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The platinum-based DNA damaging agent cisplatin is used as a standard

therapy for locally advanced head and neck squamous cell carcinoma

(HNSCC). However, the mechanisms underpinning the cytotoxic effects of

this compound are not entirely elucidated. Cisplatin produces anticancer

effects primarily via activation of the DNA damage response, followed by

inducing BCL-2 family dependent mitochondrial apoptosis. We have previ-

ously demonstrated that cisplatin induces the expression of proapoptotic

BCL-2 family protein, Noxa, that can bind to the prosurvival BCL-2 fam-

ily protein, MCL-1, to inactivate its function and induce cell death. Here,

we show that the upregulation of Noxa is critical for cisplatin-induced

apoptosis in p53-null HNSCC cells. This induction is regulated at the tran-

scriptional level. With a series of Noxa promoter-luciferase reporter assays,

we find that the CRE (cAMP response element) in the promoter is critical

for the Noxa induction by cisplatin treatment. Among the CREB/ATF

transcription factors, ATF3 and ATF4 are induced by cisplatin, and down-

regulation of ATF3 or ATF4 reduced cisplatin-induced Noxa. ATF3 and

ATF4 bind to and cooperatively activate the Noxa promoter. Furthermore,

ERK1 is involved in cisplatin-induced ATF4 and Noxa induction. In con-

clusion, ATF3 and ATF4 are important regulators that induce Noxa by

cisplatin treatment in a p53-independent manner.

1. Introduction

Head and neck cancer is the sixth leading cancer

worldwide. Head and neck squamous cell carcinoma

(HNSCC) accounts for more than 90% of incident

cases. Despite intense, multimodality treatment regi-

mens for HNSCC including surgery, chemotherapy,

and radiation, little progress has been made over the

past 30 years in improving overall survival rates (Lee-

mans et al., 2011; Rothenberg and Ellisen, 2012).

Induction chemotherapy with platinum-based com-

pounds, taxanes, and 5-fluorouracil is beneficial to

head and neck cancer patients, but the prolonged use

of chemotherapeutic drugs is limited by their toxicity

and by the development of resistance (Schultz et al.,

2010; Suh et al., 2014; Vermorken et al., 2007).
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Ultimately, cisplatin exerts anticancer effects via multi-

ple mechanisms. Cisplatin is most prominent in the

generation of DNA lesions, activation of DNA dam-

age response, and the induction of p53 and BCL-2

family dependent mitochondrial apoptosis. Tumor cell

death induced by both conventional and targeted

chemotherapy is often mediated by the BCL-2 family

dependent mitochondrial apoptotic pathway (Adams

and Cory, 2007; Chipuk et al., 2010; Youle and Stras-

ser, 2008). However, initiators of this apoptotic path-

way, such as p53, are frequently mutated or deleted in

HNSCC rendering the disease refractory to treatment

(Poeta et al., 2007; Sano et al., 2011). The develop-

ment of chemoresistance is often associated with cis-

platin treatment, which leads to therapeutic failure.

However, the mechanisms of the resistance by cisplatin

remain unclear.

The BCL-2 family consists of three main groups:

prosurvival (e.g., BCL-2, MCL-1, BCL-XL), multido-

main prodeath (e.g., BAX, BAK), and BH3-only pro-

death (e.g., BAD, BID, BIM, Noxa). BH3-only

proteins cause cytochrome c release from the mitochon-

dria by activating BAX and/or BAK, while the prosur-

vival BCL-2 family of proteins prevents this process

(Adams and Cory, 2007; Chipuk et al., 2010; Youle

and Strasser, 2008). In the case of cisplatin-induced

apoptosis, a BH3-only protein, Noxa, specifically binds

to and recruits the prosurvival MCL-1 from the cytosol

to the mitochondria to inactivate the function of MCL-

1. Translocation of MCL-1 initiates its phosphoryla-

tion and subsequent ubiquitination, which triggers pro-

teasome-mediated degradation (Nakajima et al., 2016).

It has been demonstrated that the transcription of

Noxa is induced by cisplatin, which is both p53-depen-

dent and p53-independent mechanisms (Gutekunst

et al., 2013; Sheridan et al., 2010; Zhu et al., 2013).

Although, Noxa was originally identified as a p53 tar-

get gene, the p53-independent mechanisms of the tran-

scription of Noxa are not entirely elucidated. To

investigate the mechanisms of cisplatin-induced, p53-

independent apoptosis, we used HN8 and HN12

HNSCC cell lines in which p53 was inactive (Yeudall

et al., 1997). Cisplatin treatment on these cells triggers

the induction of Noxa and apoptosis. We found that

the upregulation of Noxa was critical for cisplatin-

induced apoptosis in a p53-independent manner.

Therefore, we focused on the p53-independent mecha-

nism of Noxa induction by cisplatin treatment. We

identified that transcription factors, ATF3 and ATF4,

contribute to regulate Noxa mRNA induction by cis-

platin treatment through CRE on the promoter. We

further analyzed the signaling pathways to regulate

ATF3 and ATF4 induction by cisplatin.

2. Materials and methods

2.1. Cell lines and cell culture

HN8 and HN12 cells were kindly provided by W.

Andrew Yeudall (Augusta University). Cells were cul-

tured in Dulbecco’s modified Eagle’s medium

(DMEM; Life Technologies, Grand Island, NY, USA)

supplemented with 10% heat-inactivated fetal bovine

serum (FBS) and 100 lg�mL�1 penicillin G/strepto-

mycin at 37 °C in a humidified, 5% CO2 incubator.

2.2. Lentivirus production

The lentiviral short-hairpin RNA (shRNA)-expressing

constructs were purchased from Sigma-Aldrich (St.

Louis, MO, USA). The target sequences for each

shRNA are the following: Noxa 2: 50-CTTCCGGCA

GAAACTTCTGAA-30, Noxa 4: 50-TGGAAGTCGA

GTGTGCTACTC-30, ATF3-1: 50-GCTGAACTGAA

GGCTCAGATT-30, ATF3-2: 50-CTTCATCGGCC

CACGTGTATT-30, ATF4-1: 50-GCCTAGGTCTCT

TAGATGATT-30, ATF4-2: 50-GCCAAGCACTTCA

AACCTCAT-30, ERK1: 50-CCTGAATTGTATCAT

CAACAT-30, ERK2-1: 50-CAAAGTTCGAGTAGCT

ATCAA-30, ERK2-2: 50-TATCCATTCAGCTAAC

GTTCT-30, CREB: 50-ACAGCACCCACTAGCAC

TATT-30. The constructs were transfected into 293T

packaging cells along with the packaging plasmids

using EndoFectin Lenti (GeneCopoeia, Rockville,

MD, USA) and the lentivirus-containing supernatants

were used to transduce the cells.

2.3. Luciferase assay

The sequences of p53 and CRE mutants on the Noxa

promoter are the following: p53: 50-GAGAGTTT

CCGGGAAGTTCGCG-30, CRE: 50-CTAAAAAA-30.
Each promoter construct (�198 to +157 from the tran-

scription start site) was cloned into KpnI-BglII sites in

PGV-B2 (Toyo B-Net, Tokyo, Japan). The ATF3 and

ATF4 expression vectors were purchased from

Addgene (Cambridge, MA, USA) (Wang et al., 2010).

HN8 or HN12 cells (1 9 105 cells/12 well) were trans-

fected with 0.5 lg of reporter plasmids, 0.4 lg of an

ATF3 expression plasmid, an ATF4 expression plas-

mid (wild-type or deletion mutants) or an empty vec-

tor, and 0.1 lg pRL-SV40 Renilla luciferase plasmid

(Promega, Madison, WI, USA) using EndoFectin Max

(GeneCopoeia). Luciferase activity was measured using

the Dual-Luciferase Reporter System (Promega) and

normalized to the Renilla luciferase activity expressed

by pRL-SV40.
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2.4. Chemicals and antibodies

Cisplatin and SP600125 were purchased from ApexBio

(Houston, TX, USA). SB203580 and PD184352 were

purchased from LC Laboratories (Woburn, MA, USA).

Cisplatin was dissolved in PBS and other reagents were

dissolved in dimethyl sulfoxide (Hall et al., 2014). The

following antibodies were used: cleaved-PARP

(D64E10), ATF4, CHOP and GAPDH from Cell Sig-

naling Technology (Danvers, MA, USA); Noxa

(114C307.1) from Thermo Fisher Scientific (Waltham,

MA, USA); MCL-1 from Enzo Life Sciences (Farming-

dale, NY, USA); ATF3, ATF4, pERK, ERK1, and

ERK2 from Santa Cruz Biotechnology (Santa Cruz,

CA, USA); ATF4 from GeneTex (Irvine, CA, USA).

2.5. Western blot analyses

Whole cell lysates were prepared with CHAPS lysis

buffer [20 mM Tris (pH 7.4), 137 mM NaCl, 1 mM

DTT, 1% CHAPS, a protease inhibitor cocktail, and

phosphatase inhibitor cocktails (Sigma-Aldrich)].

Equal amounts of proteins were loaded on a SDS

acrylamide gel, transferred to a nitrocellulose mem-

brane, and analyzed by immunoblotting with ECL2

(Thermo Scientific, Rockford, IL, USA).

2.6. Cell viability assay

Cell death was quantified by Annexin V-FITC (BD

Biosciences, San Jose, CA, USA)-propidium iodide

(Sigma-Aldrich) staining according to the manufac-

turer’s protocol, followed by flow cytometric analysis

using FACScan (BD Biosciences).

2.7. Quantitative real-time PCR

Quantitative real-time PCR analysis was performed as

previously described. The primer and probe sets

(GAPDH, Hs99999905_m1; Noxa, Hs00560402_m1)

were purchased from Applied Biosystems (Carlsbad,

CA, USA). Data were analyzed as mRNA expression

levels relative to GAPDH according to the manufac-

turer’s protocol.

2.8. Chromatin immunoprecipitation assay

The ChIP assay was performed using the kit (Cell Sig-

naling Technology) according to the manufacture’s

instruction. To amplify the DNA, the following pri-

mers were used: Forward: 50-CCTACGTCACCAGG

GAAGTT-30, Reverse: 50-GATGCTGGGATCGGGT

GT-30.

2.9. Statistical analysis

Values represent the means � SD for triplicates. The

significance of differences between the experimental

variables was determined using the Student’s t-test.

Values were considered statistically significant at

P < 0.05.

3. Results

3.1. Cisplatin-induced apoptosis is Noxa-

dependent in HNSCC cells

It has been demonstrated that treatment with DNA-

damaging agents, such as cisplatin, induces Noxa

expression and apoptosis in a variety of cell lines

(Gutekunst et al., 2013; Lin et al., 2012; Nakajima

et al., 2016; Sheridan et al., 2010; Zhu et al., 2013).

To explore the significance of Noxa in cisplatin-

induced cell death in HNSCC, we first stably expressed

the shRNA for Noxa or scrambled shRNA as control

in HN8 (p53 deleted) and HN12 (p53 truncated and

inactivated) cells (p53 expression is shown in Fig. S1)

and then treated with cisplatin with the IC50 concen-

trations (50 lM for HN8 or 25 lM for HN12). In the

control cells, Noxa and cleaved-PARP (indicative of

apoptosis) were induced starting at 8 h (Fig. 1A).

Downregulation of Noxa resulted in reduction of cis-

platin-induced apoptosis, as judged by PARP cleavage

and Annexin V staining (Fig. 1 and Fig. S2). These

results suggest that Noxa is required for cisplatin-

induced apoptosis in HNSCC cells.

3.2. The CRE on the Noxa promoter is essential

for cisplatin-mediated Noxa induction

independent of p53

Although originally identified as a p53 target gene,

Noxa is induced and required for cisplatin-induced cell

death even in p53-null cell lines, such as HN8 and

HN12 (Fig. 1). Thus, we explored the mechanisms of

p53-independent Noxa induction. In both HN8 and

HN12 cells, gradual increases of Noxa mRNA were

observed from 0 to 16 h, which correlated with Noxa

protein induction (Fig. 2). This result suggests that the

increase in Noxa expression is controlled by the

mRNA level. Thus, our focus shifted to understanding

the transcriptional regulation of Noxa.

We next determined the promoter regions required

for Noxa induction using a series of Noxa promoter-

luciferase constructs (Fig. 3A). In p53-deleted HN8

cells, there was ~ 4-fold induction with the �198 con-

struct (�198 to +157 from the transcription start site).
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Fig. 1. Noxa contributes to cisplatin-induced apoptosis in a p53-independent manner. (A) p53-inactive HN8 and HN12 HNSCC cells were

infected with lentiviruses encoding shRNA for nontargeting control or Noxa (shNoxa2). Cells were treated with cisplatin (50 lM for HN8 or

25 lM for HN12) with the indicated periods and equal amounts of the total extracts were used for immunoblot analysis with the indicated

antibodies. (B) The cells in (A) were treated with cisplatin for 24 h and cell death was determined by Annexin V-propidium iodide staining

followed by FACS analyses. Another shNoxa construct, shNoxa4 was also introduced in each cell line, which was assayed similarly as

shNoxa2. Values represent the mean � SD of triplicates. The results are representative of at least two independent experiments and are

reproducible.
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panel), respectively. Values represent the mean � SD of triplicates.
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When the p53 binding site was mutated (�198 p53

mutant), similar levels of induction was still observed

with cisplatin treatment. Consistently, there was ~ 4-

fold induction in the �171 construct in which the p53

binding site was deleted (Fig. 3B). The results from

these constructs confirm that Noxa can be induced by

cisplatin in a p53-independent manner. When the CRE

was mutated (�171 CRE mutant), cisplatin-mediated

Noxa induction was not detected (Fig. 3B). We further

generated �131 to +21 construct and its CRE mutant

(Fig. 3A). The intact �131 construct showed a

~ 4-fold induction, whereas the �131 CRE mutant

construct did not show the induction by cisplatin treat-

ment (Fig. 3B). There was no induction with the �58

construct in which both the p53 binding site and CRE

were deleted, but Myc and E2F binding sites were

retained (Fig. 3B). Similar results were obtained using

HN12 cells, confirming the requirement of CRE for

cisplatin-mediated Noxa induction (Fig. S3). Taken

together, these data indicate that the CRE is critical

for cisplatin-mediated Noxa induction independent of

the p53 binding site.

3.3. ATF3 and ATF4 regulate cisplatin-mediated

Noxa induction through binding to the CRE on

the Noxa promoter

It has been demonstrated that CRE is regulated by the

ATF/CREB family transcription factors such as

ATF3, ATF4, and CREB (Ameri and Harris, 2008;

Servillo et al., 2002). We first determined the expres-

sion of these transcription factors after cisplatin treat-

ment in HN8 and HN12 cells. ATF3 showed the

highest expression at 16 h with cisplatin treatment

when Noxa and cleaved-PARP were at the peak

(Fig. 4A). ATF4 was slightly induced at 16 h. In con-

trast, CREB showed relatively constant expression

(Fig. 4A).
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Fig. 3. A CRE on the Noxa promoter is critical for cisplatin-induced Noxa expression. (A) Schematic representation of the promoter region of

Noxa. The mutations and deletions of the Noxa promoter were used for the promoter-luciferase reporter fusion gene constructs. (B) A

series of luciferase constructs shown in (A) were transfected in HN8 cells. On the next day, cells were treated with 50 lM of cisplatin for

16 h. Values represent the mean � SD of triplicates. The results are representative of at least two independent experiments and are

reproducible.
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We then downregulated each transcription factor by

specific shRNAs to examine which transcription factor

was contributing to Noxa induction. The induction of

Noxa was strongly reduced by shRNAs for ATF3 and

ATF4 compared to shControl in both HN8 and HN12

cells (Fig. 4B,C). In contrast, downregulation of

CREB by shRNA did not affect Noxa induction

(Fig. S4). These results suggest that ATF3 and ATF4

control cisplatin-mediated Noxa induction independent

of p53.

Next, we examined whether endogenous levels of

ATF3 and ATF4 bind to CRE in the Noxa promoter.

We performed a ChIP assay using ATF3 or ATF4

specific antibodies and the primers that included CRE.

Eight hours after cisplatin treatment, the binding of

ATF3 and ATF4 to the DNA element containing

CRE was clearly increased (Fig. 5A), suggesting that

these transcription factors indeed bind to the CRE.

Furthermore, in order to address whether ATF3

and ATF4 cooperatively activate the Noxa promoter,

we transfected ATF3 and/or ATF4 expression vectors

together with the �131 Noxa promoter-luciferase con-

struct that contains the CRE for induction (Fig. 3).

ATF3 or ATF4 alone slightly activated the Noxa pro-

moter, which was enhanced by cotransfection of ATF3

and ATF4 [cisplatin (–) in Fig. 5B and Fig. S5, left

panels]. All these activities were augmented by cis-

platin treatment. It has been demonstrated that ATF3

and ATF4 physically associate and activate the Noxa

promoter in mantle cell lymphoma cells (Wang et al.,

2010). This paper showed that the N-terminal domain

of ATF4 was dispensable for interaction with ATF3,

and the C-terminal DNA binding domain was required

for interaction with ATF3. When deletion mutants of

each domain of ATF4 were transfected, the activation

of Noxa promoter was less compared to ATF4 wild-

type, but higher than the vector-only control particu-

larly without cisplatin (Fig. 5B and Fig. S5, right pan-

els), suggesting that both DNA binding of ATF4 and

interaction with ATF3 and ATF4 are required for

cooperative activation of the Noxa promoter. The acti-

vation mediated by ATF3 and ATF4 was completely

abrogated with a CRE mutant of the Noxa promoter.

These results altogether suggest that ATF3 and ATF4

bind to the CRE of the Noxa promoter to coopera-

tively induce the Noxa expression.

3.4. ATF4 activation is regulated through ERK1

by cisplatin treatment

We next addressed the signaling pathways for the

induction of ATF3 and ATF4 in cisplatin treatment.

Noxa is known to be induced by ATFs with endoplas-

mic reticulum (ER) stress inducers, such as fenretinide

and Eeyarestatin I (Qing et al., 2012; Wang et al.,

2010). Fenretinide induced ATF3, ATF4, and Noxa

similarly as cisplatin treatment. However, cisplatin did

not induce an ER stress marker, CHOP, which was

clearly induced by fenretinide (Fig. 6A), suggesting

that ER stress was not induced by cisplatin treatment.

It has been shown that the MEK-ERK or p38-

MAPK pathways are involved in Noxa induction in

cisplatin treatment (Sheridan et al., 2010; Zhu et al.,

2013). Thus, we used a MEK inhibitor, PD184352,

and a p38-MAPK inhibitor, SB203580, to examine the
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amounts of the total extracts were used for immunoblot analysis

with the indicated antibodies. (B, C) HN8 (B) or HN12 (C) cells

were infected with lentiviruses encoding shRNA for nontargeting
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effect on cisplatin-induced Noxa expression. Pretreat-

ment with SB203580 affected neither Noxa nor ATF3/

ATF4 induction by cisplatin treatment (Fig. 6B). In

contrast, pretreatment with PD184352 strongly inhib-

ited Noxa induction in both HN8 and HN12 cells

(Fig. 6C). The induction of ATF4, but not ATF3, was

also strongly inhibited. It has been reported that cis-

platin-induced JNK activation is a key regulator of

ATF3 induction in nonsmall cell lung carcinoma cells

(Bar et al., 2016). Thus, we also tested the involvement

of JNK for Noxa induction using a JNK inhibitor,

SP600125. The inhibition of JNK affected neither

ATF3 nor Noxa induction in HNSCC cells (Fig. S6).

These results suggest that the MEK-ERK pathway

regulates Noxa induction through ATF4 activation

independent of p53.

The MEK inhibitor, PD184352, equally inactivates

ERK1 and ERK2 (pERK in Fig. 6C). ERK1 and

ERK2 are thought as redundant isoforms due to high

sequence homology. However, these proteins play a

specific role in certain circumstances (Busca et al.,

2016; Mehdizadeh et al., 2016). Thus, we performed

specific downregulation by each shRNA to examine

which ERK regulates ATF4 and Noxa by cisplatin.

Downregulation of ERK1 clearly inhibited Noxa

induction as well as ATF4 (Fig. 6D, Left panel). In

contrast, downregulation of ERK2 did not reduce cis-

platin-induced ATF3, ATF4 or Noxa levels (Fig. 6D,

Right panel). Taken together, ERK1 predominantly

regulates cisplatin-induced ATF4 and Noxa induction.

4. Discussion

DNA damaging agents, such as cisplatin, have been

commonly used for chemotherapy in solid tumors for

decades, but the molecular mechanisms of the action are
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Fig. 5. ATF3 and ATF4 bind to and activate the Noxa promoter through the CRE. (A) HN8 cells were treated with 50 lM of cisplatin for 8 h.

Chromatin immunoprecipitation was performed with the indicated antibodies and DNA was analyzed by PCR using primers corresponding to

�67 to +60 on the Noxa promoter. (B) HN12 cells were cotransfected with the �131 luc reporter construct and an ATF3 or ATF4

expression plasmid for 24 h. On the next day, cells were treated with 25 lM of cisplatin for 16 h. Values represent the mean � SD of

triplicates. The results are representative of at least two independent experiments and are reproducible.
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still obscure. We and others have shown that a proapop-

totic BCL-2 family protein, Noxa plays a key role to

induce cell death by cisplatin (Gutekunst et al., 2013;

Lin et al., 2012; Nakajima et al., 2016; Sheridan et al.,

2010; Zhu et al., 2013). Although Noxa was originally

identified as a p53-target gene, many cancers have p53

inactivation by deletion or mutations. Thus, it is impor-

tant to identify p53-independent regulatory mechanisms

of Noxa in cisplatin treatment for overcoming the resis-

tance. Using p53-inactive HNSCC cells, we find that cis-

platin-induced Noxa is mainly regulated at the

transcriptional level. Furthermore, the promoter analy-

ses identified that CRE is crucial for the Noxa induction

and transcription factors, ATF3 and ATF4 play an

important role in this regulation. It has been shown that

Noxa is regulated by a variety of signaling pathways

through ATF3/ATF4 (Bagheri-Yarmand et al., 2015;

Qing et al., 2012; Wang et al., 2010; Yan et al., 2014).

Thus, this study adds another pathway to induce Noxa

through ATF3/ATF4. Although downregulation of

Noxa by shRNA strongly inhibited cisplatin-induced

apoptosis, residual cell death activity was observed
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(Fig. 1), suggesting the involvement of other BH3-only

proteins. It has been shown that BIM is upregulated

upon DNA-damaging agent in a p53-independent man-

ner (Delbridge et al., 2016; Happo et al., 2010). Further

studies are needed to clarify this point.

ATF3 and ATF4 are often activated by ER stress.

However, cisplatin did not activate CHOP, an ER stress

marker. In contrast, fenretinide induced ER stress, and

ATF3, ATF4, and Noxa were induced as similar as

those by cisplatin treatment (Fig. 6A). This result sug-

gests that cisplatin and fenretinide induce Noxa mainly

through ATF3/ATF4 in a p53-independent manner, but

the regulatory signaling pathways are distinct. A MEK

inhibitor, PD184352 specifically inhibited cisplatin-

induced ATF4 followed by Noxa (Fig. 6C). Further-

more, ERK1, but not ERK2, plays a predominant role

for this induction (Fig. 6D). The specific role of ERK1

in cisplatin induction has also been shown in hepatocel-

lular carcinoma cells (Guegan et al., 2013). These results

suggest that combination treatment with cisplatin and

MEK inhibitors may not be effective for cancer thera-

pies, since this combination may not synergize, but

antagonize the effect of treatment. Cisplatin also acti-

vates p38-MAPK (Zhu et al., 2013) or JNK (Bar et al.,

2016), but treatment with neither a p38-MAPK inhibi-

tor SB203580 nor a JNK inhibitor SP600125 affected

cisplatin-induced Noxa or ATF3/ATF4 (Fig. 6B and

Fig. S6), suggesting that p38-MAPK and JNK play

alternative roles in cisplatin-induced apoptosis. Thus, it

is still unclear how ATF3 is induced by cisplatin. Once

the signaling pathways of ATF3 activation become elu-

cidated, the activators of these pathways could be alter-

native strategies for targeting Noxa to efficiently induce

cell death for cancer treatment.

Our results indicate that Noxa can be efficiently

induced by not only cisplatin, but also by an ER stress

inducer, fenretinide, through ATF3/ATF4 activation

(Fig. 6A). The induction of Noxa mainly and solely

targets MCL-1 to inactivate its function. Thus, com-

bining the two treatments to inhibit MCL-1 together

with BCL-2/BCL-XL should effectively induce apopto-

sis in cancer cells. Indeed, when HN8 and HN12 cells

were treated with fenretinide and ABT-263 (navito-

clax), we observed synergistic induction of cell death

(unpublished results). It has been demonstrated that

combination of fenretinide and ABT-737, a preclinical

compound of ABT-263, shows enhanced apoptosis in

neuroblastoma, melanoma, and B-cell chronic lympho-

cytic leukemia models (Bruno et al., 2012; Fang et al.,

2011; Mukherjee et al., 2015). Since fenretinide and

navitoclax are used in clinical trials in a variety of can-

cers, this combination might become an alternative

strategy to treat HNSCC.

5. Conclusions

We have previously demonstrated that Noxa-mediated

MCL-1 phosphorylation followed by MCL-1 degrada-

tion is critical for apoptosis induced by DNA damag-

ing agents through regulation of the Noxa/MCL-1/

CDK2 complex (Nakajima et al., 2016). In the current

study, Noxa induction is mediated by ATF3/ATF4

transcription factors, which are regulated specifically

by ERK1 in the upstream signaling pathway via cis-

platin treatment. Taken together, we propose one of

the signaling pathways that cisplatin takes to induce

apoptosis, as shown in Fig. 7. We expect some of these

proposed molecules in the figure could be used as

biomarkers and targets to enhance the cisplatin sensi-

tivity to overcome resistance.
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