctly identify 80% of the subjects as belonging to an
extreme pain phenotype in an independent and prospectively
assessed cohort of 89 other subjects.38

5. Knowledge discovery and exploration of pain-
related data

Machine learning methods can be used to explore data sets by
reversing the analytical focus of classifier building and pattern
detection. Supervised machine learning methods qualify for data
exploration under the assumption that if a biomedical parameter
qualifies for inclusion in a classifier, then it is probably important for the
addressed pain-related problem. In contrast to classic statistical
methods, where knowledge or at least presumptions about the
distributions and/or functional dependencies of the data are
necessary, machine learningmethods allow for data-driven research
approaches. Hence, techniques of feature selection, which are
common in machine learning, enable one to identify relevant
modulators of pain-related outcomes in data-driven and
hypothesis-free explorative research approaches. For example,

a machine-learned analysis identified, among hundreds of bio-
medical parameters, demographic-, psychological-, and pain-
relatedparameters as themost relevant for explaining thepersistence
of pain in women who underwent breast cancer surgery.61

Moreover, unsupervised machine learning methods can be
used to assess, at a whole-study level, whether the acquired
biomedical parameters demonstrate the efficacy of a treatment
applied during a research project. The rationale is to detect
data structures that are congruent with a known preclassifi-
cation such as the presence of a modulator of the pain
phenotype. For example, after treatment of 82 subjects with
local UV-B irradiation or capsaicin application and assessing
the pain phenotype using 10 different QST parameters, a 246
3 10-sized data matrix was obtained in a human experimental
pain study.36 Using unsupervised machine learning imple-
mented as emergent self-organizing maps,71 data structures
were detected that coincided with applied known treatments
indicating that a modulation of the complex pain phenotype
had been obtained.36

A machine learning algorithm consisting of a classification and
regression tree analysis was applied to 8034 independent
observations of baseline thermal nociceptive sensitivity in mice.9

Theanalysis identified themouse genotype aspredictive of thepain
phenotype; however, it also revealed that the experimenter
performing the test and additional laboratory factors including
season/humidity, cage density, time of day, sex, and within-cage
or order of testingmodulated the pain phenotypes.9 Finally, natural
language progressing methods,73 which combine linguistics with
computer science to analyze human language in speech or written
text, were used to extract signs from clinical notes using, such as
the occurrence of terms, for example, keywords that hint at
a clinically incident, in a document.48 Prediction accuracy of this
method for the patient’s pain level was reported to be better
than 99%.

Text box 1. Definitions and descriptions of key methods of machine learning most frequently used so far in the pain
research context (Table 1 and Fig. 1). For a detailed description of these and further machine learning methods, see, for
example, Ref. 11,43

(1) Classification solves the problem of identifying to which category (diagnosis) a new case belongs, based on a training data set of data containing cases whose

category is known.

(2) A Bayes classifier minimizes the probability of misclassification, given the prerequisites of the theorem of Bayes, that is, distributions and (conditional) probabilities.

(3) Decision tree methods output a tree-structured graph consisting of variables (features) in the decisions nodes (points of split) and conditions in the edges.

(4) Random forests use a multitude of simple decision trees usually based on a random selection of a small set of features.

(5) Projection methods represent the data space in a lower-dimensional space with the aim of conserving important structural properties.

(6) Focusing projection methods are learned using a function of the neighborhood of points in the data space.

(7) K nearest-neighbors (k-NN) methods use k (classified) prototypes to which new cases are assigned depending on their distances to all prototypes.

(8) Artificial neural networks (ANNs) are computer programs that operate a multitude of simple processing elements (neurons), which are connected to each other by

(weighted) synapses.

(9) Multilayer perceptrons are ANN, where the connections are structured in layers. The neurons are of the McCulloch-Pitts type, that is, nonlinear decisions using

hyperplanes are used.

(10) Support vector machines are multilayer perceptron with 1 layer using McCulloch-Pitts type of neurons, where the input data are projected into a (possible infinite

dimensional) vector space in which (1) scalar products are easily computable and (2) the decision surface can be more complex than simple hyperplanes.

(11) A self-organizing map (SOM) is an unsupervised learning ANN producing a 2-dimensional discretized representation of the data space through a focusing

projection.

(12) Emergent SOM are SOMs able to show emergent structures in the form of (U-, P-, and U*-) matrix representations, which display structural features of the data

space using a geographical map metaphor.

(13) Knowledge in data science is a symbolic representation of taxonomic categorizations and decisions using an algorithmic treatable (ie, decidable or provable) part of

natural human language, such as (a subset of) predicate logic, with the requirement to generalize to unseen data.

(14) Ontologies use data science knowledge in the form of a naming and definition of the terms and semantic interrelationships of the entities that really or fundamentally

exist for a particular domain of discourse.

(15) Ontology directed acyclic graphs are graph-based representations of a polyhierarchy of terms of an ontology.
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6. Limitations of machine learning in pain research

Machine learning is vulnerable to overfitting and may end up in
describing noise or irrelevant relationships rather than the true
relationship between features and classes. In that case, only the
actual data on which the mapping has been learned are
successfully classified, but the algorithm fails to classify new
data. This can be addressed by building the classifier on a training
data set and testing its performance on a test data set obtained in
a separate experiment or through splitting the available data, and/
or by cross validation using creating data subsets randomly
resampled from the original data sets. Furthermore, machine
learning may be fooled by data sets containing dominant but
irrelevant features. A classic example is the training of a neuronal
network to recognize camouflaged tanks hidden in trees.13 The
network was apparently successfully trained with a set of
photographs of tanks in trees and just trees without tanks.
However, in a new set of photographs of trees with or without
tanks hidden among them, the neuronal network failed. It turned
out that in the training set, photographs of camouflaged tanks
had been taken on cloudy days, whereas photographs of trees
without tanks had been taken on sunny days. The neural network
had learned to recognize the weather rather than distinguishing
tanks among trees. In the new set of photographs, forests with
and without tanks had been photographed in the same weather;
hence, a neuronal network merely able to distinguish the weather
was unable to identify tanks.

Furthermore, applications of machine learning in pain research
may be limited by the availability and quality of data; it depends on
the maintenance of knowledge bases or on the success of
enrolling the necessary large number of subjects in clinical
studies. The latter has become easier, thanks to funding activities
of concerted large-scale pain research projects.33 However, even
the analysis of apparently large data sets can quickly be
confronted with small sample problems when data structure
detection results in many subgroups of small sizes. Then, the
rather typical setting of many more features than cases poses
challenges on a valid data analysis. Possibly, generative machine
learningmethods17 are able to reduce this problem. Suchmodels
range from Gaussian mixture models as a simple form of
a generative model up to more complex approaches such as
generative adversarial networks,20 generative restricted Boltz-
man machines,62 or generative emergent self-organizing neuro-
nal networks.70

7. Conclusions

The emerging discipline of computational pain research provides
contemporary tools to understand pain. This discipline uses
computer-based processing of complex pain-related data and
relies on “intelligent” learning algorithms. By extracting informa-
tion from complex pain-related data and generating knowledge
from this, information will be facilitated. Therefore, machine
learning has the ability to influence the study and treatment of pain
profoundly. Indeed, the application of machine learning for pain
research–related nonimaging problems has been mentioned in
publications in scientific journals since 2002 (Table 1). Among
machine learning methods,11,43 a subset has so far been applied
to pain research–related problems (Fig. 1), SVMs, regression
models, and several kinds of neural networks so far most
frequently mentioned in the pain literature. Machine learning
receives increasing general interest and appears to penetrate
many parts of daily life and natural sciences. This tendency is
likely to extend to pain research. The present review aims to

acquaint pain domain experts with the methods and current
applications of machine learning in pain research, possibly
facilitating the awareness of the methods in current and future
projects.
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[4] Berikol GB, Yildiz O, Özcan IT. Diagnosis of acute coronary syndrome
with a support vector machine. J Med Syst 2016;40:84.

[5] Braundmeier-Fleming A, Russell NT, Yang W, Nas MY, Yaggie RE, Berry
M, Bachrach L, Flury SC, Marko DS, Bushell CB, Welge ME, White BA,
Schaeffer AJ, Klumpp DJ. Stool-based biomarkers of interstitial cystitis/
bladder pain syndrome. Sci Rep 2016;6:26083.

[6] Breiman L. Random forests. Mach Learn 2001;45:5–32.
[7] Bui DDA, Zeng-Treitler Q. Learning regular expressions for clinical text

classification. J Am Med Inform Assoc 2014;21:850–7.
[8] Cannistraci CV, Ravasi T, Montevecchi FM, Ideker T, AlessioM. Nonlinear

dimension reduction and clustering by Minimum Curvilinearity unfold
neuropathic pain and tissue embryological classes. Bioinformatics 2010;
26:i531–539.

[9] Chesler EJ, Wilson SG, Lariviere WR, Rodriguez-Zas SL, Mogil JS.
Identification and ranking of genetic and laboratory environment factors
influencing a behavioral trait, thermal nociception, via computational
analysis of a large data archive. Neurosci Biobehav Rev 2002;26:907–23.

[10] DeLisle S, Kim B, Deepak J, Siddiqui T, Gundlapalli A, Samore M,
D’Avolio L. Using the electronic medical record to identify community-
acquired pneumonia: toward a replicable automated strategy. PLoS One
2013;8:e70944.

[11] Dhar V. Data science and prediction. Commun ACM 2013;56:64–73.
[12] Dimova V, Oertel BG, Kabakci G, Zimmermann M, Hermens H,
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