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Abstract: Elevated reactive oxygen species (ROS) have been implicated as significant for cancer
survival by functioning as oncogene activators and secondary messengers. Hence, the attenuation of
ROS-signaling pathways in cancer by antioxidants seems a suitable therapeutic regime for targeting
cancers. Low molecular weight (LMW) antioxidants such as 2,2,6,6-tetramethylpyperidine-1-oxyl
(TEMPO), although they are catalytically effective in vitro, exerts off-target effects in vivo due to their
size, thus, limiting their clinical use. Here, we discuss the superior impacts of our TEMPO radical-
conjugated self-assembling antioxidant nanoparticle (RNP) compared to the LMW counterpart in
terms of pharmacokinetics, therapeutic effect, and adverse effects in various cancer models.
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1. Introduction

Reactive oxygen species (ROS) are intracellular free oxygen radicals with one or
more unpaired electrons in their valency shell. These unpaired electrons are capable
of independent existence and are highly reactive, who tend to stabilize their shell by
donating or extracting electron(s) from the oxidizable molecules. These target oxidizable
molecules become a radical entity, which further starts a chain reaction of damaging
other molecules [1]. The concept of organic free radical began in 1900 by Gomberg, who
speculated the presence of triphenyl methyl radical (Ph3C•) in the living system. In 1954, a
free radical theory was proposed by Gershman, who pointed out the toxicity of oxygen and
its reduced forms due to the highly oxidizing power [2,3]. In 1969, McCord and Fridovich
discovered the first cellular antioxidant enzyme, superoxide dismutase (SOD) [4].

ROS are broadly classified into radical and non-radical species. Radical species involve
entities with unpaired electron(s) such as superoxide (O2

•−), hydroxyl radical (OH•−),
oxygen biradicals (O2

••), peroxyl radicals (ROO•), and alkoxy-radicals (RO•). In contrast,
non-radical species include entities that do not contain an unpaired electron but can easily
convert to free radicals in the living system. The primary reported species are hydrogen
peroxide (H2O2), hypochlorous acid (HOCl), ozone (O3), singlet oxygen (1O2), organic
peroxides (ROOH), aldehydes (RCHO), and so on [5]. ROS can be produced both through
endogenous and exogenous sources. Endogenous sources of ROS are mitochondria, perox-
isomes, endoplasmic reticulum, and activated inflammatory neutrophils. Large amount
of ROS is generated in mitochondria via several enzymatic reactions such as an electron
transport chain, NADH dehydrogenase, and ubiquinone cytochrome C reductase, etc.
Several enzymatic reactions generate ROS in peroxisomes (β-oxidation of fatty acids; acyl
CoA oxidase, uric acid metabolism; urate oxidase, xanthine metabolism; xanthine oxi-
dase, D-proline metabolism; D-amino acid oxidase), and in the endoplasmic reticulum
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(cytochrome P450, b5 enzymes, diamine oxidase, thiol oxidase enzyme Erop1p). Activated
inflammatory cells such as neutrophils also produce numerous ROS in the inflammatory
sites.

In contrast, exogenous sources include pesticides, ultraviolet light, air, and water
pollution, metals such as iron, copper, cobalt, cadmium, arsenic, etc. [6,7]. Under normal
conditions, a small amount of ROS escapes during the intracellular processes regulated by
the enzymatic antioxidant system, viz., superoxide dismutase, catalase, peroxiredoxins,
glutathione peroxidases, glutathiones, bilirubin, etc. [6]. Although antioxidant systems
maintain a tightly controlled redox homeostasis in the normal cells, irreversible or non-
repairable oxidative damage to nuclear and mitochondrial DNA, protein, and lipids are
inevitable due to their prolonged overexposure to exogenous ROS producers. These over-
produced ROS lead to oxidative stress-related diseases such as cancer, cardiovascular
diseases, diabetes, rheumatoid arthritis, neurogenerative diseases, liver disease, and is-
chemic and post-ischemic pathologies [6–8]. Exogenous oxidative stress or prolonged
chronic endogenous oxidative stress such as inflammation has been linked to tumor initia-
tion, promotion and progression, which are evident from the fact that cancer cells are under
constant oxidative stress, a hallmark of cancerous phenotype [8,9]. Considering a contin-
uous elevated ROS level in the tumor environment, which is crucial for tumorigenesis,
metastasis, and angiogenesis, antioxidant therapies seem to be the most intuitive and apt
intervention to attenuate various cancers. Although various low molecular weight (LMW)
antioxidants such as vitamin C, vitamin E, selenium, and TEMPOL, showed effectiveness
in vitro and in some cases in vivo; however, clinically, they failed to show any conclusive
efficacy [10]. Their clinical failure may be attributed to their metabolism and rapid excre-
tion, preventing them from reaching the target ROS production site of the tumor cells in
enough amount to scavenge ROS to a critical level to have sufficient anti-cancer efficacy.
Another significant and severe problem of the LMW antioxidants is that they internalize in
the healthy cells and disturb their redox homeostasis, including the mitochondrial electron
transport chain. Here, we conceptualized new antioxidants, “self-assembling antioxidants”,
which significantly vary in their pharmacokinetic characteristics and reduce undesired
adverse side effects related to the LMW antioxidants. In this review, an implication of
ROS in cancer, the status of antioxidant cancer therapies using LMW compounds and the
precedence of self-assembling antioxidants (we abbreviate them as redox nanoparticle
hereafter; RNP) over LMW antioxidant compounds for the cancer therapeutics will be
discussed in detail.

2. Oxidative Stress and Cancer

As described in the above section, evidence from the clinical and bench studies
indicate that the elevated intracellular ROS contributes to cancer initiation, promotion
and progression [8,9]. The intracellular antioxidant system can quench the overproduced
ROS generated through the exogenous source or chronic inflammation in the normal cells
to some extent and under their capacity. However, ROS that could not be completely
eliminated could be mutagenic and induce carcinogenesis [9,11,12]. For instance, white
blood cells convert to neutrophils and invade the inflamed colon in ulcerative colitis. These
activated neutrophils generate ROS such as O2

•− and HOCl, which are known to stimulate
mutagenesis and cause colon cancer [13,14]. Similarly, constant exposure to free radical
producers such as ultraviolet, tobacco smoke, and metal ions may stimulate mutagenesis
and induce melanoma, bronchogenic carcinoma, and colorectal cancer, respectively [8].

Tumor initiation is triggered by damaging cellular genes, mainly by the oxidation
with ROS. It is reported that about 10,000 oxidative hits to DNA per cell are observed
daily in humans [15], which are eventually recovered by the cellular repairing system.
However, sometimes, when oxidative stress damage is beyond their repair capacity, DNA
base adduct with non-scavenged ROS may be observed [8,16]. For instance, one of ROS,
hydroxide radical (•OH) attacks the guanine (G) base at the eighth position to become
8-OH-G, which leads to Guanine-Cytosine to Thymine-Adenine transversion, called point
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mutation [8,16,17]. In addition, DNA helix alterations such as single or double-strand
breaks and inter-strand crosslinks are also observed upon damage by free radicals gener-
ated through ultraviolet or ionizing lights [18,19]. Such alteration in the DNA results in
genomic instability, which may further modulate transcription and transduction pathways
favoring carcinogenesis and tumor progression [20,21].

ROS in tumors participates in the intracellular signaling and regulation by acting as
secondary messengers [6–8]. Ras protein family, one of the membrane-bound G protein
families, regulates transcription, cell growth, and apoptosis [22]. Ras is activated by
ROS derived from ultraviolet radiation and metal ions and is known to be frequently
mutated in humans cancers such as skin, liver, and colon cancers [22]. It should be noted
that Ras-dependent cell proliferation requires ROS, which is unconditionally elevated in
cancers [23].

Another tumor suppressor protein, p53, a transcriptional factor, is known to be in-
volved in cell cycle arrest, senescence, apoptosis, DNA repair, and redox homeostasis [24–26].
Upon oxidative stress by ionizing radiation or genotoxic insults, DNA lesions are accu-
mulated, which are repaired before the DNA replication by arresting the cell cycle. Once
the DNA lesion is repaired, the normal cell resumes cell division. p53, known as “the
guardian of the genome”, preserves this DNA integrity [27]. However, when the TP53
gene is mutated, the DNA damage is carried down to several cell divisions, leading to
chromosomal rearrangement [28]. TP53 gene is often known to be mutated in various solid
cancers [27].

Another popular redox-sensitive transcription factor is NF-kB, which is reported to be
involved in cell survival, differentiation, growth, angiogenesis, and inflammation [29,30].
NF-kB is activated by carcinogenic stimuli such as ultraviolet radiation, phorbol esters, toxic
metals, and asbestos, all of which are oxidative stress inducers [31]. Although it is evident
from several reports that ROS activates NF-kB, recent studies confirm the bidirectional
regulation by ROS, which is not clearly understood [30]. Nonetheless, it is reported that
the NF-kB pathway is often excessively activated in tumor tissues, promoting tumor cell
proliferation and survival [32].

It is reported that ROS also activates protein kinases C (PKCs), critical for cancer
proliferation, by increasing the cytosolic calcium concentration and the cysteine oxidization
of their regulatory domains [33,34]. This activates downstream cell proliferation, differenti-
ation, and apoptosis pathways, involving mitogen-activated protein kinases (MAPKs) such
as extracellular-regulated (ERKs), c-jun-NH2-terminal kinase (JNKs), and p38 MAPK [35].
Furthermore, ROS also regulates hypoxia-inducible factor, HIF-1, in tumors, which further
modulates many cancer-related genes, such as VEGF, involved in tumor progression and an-
giogenesis [36]. Other ROS-sensitive regulatory proteins such as AP-1 and nuclear factor of
activated T cells are also known to be involved in tumorigenesis [37–39]. Interestingly, ROS
also regulates pro-proliferative signaling in tumors and prevent apoptosis by activation of
proto-oncogene BCL-2, which is an anti-apoptotic protein. BCL-2 family is overexpressed
in many cancers such as breast, lung, colorectal, and melanoma, which not only prevents
tumor cell death but also promotes their migration, invasion, and metastasis [40].

From the evidence stated above, it is obvious that oxidative stress is critical for tumor
initiation and growth by inducing genomic instability and acting as signaling molecules to
modulate factors favoring tumorigenesis, angiogenesis, and metastasis, respectively. Since
the critical roles of the elevated ROS-signaling pathways are revealed in various cancers,
the antioxidant therapies seem to be the most appropriate strategy to impede their growth.
The next section will discuss the status of conventional antioxidants for cancer therapy.

3. Conventional Antioxidants for Potential Cancer Therapy

As mentioned above, since ROS is strongly associated with carcinogenesis, tumori-
genesis, and metastasis, antioxidant treatments to inhibit cancers have been investigated.
Sharma et al. reported that patients with locally advanced squamous cell carcinoma of
the tongue had significantly elevated plasma lipid peroxidation levels and conjugated
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dienes. At the same time, primary endogenous antioxidants such as glutathione, vitamin C,
vitamin E, glutathione peroxidase, and superoxide dismutase were significantly decreased,
as compared to the healthy controls, implying that oxidative stress plays an essential role in
the pathophysiology of tongue cancer [41]. Considering the critical role of ROS in tumors,
various antioxidants, including natural antioxidants have been tested to dampen the ROS
levels as therapeutic interventions. Numerous natural and synthetic antioxidants have
been investigated as potential anti-cancer drugs. These investigations have shown positive
effects in vitro and/or in vivo against various cancer models. For example, one of the
famous synthetic antioxidants, N-acetylcysteine (NAC), has shown the anti-cancer effect on
prostate carcinoma, PC-3 cells (in vitro) and human tongue squamous carcinoma, HSC-3
cells (in vivo) [42,43]. Natural vitamins are also reported to exert anti-cancer effects. For
instance, vitamin C inhibited invasion and metastasis of breast cancer cells (in vivo) and
impaired tumor growth and eradicated liver cancer stem cells in the xenograft model of a
hepatocellular carcinoma cell line [44,45]. Vitamin E analog, RRR-α-tocopherol succinate,
is known to induce apoptosis mediated death in MDA-MB435, MDA-MB231, and SKBR-3
human breast cancer cells [46,47]. Quercetin, a bioflavonoid, is also known to inhibit cancer
growth by arresting the cell cycle and induced apoptosis in breast cancer, prostate cancer
and colorectal cancer [48–50].

TEMPOL, a redox-cycling nitroxide (4-hydroxy-TEMPO; 4-hydroxy-2,2,6,6-tetrameth-
ylpiperidine-1-oxyl), is known as a probe of electron spin resonance due to the pres-
ence of unpaired electron in the compound. Since this unpaired spin is stable because
of the steric hindrance of the surrounding four methyl groups, so they do not react to
each other. However, it is known that TEMPOL can rapidly react with free radicals of
ROS. Thus, they can be regarded as one of the most potent antioxidants, like a super-
oxide dismutase [51]. Luo et al. reported a comparative superoxide inhibition activity
of TEMPOL and several other antioxidants in angiotensin II-stimulated preglomerular
vascular smooth muscle cells assessed by lucigenin-enhanced chemiluminescence. They
confirmed that PEGylated-SOD and TEMPOL exhibited the maximum catalytic actions
to scavenge O2

•− than NAC, vitamin C and E analogues such as ascorbate, α-tocopherol
and 6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxy acid (Trolox) and other uncharac-
terized antioxidants; 5,10,15,20-tetrakis (4-sulphonatophenyl)porphyrinate iron (III)(Fe-
TTPS), 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen), nitroblue tetrazolium (NBT) and
(–)-cis-3,3′,4′,5,7-pentahydroxyflavane (2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-1(2H)-
benzopyran-3,5,7-triol(-epicatechin) [51,52]. With such high catalytic activity, TEMPOL has
been the most preferred choice for antioxidant-based therapy for various oxidative stress-
related models such as fibrosis, diabetes, neurodegenerative diseases, radio-protection,
ischemia-reperfusion injury and inflammation, hypertension, and cancer [53]. Several
studies have demonstrated that TEMPOL inhibits tumor growth and decreases tumor inci-
dence. For instance, TEMPOL induced apoptotic cell death in MDA-MB231 breast cancer
cell line [54]. Gariboldi et al. reported the inhibitory effects of TEMPOL on the growth of
neoplastic than non-neoplastic cell lines such as breast cancer cell line MCF-7, p53-negative
human leukemia cell line HL60, and C6 glioma cells [55–57]. Schubert et al. reported
that dietary TEMPOL administration to ataxia telangiectasia mutated (ATM)-deficient
young mice (develop tumors), prolonged latency to tumors, decreased ROS and oxidative
damage, and increased their life span [58]. Corroborating this, Mitchell et al. confirmed
that long-term TEMPOL treatment decreased spontaneous tumorigenesis in C3H mice [59].
TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) administration into LNCaP tumor-bearing
mice also showed significant inhibition to prostate tumor growth [60].

As described above, there are many publications about antioxidant-based cancer
chemotherapy. Although numerous antioxidants have been proposed as an efficient anti-
cancer agent in vitro and in vivo, these antioxidants failed to show any cumulative effect
clinically on healthy, at-risk, and cancer population [10]. For instance, daily supplemen-
tation with selenium (200 µg) and/or Vitamin E (400 IU) did not reduce the incidence of
prostate or other cancers. Instead, vitamin E supplementation resulted in 17% increase in
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prostate cancer incidence [61,62]. Corroborating this, daily supplementation of β-carotene
(50 mg) also did not reduce the incidence of prostate cancer or other cancers [63]. However,
daily supplementation of beta-carotene (15 mg), alpha-tocopherol (30 mg), and selenium
(50 µg) to Chinese at-risk population of developing esophageal cancer and gastric cancer
reduced cancer mortality associated with gastric cancer, no effect was seen in esophageal
cancer suffering population [64]. In another clinical study, a population who were occu-
pationally exposed to asbestos were supplemented with β-carotene (30 mg) and retinyl
palmitate (25,000 IU) daily, which tended to associate with increased lung cancer incidence
and mortality [65].

Such contrasting effects of conventional antioxidants in tumorigenesis and incon-
clusive clinical trials indicate that these conventional antioxidants cannot be used for
anti-cancer therapy. Because several elegant studies confirmed the role of elevated ROS in
cancer, it is striking to see the failure of antioxidant-based cancer therapy. Their clinical
failure could be attributed to several factors such as the level and the location of ROS
scavenged and the tumor stage at which antioxidants were introduced. In addition, since
most conventional antioxidants are LMW, their extremely rapid renal clearance and very
low bioavailability may have led to their insufficient accumulation in the tumors resulting
in low efficacy.

Another significant problem with the conventional antioxidants is their molecular
size-based adverse effects. Mitochondria in the healthy cells generate ATP via an electron
transport chain by oxidation of glucose. During this process, a considerable amount of
ROS is produced. LMW antioxidants can rapidly spread to the entire body and internalize
into the healthy cells, which causes the dysfunction of the essential redox homeostasis,
including the electron transport chain, known as “Mithohormesis” [66]. It is reported that
treatment with beta carotene, vitamin A, and vitamin E increased mortality in a randomized
clinical investigation of more than 230,000 participants [67]. This means that high dose of
LMW antioxidants cannot be administered due to their ability to damage mitochondria.
Contrarily, the limited dose of the LMW antioxidants may scavenge low ROS sufficiently
to stimulate the survival and proliferation of tumor cells rather than impeding it. This
was evident in the studies by Gal et al., who reported that administration of NAC and
Trolox, Vitamin E analog, increased lymph node metastasis of malignant melanoma [68].
Furthermore, due to the limited dose and poor pharmacokinetic properties, it is also
possible that in clinical trials, LMW antioxidants did not reach the target location to quench
crucial ROS, e.g., mitochondria of cancer cells. Porporato et al. reported that mitochondrial
superoxide promotes migration, invasion, and clonogenicity of tumor cells, which was
prevented upon its scavenging [69].

As mentioned above, most antioxidants are small molecules, which contributes to
poor bioavailability, prevents target accumulation and causes mitochondrial damage.
To overcome these limitations of LMW antioxidants, a delivery platform (nanoparticle)
to modulate their pharmacokinetics property has been employed. Nanoparticles-based
delivery of antioxidants may scavenge ROS below critical levels in tumors to inhibit their
growth due to their higher bioavailability and enhanced permeability and retention (EPR)
effects as compared to their LMW counterparts [70]. Several groups have reported the
use of antioxidants with various delivery (drug delivery system; DDS) platforms. For
example, quercetin-encapsulated liposomes showed in vitro anti-proliferation effect on
the breast cancer cells, MCF-7 [71]. Nanoparticles with intrinsic redox ability also showed
anti-proliferative and anti-tumor effects, such as mesoporous silica nanoparticles and
cerium oxide nanoparticles [72,73]. However, several antioxidant-based delivery platforms
have shown practical inhibitory effects in vitro with limited or no in vivo application.
Furthermore, silica and cerium oxide have been reported to exert toxicity in mice models
with biodegradability issues, thereby limiting their further use [72,74]. One of the major
problems with conventional DDS is that the physically encapsulated drug leaks out of
the system before reaching their target, which diminishes their efficacy and increases
adverse effects. In order to achieve effective antioxidant cancer chemotherapy, a new
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strategy should be required to overcome the limitation of nanoparticles with physically
encapsulated antioxidants. For the last decade, we have devoted a novel designed self-
assembling antioxidants to treat oxidative stress-related diseases. The next section will
discuss the design, structure, and advantages of our newly developed self-assembling
antioxidants for cancer therapy.

4. Novel Self-Assembling Antioxidants; Nitroxide Radical-Containing Nanoparticle
(RNP)
4.1. Design and Structure of RNPs

Although TEMPO is one the most potent antioxidants known, similar to the antioxi-
dant enzyme, SOD, its clinical use is greatly limited due to its off-target effects, which can
be attributed to its poor pharmacokinetic properties as stated above. In order to improve
the pharmacokinetic properties to obtain high efficacy with negligible off-target effects,
we have functionalized TEMPO and developed two different types of nitroxide radical-
containing nanoparticles (RNPs); pH-sensitive (RNPN) and pH-insensitive (RNPO), and
evaluated their ROS-reduction mediated anti-cancer effect in various in vitro and in vivo
models of cancers as stand-alone or as adjuvants to reduce the aggressiveness or sensitize
several cancers for the chemotherapy (Figure 1). Since TEMPO possesses an unpaired elec-
tron, it is an electron spin resonance (ESR) active species, which could be used for magnetic
resonance imaging and pharmacokinetic studies. This property along with its powerful
ROS scavenging ability, prompted us to employ TEMPO over other LMW antioxidants for
developing self-assembling antioxidants for the biomedical applications [53,75,76].
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Figure 1. Illustration displaying the therapeutic efficacy of pH sensitive redox nanoparticle (RNP)N and pH in-sensitive
RNPO in various cancer models as stand-alone or as adjuvants with conventional anti-cancer drugs; doxorubicin (Dox) and
pioglitazone (Pio).

RNPs are comprised of self-assembling amphiphilic block copolymer consisting of a
hydrophilic poly (ethylene glycol) (PEG) segment and a hydrophobic poly (chloromethyl-
styrene) (PCMS) segment (Figure 2a). The chloromethyl groups of the PCMS segment
are converted to TEMPO via the substitution of PEG-b-PCMS polymer with either 4-
amino-TEMPO or with 4-hydroxyl-TEMPO to form base polymers: PEG-b-PMNT and
PEG-b-PMOT, respectively [75–78]. Under physiological conditions, the block copolymer
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assembles into a core shell-type micelles with the hydrophobic segment (PMNT or PMOT,
which contains TEMPO moieties as a side chain) in the core and hydrophilic PEG in the
shell (cumulative average diameter of approximately 20–50 nm).

Since TEMPO moiety conjugates via ether linkage to the PMOT segment, PEG-b-
PMOT gives a pH-insensitive RNPO. In contrast, PEG-b-PMNT gives pH-sensitive RNPN,
because TEMPO conjugates to the PMNT segment via the amine linkage, which protonates
under the acidic environment and changes its water solubility. Since the pKa of the
amino group of the PMNT segment is ca. 6.5, most of the amino groups in RNPN are not
protonated under physiological conditions. However, under the acidic conditions, the
protonated amine in the PMNT segment increases, converts their hydrophobic character
to the hydrophilic, which weakens the core-coagulation force, leading to the collapse the
micelle. Since the inflamed area such as the tumor environment, is known as decreased
pH, we anticipated an increase in their antioxidant capacity by the exposure of TEMPO
moiety due to collapsed RNPN (Figure 2b,c). This means that both pH-insensitive RNPO

and pH-sensitive RNPN will remain intact as a nano-sized self-assembling structure in the
blood (pH 7.4). In contrast, under a low pH environment, e.g., cancer, only pH-sensitive
RNPN will collapse into individual polymers and show higher ROS scavenging potential
than its intact micelle structure and RNPO [78].

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 8 of 25 
 

 

internalize in the blood cells and prevents blood cell aggregation on the glass beads, 
which was in sharp contrast to TEMPOL (Figure 3b,c) [85]. This inert characteristic 
of RNPs with blood is extremely important for the systemic administration of 
nanoparticles. 

iv. ESR active properties: ESR measurement shows a characteristics sharp triplet peak 
of the exposed TEMPO radical (an interaction between 14N nuclei and the unpaired 
electron), but when confined in the core of RNP, the ESR signal of TEMPO broadens 
at the same magnetic field, due to restricted mobility of the radicals in RNP’s solid 
core (Figure 2b) [75]. Due to this characteristic, it is very convenient to confirm the 
integrity and collapse of RNP and localization of RNPs for the pharmacokinetics 
studies. 
RNPs have shown remarkable therapeutic effects with characteristics mentioned 

above than LMW antioxidant, TEMPOL, in various oxidative stress-related diseases such 
as cancer, colitis, cerebral hemorrhage, acute renal injury, Alzheimer’s disease and so on, 
attributed to their favorable pharmacokinetic properties [86]. 

 
Figure 2. (a) Design and structure of antioxidant amphiphilic block copolymers, PEG-b-PMOT and PEG-b-PMNT, which 
self-assembles in aqueous media to form nano-sized micelles: pH-insensitive RNPO and pH-sensitive RNPN, respectively, 
used for cancer therapy. (b) Illustration showcasing pH-sensitive characteristic of RNPN in the diseased environment (tu-
mor); the amino groups of antioxidant TEMPO moieties in the copolymer (pKa 6.5) is protonated under the low pH in the 
tumor environment, leading to collapse of RNPN micelle, which enhances its ROS scavenging potential than pH-insensi-
tive RNPO. The exposed radical of TEMPO can be detected by Electron Spin Resonance (ESR) as sharp triplet peaks, but 
when it is in the core of stable RNPN, the ESR signal of TEMPO broadens. At low pH, due to disassembly of RNPN, TEMPO 
radical is exposed and displays characteristic sharp triplet peaks of TEMPO. This ESR sensitive characteristic is essential 
for the pharmacokinetics studies of RNPs. (c) Reduction and oxidization reaction equations of TEMPO. 

4.2. Safety of RNPs 
It was previously reported that TEMPOL induces apoptosis by impairing the oxida-

tive phosphorylation and targeting complex I of the respiratory system affecting mito-

CH3O-(CH2CH2O)m-CH2CH2S-(CH2CH)n-H

O

N

O

HN

N
O

CH3O-(CH2CH2O)m-CH2CH2S-(CH2CH)n-H
PEG-b-PMNT

Hydrophilic Hydrophobic

pH sensitive (pKa=6.5) 

TEMPO (Nitroxide radical) 

RNPO

RNPN

Nano-size 
(several tens of nm)

Long systemic presence
EPR effect

H2O

Self assembly

PEG-b-PMOT

pH in-sensitive 

(a)

ROS scavenger 
ESR and MR probe

Amino group

PEG
Biocompatible 
Non-immunogenic 

TEMPO in core
No non–specific interaction
Increased bioavailability 

Collapse 

RNPN
ROS scavenging 

potential 
RNPN > RNPO

H+
Tumor microenvironment

pH < 7.4

Tumor microenvironment

N

R

CH3
CH3

H3C
H3C

OH+e
-e

+e
-e

N

R

CH3
CH3

H3C
H3C N

R

CH3
CH3

H3C
H3C

OH O

ESR  

ESR  
Exposed TEMPO ESR spectrum 

(b) (c)
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Following are the characteristics of RNPs validating its suitability for their use in
in vivo applications.

i. Structure: RNP, a polymeric micelle made of amphipathic block copolymers, can
stably disperse in in vivo harsh conditions due to the entanglement of hydrophobic
segments in its core (Figure 2a) [79]. It is reported that PEG imparts biocompatible
characteristic to nanoparticle by inhibiting electrostatic and hydrophobic interac-
tions with proteins and cells sterically, thereby increasing the stability of nanopar-
ticle [80]. Unpaired radical in TEMPO is stable by preventing the coupling with
each other due to the protection by four methyl groups surrounding it. However,
since ROS are small molecular radical species, they rapidly react with TEMPO’s
nitroxide radical. Although TEMPO is a highly reactive radical, it is conjugated via
covalent linkage in the nanoparticle core; hence, non-specific interaction like LMW
TEMPOL can be avoided upon administration. These characteristics potentially
improve their accumulation in the target site via the EPR effect, which increases
their therapeutic effects and prevents their premature renal excretion.

ii. Size: Core-shell type polymer micelles with several tens of nanometer in size
(20–50 nm) ensures efficient accumulation in target intestinal mucosa (oral adminis-
tration; colon cancer) or tumor vicinity (intravenous administration: breast cancer),
additionally supported by the EPR effect [70,81,82]. It should be noted that the size
range of RNP used in various anti-cancer studies, were small enough to prevent
activation of the phagocytic system (≤100 nm cutoff size). Conversely, RNPs were
large enough to evade rapid renal clearance (≥5.5 nm cutoff size) [83,84].

iii. Stability: Dynamic light scattering studies confirmed that RNPO is stable under
various pH 4–8.5, whereas pH-sensitive RNPN was stable at pH 7.4 but decreased
with a decrease in pH, confirming its collapse at low pH (diseased condition; tumor)
(Figure 3a). Nonetheless, both the micelles maintained structural integrity at physi-
ological pH 7.4, confirming the structural stability in the blood [77]. Furthermore,
in ex vivo spiking experiments, we demonstrated that RNP do not internalize in
the blood cells and prevents blood cell aggregation on the glass beads, which was
in sharp contrast to TEMPOL (Figure 3b,c) [85]. This inert characteristic of RNPs
with blood is extremely important for the systemic administration of nanoparticles.

iv. ESR active properties: ESR measurement shows a characteristics sharp triplet peak
of the exposed TEMPO radical (an interaction between 14N nuclei and the unpaired
electron), but when confined in the core of RNP, the ESR signal of TEMPO broadens
at the same magnetic field, due to restricted mobility of the radicals in RNP’s solid
core (Figure 2b) [75]. Due to this characteristic, it is very convenient to confirm the
integrity and collapse of RNP and localization of RNPs for the pharmacokinetics
studies.

RNPs have shown remarkable therapeutic effects with characteristics mentioned
above than LMW antioxidant, TEMPOL, in various oxidative stress-related diseases such
as cancer, colitis, cerebral hemorrhage, acute renal injury, Alzheimer’s disease and so on,
attributed to their favorable pharmacokinetic properties [86].

4.2. Safety of RNPs

It was previously reported that TEMPOL induces apoptosis by impairing the oxidative
phosphorylation and targeting complex I of the respiratory system affecting mitochondrial
membrane potential in HL-60 cells [87]. In our studies, similar findings confirmed that
LMW TEMPOL exerts adverse effects in various models, potentially caused due to its facile
internalization into the normal cells and disruption of critical redox balance attributed
to highly reactive nitroxide radicals. On the other hand, due to their higher molecular
weight (ca. 10 kDa) and the self-assembling size (ca. 20–50 nm), RNPs avoid internalization
into the normal cells and prevents disruption of their redox homeostasis [85,88]. For
instance, as shown in Figure 3d, when zebrafish were maintained in 3 mM and 30 mM
TEMPOL solution, they died within five days of TEMPOL addition. In contrast, in 30 mM
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RNPO-treated group, more than 95% of zebrafish survived at day 5, confirming low
toxicity of RNPs. This safety was further confirmed by the negligible damage to zebrafish
mitochondria in the RNP-treated group, while the elevated damage was observed in the
TEMPOL-treated group (Figure 3e) [88]. In the ex vivo blood spiking experiment, we also
confirmed that RNPs do not interact and internalize into the healthy blood cells (Figure 3c)
and disrupt mitochondrial membrane potential of blood cells, which was in sharp contrast
to TEMPOL [85]. In addition, the median lethal dose (LD50) of TEMPOL in C3H mice
was 341 mg/kg through intravenous administration, whereas for RNPN, LD50 value was
higher than 600 mg/kg (960 mmol N/kg) in ICR mice [77,89]. Extremely low toxicity of
RNPs than LMW TEMPOL confirms that the confinement of conjugated TEMPO in the
core of several tens of nanometer-sized self-assembled nanoparticles is necessary to avoid
off-target effects and attain enhanced accumulation in the target tissue, leading to higher
therapeutic effect.
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Figure 3. Characterization and non-toxicity of RNPs. (a) Laser light scattering intensity of RNPO and RNPN as a function
of pH, assessed by dynamic light scattering [77]. (b) SEM images of glass beads spiked in rat whole blood with saline,
TEMPOL, and RNPO (5 mM) for 30 min [85]. (c) The cellular uptake of TEMPOL and RNPO by rat whole blood cells
evaluated by ESR [85]. (d) Cumulative survival of zebrafish embryo maintained in RNPO (30 mM) and TEMPOL (3 and
30 mM) [88]. (e) Microscopic images of the mitochondrial damage in zebrafish larva after 12 h of treatment, assessed by
mitotracker and analyzed using a fluorescent confocal microscope system, scale bar 100 µm [88]. * p < 0.05 was considered
significant. This figure is reproduced with permission from References [77,85,88]. Copyright 2011, Elsevier; Copyright 2014,
JCBN; Copyright 2016, American Chemical Society.
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4.3. Pharmacokinetic Properties of RNPs

TEMPOL, a low molecular weight compound with an exposed reactive nitroxide
radical, has poor pharmacokinetics, which excretes rapidly after the administration. Thus,
to suppress the rapid excretion and avoid the unwanted adverse effects, we covalently
conjugated TEMPO to the amphiphilic block copolymer backbone with self-assembling
characteristics, forming nanoparticle with several tends nanometer in size and accumula-
tion tendency in the target inflamed site, such as a tumor. We confirmed this improvement
of the pharmacokinetic property of RNPs in the renal ischemia-reperfusion induced acute
kidney injury mice model [77]. In this study, an equal dose of RNPO, RNPN, and TEMPOL
(TEMPO: 75 mmol/kg) were administered to ICR mice, after which TEMPO concentration
was measured in the blood and kidneys by ESR. As shown in Figure 4a, TEMPOL cleared
from the blood within 0.1 h of the administration, whereas RNPO and RNPN remained in
the blood for more than 10 h. In the injured kidney (Figure 4b), TEMPOL was excreted
within 0.5 h of administration, whereas RNPO remained for 24 h and RNPN managed to
stay more than 10 h. This data confirmed that the kidneys, a major clearance organ, do
not remove the RNPs as fast as LMW TEMPO due to their suitable structure and size. It is
known that after reperfusion in the ischemic kidney, ROS level is significantly elevated,
causing inflammation and decreased pH via acidosis [90]. As shown in Figure 4a, RNPO

and RNPN in the blood are observed as intact micelles, assessed through a broader ESR
signal than TEMPOL radical. In kidneys with acidic lesions, RNPO integrity remains intact.
In contrast, the ESR signal of RNPN resembles to that of free TEMPOL radical (Figure 4b),
implying the micelle collapse in response to acidic pH in the injured kidneys. This data
confirms the pH sensitivity of RNPs in the diseased condition and their stability during
systemic circulation compared to LMW TEMPOL.

We also confirmed the pharmacokinetics of RNPN in a mice model of colon cancer,
by intravenous administration of RNPN and TEMPOL (40 mg/kg of TEMPO), which
was assessed by ESR measurement [82]. As shown in Figure 4c, RNPN remains in the
blood even until 24 h (AUC, 769.49). In contrast, the LMW TEMPOL signal decreases
drastically within 2 h (AUC, 19.2), which may be attributed to their diffusion into the
normal cells and preferential renal clearance. The total accumulation of RNP in the tumor
tissues (AUC, 39.6) was at least 6–7 fold higher than LMW-TEMPOL (AUC, 6.5). After 24 h
of administration, RNPN in tumor tissues was 8–9 fold higher (3.3% ID/g tumor tissue)
compared to TEMPOL (0.4% ID/g tumor tissue) (Figure 4d). Interestingly, RNPN remained
intact as micelle in the blood and collapsed in a low pH tumor area, as assessed by ESR
spectra. The reports mentioned above confirm that the covalent conjugation of TEMPO
with amphiphilic copolymer and their self-assembling core-shell structure significantly
suppresses their adverse effect and prolongs their presence in the systemic circulation. Due
to the long blood circulation of RNP, they gradually accumulate in the target site via the
EPR effect with negligible diffusion in the normal cells compared to LMW highly reactive
TEMPO radical. With such favorable pharmacokinetics and negligible toxicity compared to
LMW antioxidants, we evaluated the therapeutic efficacy of RNPs in various cancer models.
The next section will discuss the application of RNPs in breast cancer, colon cancer, prostate
cancer, and resistant epidermoid cancers as stand-alone or as adjuvants with conventional
anti-cancer drugs.
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Figure 4. (top) Pharmacokinetic property of RNPN and RNPO in the blood and diseased organs. Time profile changes
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graph also displays ESR spectra of TEMPO radical of RNPs and TEMPOL. The ESR spectra of RNPs are broad under the
physiological pH conditions (7.4), confirming their micelle integrity, in contrast with the sharp triplet peak of free TEMPOL.
Under the decreased pH conditions, a typical diseased state, the pH-sensitive RNPN group shows sharp triplet ESR signals,
indicating the micelle collapse as compared to pH-insensitive RNPO, whose micelle integrity is unaffected. (bottom).
Biodistribution of RNPN and TEMPOL in a colon tumor (C-26 colon cancer cell line) bearing mice after intravenous
administration with 40 mg/kg of TEMPO concentration; (c) blood and (d) tumor [82]. These data confirm that RNPN is
stable in the blood (broad ESR signal), while it is collapsed in the tumor environment due to the reduced pH (sharp ESR
peaks). This figure is reproduced with permission from References [75,77,82]. Copyright 2011, Elsevier; Copyright 2014,
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; Copyright, 2013 Elsevier B.V.

4.4. RNPs for Cancer Therapy
4.4.1. RNPs Inhibit the Tumorigenic Potential of Triple-Negative Breast Cancer

As stated above, we have succeeded in developing novel self-assembling antioxidants,
which is less toxic and do not cause intracellular disturbance to the redox homeostasis of the
normal cells. With these characteristics, the functionality of RNP as an anti-cancer drug was
investigated in breast cancer. Breast cancer is the most common cancer occurring in women
worldwide, with 2 million new cases diagnosed in 2018 (American Institute for Cancer
Research). Due to the increase in the mortality rate of breast cancer patients, an alternative
treatment is needed [91]. It was reported that breast cancer patients have significantly
higher ROS levels such as superoxide and hydrogen peroxide in plasma, which correlated
with the severity of the disease and altered antioxidant enzyme levels such as SOD in
the tumor cells [92,93]. Copper, a potent oxidant, was also significantly elevated in the
serum and tumor of cancer patients than the healthy subjects [94]. It is reported that copper
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induces HIF-1α and VEGF expression through the activation of the EGFR/ERK/c-fos
transduction pathway promoting breast tumor angiogenesis and progression, which were
reversed upon the addition of copper chelating agent and antioxidant NAC [95]. Menon
et al. reported that the loss of redox control of the cell cycle might contribute to the aberrant
proliferation of breast cancer cells [96]. Another report suggested that sublethal oxidative
stress by H2O2/hypoxanthine and xanthine oxidase inhibited tumor cell adhesion to
laminin and fibronectin and enhanced lung tumors of murine mammary carcinoma in an
experimental metastasis model [97]. Based on these critical roles of oxidative stress in breast
cancer survival, we evaluated the efficacy of our antioxidant self-assembled nanoparticle
in a breast cancer model.

We investigated the anti-tumor and anti-metastatic effects of RNPO and RNPN using
the triple-negative breast cancer cell line, MDA-MB231 (Figure 5a) [98,99]. Colony-forming
assay was carried out in vitro using breast cancer cell lines, metastatic MDA-MB-231 and
non-metastatic MCF-7. Treatment with IC50 values (RNPO; MDA-MB-231 = 2.20 mM,
MCF-7 = 1.14 mM, RNPN; MDA-MB-231 = 3.00 mM, MCF-7 = 1.08 mM, and TEMPOL;
MDA-MB-231 = 0.56 mM, MCF-7 = 0.46 mM), revealed that RNPN showed the highest
inhibition of colony-forming potential, followed by RNPO and TEMPOL (Figure 5b). This
data clearly indicates that the TEMPO-based antioxidants, RNPN and RNPO, exerted a
long-term inhibitory effect on the breast cancer cell growth regardless of their metastasis
tendency than LMW TEMPOL with less toxicity. We next investigated in vivo efficacy of
RNPs in a mouse xenograft model of breast cancer cell line, MDA-MB231. Intravenous
administration of RNPO and RNPN (TEMPO; 74.13 mg/kg, five times, three days interval)
showed a significantly decreased tumor growth than the untreated control and TEMPOL
(Figure 5c). The tumor growth profile graph clearly shows that RNPs inhibit tumor growth
much higher than TEMPOL and comparable to the conventional anti-cancer drug paclitaxel
(10 mg/kg, five times, three days interval), indicating the importance of ROS scavenging
in breast cancer treatments. We also confirmed that RNPs showed anti-metastatic effect by
inhibiting the growth of MDA-MB231 lung tumors in an experimental metastasis model,
which was higher than TEMPOL (TEMPO: 18.53 mg/kg/mouse, 10 times, 3 days interval)
and comparable to paclitaxel (5 mg/kg/mouse, 10 times, 3 days interval) (Figure 5d). This
decrease in tumor size exerted by RNPs corroborated with decreased tumor ROS, which
was negligibly reduced in the TEMPOL-treated group (Figure 5e).

NF-kB is a redox-sensitive transcriptional factor which regulates expression of metallo-
matrix protease (MMP-2) and α 2,6-sialyltransferae. MMPs function to degrade the extra-
cellular matrix proteins and has been correlated with poor clinical outcome in breast cancer
patients [10,100]. α 2,6-sialyltransferae catalyzes the addition of sialic acid to terminal
oligosaccharides attached on the lipid or protein moieties of the tumor surface, which
contributes to tumorigenesis, progression, and metastasis [101]. As shown in Figure 5f,g,
both RNPs downregulate the expression of NF-kB, MMP-2, and α 2,6-sialyltransferae in
MDA-MB231 tumors and cells, suggesting the mechanism of anti-tumor and anti-metastatic
effect of RNPs. It should be noted that such high efficacy of our antioxidant nanoparticle
was achieved with negligible adverse effects on the kidneys and livers, in contrast to LMW
TEMPOL, and paclitaxel-treated group (Figure 5h,i). These reports suggest that our RNPs
alone are more effective in inhibiting ROS-mediated tumorigenesis and metastasis of breast
cancer as compared to LMW antioxidants.
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4.4.2. RNPs Inhibit the Tumor Growth and Progression of Colitis-Associated Cancer

An increase in oxidative stress and oxidative cellular damage promoting carcinogene-
sis has been observed in inflammatory bowel disease patients [102,103]. Ulcerative colitis
(an inflammatory bowel disease) associated with colon cancer (CAC) is the third most
common malignancy and one of the major causes of cancer-related death [104]. With these
facts, we tested the efficacy of RNPs to suppress the oxidative stress-mediated tumor for-
mation in the mice colon [105]. The pharmacokinetics of RNPO by free drinking confirmed
that RNPO accumulates in the colon with negligible internalization in the blood (ESR
measurement) (Figure 6a). The localization of rhodamine-labeled RNPO further validated
the colon accumulation of RNPO after 4 h of administration. As shown in Figure 6b, the
rhodamine-labeled RNPO was strongly observed in the colon, especially in the colon’s
mucosa area. In contrast, no fluorescent was observed in rhodamine administered group,
as it was excreted out sooner than RNPO. This data confirmed that LMW antioxidants
might not be suitable for CAC treatment due to their poor retentivity in the colon [106].
The effect of RNPs on colon cancer was investigated by a CAC mice model, which was
prepared by intraperitoneal injection with azoxymethane (AOM) (10 mg/kg body weight)
followed by two cycles of 7d-treatment of 3% dextran sodium sulfate (DSS) (Figure 6c). As
shown in Figure 6d,e, the oral administration of RNPO during DSS treatment significantly
suppressed the tumor formation in the colon, which was confirmed by endoscopy and H
and E stained colon tissues. In the RNP-treated group, no change in the body weight was
observed compared to AOM/DSS control, which was significantly reduced during DSS
treatment (data not shown).

It is worth noting that such an effect of RNPO was supported with decreased colitis
disease index and pro-inflammatory cytokine interferon-gamma (IFN-γ). These results
indicate the potential of RNPO to reduce colitis-induced inflammation, which is a major
factor for the induction of colon cancer. Ad libitum drinking of RNPO solution (5 mg/mL)
after AOM and DSS treatment also significantly suppressed the tumor formation in the
colon as assessed by endoscopy and histology (Figure 6f–h). These reports confirmed that
RNPO is an effective and suitable nano-antioxidant for the treatment of colon cancer.

4.4.3. Synergistic Effects of RNP and Fibrinolytic Tissue Plasminogen Activator for Colon
Cancer Therapy

It is well known that the efficacy of drugs to inhibit tumor growth depends on whether
the drug has sufficiently reached the target site or not, which depends on the blood
perfusion status within the tumor vessels [107]. The tumor microenvironment is complex,
comprising of extracellular matrix (ECM) components such as fibrin, elastin, laminin,
collagen, platelet aggregation, etc. The ECM is known to obstruct the blood flow and
perfusion to the tumor areas, limiting the effective delivery of drugs, contributing to
inadequate drug response, and promoting drug resistance [108].

Degradation of ECM components from the tumor environment is a robust strategy to
improve vascularization and blood supply to the tumors. Fibrinolytic tissue plasminogen
activator (t-PA), is a member of the serine protease family, physiologically involved in the
matrix regulation and homeostasis of the blood coagulation/fibrinolysis [109]. Zhang et al.
reported on the use of t-PA for modulating the tumor microenvironment to improve the
delivery efficiency of anti-cancer drug to the target site [110].
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Figure 6. Anti-tumor effect of RNPO in colitis-induced colon cancer (CAC) model. (a) Accumulation of RNPO in the
gastrointestinal tract by ad libitum drinking, assessed by ESR measurement [105]. (b) Localization of rhodamine-labeled
RNPO (rhodamine-RNPO) in the colon section, 4 h after the oral administration with 5 mg/mL of rhodamine-RNPO (1 mL),
scale bar 200 µm [106]. (c) The scheme showing anti-tumor effect (protective) of orally administered RNPO in azoxymethane
(AOM) and dextran sodium sulfate (DSS) (AOM/CAC) induced colitis-associated cancer in mice. RNPO (200 mg/kg/d) was
administered by oral gavage during the two weeks of the DSS treatment period. (d) RNPO inhibits the formation of colon
tumor, confirmed by tumor score and assessed by endoscopy. (e) The endoscopic imaging of mice colon, displaying tumor
shown by white arrows and H and E-stained colon tissues (scale bar 100 µm) at the experimental endpoint (day 70). (f) The
scheme showing anti-tumor effect (therapeutic) of ad libitum drinking of RNPO in AOM/CAC-induced colitis-associated
cancer in mice. RNPO (1, 2.5, and 5 mg/mL) was available as ad libitum drinking after AOM/DSS treatment. (g) The
therapeutic effect of RNPO to inhibit the formation of colon tumor as confirmed by tumor score, which was assessed by
endoscopy. (h) The endoscopic imaging of mice colon, displaying tumor shown by white arrows and H and E stained colon
tissues (scale bar 100 µm), at the experimental endpoint (day 70). Black arrows in H and E colon stained tissues indicate
the necrotic cells surrounded by cancer cells, blue arrows indicate adenoma, and red arrows display normal crypts [105].
* p < 0.05 was considered significant. This figure is reproduced with permission from References [105,106]. Copyright 2018,
Elsevier Ltd.; Copyright 2012, AGA Institute (Elsevier publisher).

Because the half-life of the naked t-PA is extremely short (<5 min), continuous and
invasive intravenous administrations are required to show their effectiveness [111]. In
this line, we employed RNP as a new delivery platform for t-PA, which not only acts
as DDS with favorable pharmacokinetics but also contributes to the anti-tumor effect
through ROS scavenging characteristic (Figure 7a) [112,113]. t-PA@iRNP (hereafter “i” in
iRNP denotes the core composed of polyion complex) is a core-shell structured polyion
complex (PIC) micelle consisting of three components: (i) ROS scavenging cationic PEG-
b-PMNT diblock amphiphilic copolymers, (ii) anionic poly (acrylic acid) (PAAc) and (iii)
fibrinolytic t-PA (Figure 7a). We found that t-PA@iRNP retained their enzymatic activity
after 2 h (t1/2 = 71 min) of intravenous administration, whereas the activity of naked t-PA
decreased within 0.5 h (t1/2 = 8 min) (Figure 7b) [113]. The prolonged enzymatic activity of
t-PA@iRNP than naked t-PA is due to the stable encapsulation of t-PA in the iRNP matrix,
which protected it from the enzymatic degradation. We have previously confirmed that t-
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PA@iRNP had almost no enzymatic activity under the physiological pH (7.4). On the other
hand, upon decreasing the pH, its enzymatic activity was significantly increased, indicating
the pH responsive collapse of t-PA@iRNP. Intravenous administration of t-PA@iRNP (t-PA;
0.04mM and iRNP; 5.3 mM TEMPO, five times with interval of three days) to mouse
xenograft model of C-26 colon cancer cell line, showed effective suppression of tumor
growth as compared to control, t-PA@niRNP (no antioxidant capacity), naked t-PA, and
iRNP, validating the synergistic effect of iRNP and t-PA (Figure 7c) [112]. Interestingly,
iRNP alone also showed a significant anti-tumor effect on colon tumors. It should be noted
that the pharmacokinetics of t-PA upon encapsulation by iRNP is favorably changed for
in vivo application. This pattern can be seen in t-PA@niRNP, where a higher effect of t-PA
could be observed when encapsulated in niRNP (no antioxidant capacity), than the naked
t-PA itself, indicating the importance of delivery systems for the proteins (Figure 7c,d).
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Figure 7. Anti-tumor effect of fibrinolytic tissue plasminogen activator installed in radical containing nanoparticles (t-
PA@iRNP). (a) Schematic illustration of the delivery and therapeutic effect of t-PA@iRNP in tumors characterized by dense
fibrin extracellular matrix [112]. (b) Ex vivo thrombolytic activity of t-PA enzyme, after intravenous administration in mice
with equimolar dose of naked t-PA and t-PA@iRNP, measured using t-PA’s ability to hydrolyze a tri-peptide chromogenic
substrates of H-D-isoleucyl-L-prolyl-L-arginine-p-nitroanilide dihydrochloride to p-nitroaniline. Liberated p-nitroaniline
was measured spectrophotometrically at 405 nm by using a UV-Vis spectrometer [113]. (c) Tumor growth profile in a C-26
colon murine cancer model, intravenously administered (5 times) with saline (control), t-PA (0.04 mM), and iRNP (TEMPO;
5.3 mM). (d) Representative images of fibrin immunofluorescence (white arrow) in the tumor tissues, scale bar 10 µm. (e)
Superoxide level in tumor tissue homogenate measured by ROS sensitive dye, dihydroethidium. (f) Tissue factor in tumor
lysates measured by ELISA [112]. * p < 0.05 was considered significant. This figure is reproduced with permission from
References [112,113]. Copyright 2020, Elsevier Ltd.; Copyright 2019, Elsevier Ltd.

We also confirmed that the higher effect of t-PA@iRNP was due to higher fibrin degra-
dation in the tumor area by t-PA (Figure 7d), decreased ROS (Figure 7e), and downregulated
NF-kB by iRNP (data not shown). Both t-PA@iRNP and iRNP-treated group significantly
reduced the expression of ROS-regulated tissue factor, which activates coagulation and
platelets essential for tumor growth and metastasis increase (Figure 7f) [114,115]. Based
on these results, it is clear that RNP possesses bidentate roles, viz., effective carriers for
t-PA to target solid tumors and suitable anti-cancer drugs, which effectively scavenge
overproduced ROS around the tumor environment.
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4.4.4. RNPs Enhances the Therapeutic Efficiency of Pioglitazone on Prostate Cancer

Pioglitazone belongs to thiazolidinediones family that shows efficacy in type 2 dia-
betes mellitus and cancer, accompanied by several adverse effects such as hepatotoxicity,
cardiac abnormalities, and weight gain due to fluid retention [116]. In addition to severe
toxicity exerted by pioglitazone, poor solubility and low bioavailability due to extensive
liver metabolism are also its drawbacks [117]. Several reports have confirmed that liver
metabolism of pioglitazone forms reactive oxidative intermediates that potentially damages
hepatocytes [118]. Considering this, we prepared RNP encapsulated with pioglitazone
(Pio@RNPN) to prevent premature metabolism of pioglitazone in the liver by modulating its
pharmacokinetics property and decrease its ROS-mediated adverse effect by TEMPO radi-
cal of RNP (Figure 8a) [116]. Pharmacokinetic studies revealed that oral administration of
Pio@RNPN, enhanced systemic presence of pioglitazone (AUC: 113.2) to twice as compared
to free pioglitazone (oral) (AUC: 51.2), whereas intravenous administration Pio@RNPN

showed the highest plasma concentration of pioglitazone (AUC: 723.9) (Figure 8b). In
this study, free pioglitazone was administered orally in a CMC formulation due to its low
solubility, whereas no such issue was observed in the encapsulation of pioglitazone in RNP.
Biodistribution studies confirmed that Pio@RNPN (intravenous; i.v.) accumulated highest
in tumor tissues (10% ID/g tissue) followed by oral administration of Pio@RNPN (3.8%
ID/g tissue) and oral pioglitazone (1.2% ID/g tissue) (Figure 8c).
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With such favorable pharmacokinetic properties of Pio@RNPN over free pioglitazone,
its anti-cancer therapeutic efficacy was tested in a mouse xenograft model of prostate
cancer (PC-3) (Figure 8d). At the experimental endpoint, orally administered pioglitazone
reduced tumor volume by only 25%, Pio@RNPN (oral) by 36%, while Pio@RNPN (i.v.)
showed the highest anti-tumor effect with 60% growth inhibition. In addition, intravenous
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administration of Pio@RNPN largely protected the liver toxicity exerted by ROS induced by
the pioglitazone treatment (Figure 8e). An ex vivo xanthine/xanthine oxidase (superoxide
scavenging) assay was conducted to measure the ROS scavenging effect of the TEMPO in
the liver homogenates of the treated mice. In this assay, the xanthine/xanthine oxidase
system generates superoxide ion radicals detected by nitro blue tetrazolium. When liver
homogenates from treated mice are spiked with xanthine/xanthine oxidase, the generated
superoxide ions are scavenged by antioxidants in liver homogenates, in our case, nitroxide
radical (TEMPO). Higher the TEMPO in the liver homogenates, the higher the superoxide
inhibition/scavenging ability. Figure 8f shows that Pio@RNPN (i.v.) exerts highest super-
oxide ion inhibition potential than orally administered Pio@RNPN, and pioglitazone itself,
suggesting the localization of RNPN in liver which might have contributed to the inhibition
of pioglitazone-mediated adverse effect. This data corroborated with the result of lipid
peroxidation status in the liver. We confirmed that Pio@RNPN (i.v.) treated group had
a significantly lower lipid peroxidation level than pioglitazone (data not shown). These
reports highlights the potential of RNPN as a DDS that increases the therapeutic efficacy of
pioglitazone and decreases its adverse effects.

4.4.5. RNPs Enhances the Therapeutic Efficiency of Doxorubicin on Colon Cancer and
Epidermoid Cancers

The effectiveness of cancer chemotherapy is greatly limited due to the drug-resistant
characteristics of tumor cells, attributed largely to their drug efflux system [119]. It is
reported that P-glycoprotein (P-gp) and multi-drug resistance-associated protein-1 (MRP1),
which belong to the ATP-binding cassette (ABC) transporter superfamily, are overexpressed
in various cancers [120]. P-gp and MRP-1 both have been reported to confer resistance
to various cancers against anti-cancer drugs [121]. With this fact in mind, several drug
combination approaches have been applied that use ABC transporter inhibitors as adju-
vants to overcome the drug resistance and potentiate the anti-cancer drug efficacy. For
instance, administration of dofequidar, a P-gp inhibitor, with anti-cancer drugs such as
cyclophosphamide, doxorubicin (Dox) and fluorouracil to patients with advanced or re-
current breast cancer, increased progression-free survival days from 241 (without P-gp
inhibitor) to 366 [122]. However, several clinical trials have largely failed to manifest the
therapeutic efficacy of such anti-cancer drugs/adjuvants. For instance, no improvement
in the disease-free survival was observed in recurring or refractory multiple myeloma
patients with and without P-gp inhibitor, valspodar, in conjunction with vincristine, Dox,
and dexamethasone [123]. Although drug-efflux system inhibition for multi-drug resis-
tance tumor therapy seems to be robust, these effects are not noteworthy. Binkhathlan
et al. attributed the apparent failure of these adjuvants (drug efflux inhibitors) to demon-
strate clinical efficacy to their non-specific action and distribution, causing toxicities due
to their LMW [124]. Another possibility might be that the inhibitors themselves were not
compelling enough. In this line, improved drug efflux inhibitors or the use of the delivery
platform that specifically accumulates in the resistant tumors are highly desirable.

It was reported previously that oxidative stress is strongly related to this drug resis-
tance. For example, ROS activates NF-kB, which increases drug efflux proteins such as P-gp
and MRP-1, located in the cellular membrane [125]. It was also previously reported that
P-gp and MRP-1 both are regulated independently by ROS in cancers [126,127]. Therefore,
antioxidants are one of the candidates to suppress this drug resistance and increase the
efficacy of anti-cancer drugs. Although pre-administration of LMW antioxidants such as
edaravone and TEMPO have been evaluated to suppress the drug resistance of cancers, the
results are not satisfactory [60,128]. Despite the fact that the antioxidant application for the
chemoresistant cancer treatment may be in the right direction, however, they might not be
effective due to the preferential clearance properties or low systemic retention as stated
above. Therefore, in this line, we applied antioxidant RNPs to overcome the shortcoming
of LMW drug efflux protein inhibitors/antioxidants by decreasing the ROS associated drug
resistance.
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Dox, is known to generate ROS in vivo, which results in severe adverse effects in
the normal tissues and increases the drug resistance of tumors [129]. Thus, we evaluated
the ability of our RNPs to sensitize cancer cells and potentiate the efficacy of Dox by
scavenging ROS in the colon and epidermoid cancer models. We have previously shown
that intravenous administration of RNP accumulates significantly higher in C-26 colon
tumors, while LMW TEMPOL excretes faster (Figure 4c,d) [82]. To confirm the sensitiz-
ing effect of RNPs, in a C-26 colon cancer model, we pre-administered RNPN (i.v.) for
4 days, followed by Dox administration (10 mg/kg) [82]. The RNPN + Dox-treated group
showed the highest tumor growth suppression, followed by the free Dox administration
group, as shown in the tumor growth profile graph (Figure 9a). It is interesting to see that
pre-administration of TEMPOL did not decrease any tumor growth at all as compared
to Dox alone, which indicates the poor systemic and tumor presence of TEMPOL com-
pared to RNPN (Figure 4c,d and Figure 9a). As previously mentioned, Dox increases the
ROS, which is one of the reasons for its off-target effects on the heart and several other
organs. We confirmed that pre-administration of RNPN decreases the ROS in the heart
tissues (Figure 9b), which prevented Dox-induced cardiotoxicity as assessed by creatine
phosphokinase, a marker for myocardial damage (Figure 9c). Such protective effect was
not seen in the TEMPOL treated group. These data implied that RNP not only potentiate
the efficacy of Dox against colon cancer but also decreases its adverse effects.
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Figure 9. (top). RNP increases the therapeutic effect of doxorubicin (Dox) in a colon cancer model. (a) Tumor growth profile
of subcutaneous colon tumor (C-26) pre-treated with RNPN (i.v., 100 mg/day for 4 days, days−4 to −1), followed by a
single injection of DOX (i.v., 10 mg/kg on day 0). The ability of RNPN to inhibit the cardiotoxicity of Dox mediated by
increased ROS [82]; (b) inhibition of superoxide level by RNPN in the heart homogenates, (c) creatine phosphokinase (CPK)
in plasma, a marker of heart damage. Mice were intravenously injected with RNPN (25 mg/kg/day) and LMW-TEMPOL
(4 mg/kg/day), followed by DOX (20 mg/kg, i.v.) 30 min later. 3 days post Dox administration, samples were analyzed.
(bottom). RNPs increases the therapeutic effect of Dox by overcoming drug resistance in the epidermoid cancer cell lines.
(d) Cytotoxicity of combination treatments: RNPN (2 mg/mL) and Dox (5 µg/mL) for 48 h in epidermoid cancer cell
lines-drug sensitive KB-31, drug-resistant KB-MRP overexpressing drug efflux transporter, MRP-1 and drug-resistant KB-C2
overexpressing drug efflux transporter, P-gp; (e) Dox uptake in epidermoid cancer cell lines after 2 h of treatment (RNPN

(2 mg/mL) and Dox (5 µg/mL)). (f) ROS level after 24 h of treatment with RNPN (2 mg/mL) and Dox (5 µg/mL) in
epidermoid cancer cell lines [130]. * p < 0.05 was considered significant. This figure is reproduced with permission from
Reference [82] and adapted from [130]. Copyright 2013, Elsevier B.V.; Copyright 2017, Elsevier Ltd.
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In our next study, we confirmed this effect by co-treatment of RNPN with Dox in 3
different types of epidermoid cancer cells: Drug-sensitive KB-31, drug-resistant KB-C2
(overexpressing P-gp) and KB-MRP (overexpressing MRP-1) (Figure 9d–f) [130]. As shown
in Figure 9d, the viability of resistant cancer cell lines with the combination treatment
of RNPN + Dox decreases significantly as compared to the Dox alone (48 h treatment).
These significantly different efficiencies corroborated with Dox uptake tendencies; where in
RNPN treatment (2 h), a significantly higher Dox uptake was observed in contrast to cells
without RNPN (Figure 9e). Figure 9f shows that ROS is elevated in the resistant cancer cells
that may further confer resistance to the cancer cells, which was significantly reduced upon
RNPN treatment. It should be noted that the drug-sensitive cell line, KB-31, was sensitive
to RNP and Dox treatment, with high internalization of Dox, confirming negligible drug
resistance level due to low drug efflux proteins. These data imply that the antioxidant
activity of RNP is essential to modulate the drug efflux proteins by scavenging regulatory
ROS, allowing the enhanced internalization and toxicity of Dox. Based on these data, it is
concluded that RNP is a potential antioxidant to decrease the drug resistance of various
cancers.

5. Conclusions

Cancers are characterized by persistent elevated intracellular ROS, critical for their
survival, proliferation, angiogenesis, and metastasis. Therefore, the use of antioxidants
is a suitable choice of therapeutic interventions to impede tumorigenesis. However, the
failure of LMW antioxidants to inhibit tumors clinically accentuates the need for new
therapeutic strategies to limit various cancers. In this line, our newly developed self-
assembling antioxidants, RNPO and RNPN, both have shown effective ROS-reduction
mediated anti-cancer effect in vitro and in vivo as stand-alone or as an adjuvant to reduce
aggressiveness and/or sensitize several cancers for chemotherapy. Higher bioavailability,
specific tumor accumulation, and negligible toxicity of RNPs make them more suitable
antioxidant therapeutic intervention than LMW counterparts for the cancer treatment.
Recently, several other groups have started antioxidant therapy based on their own design.
For instance, Moriyama et al., prepared antioxidant micelles from poly (ethylene glycol)-
b-poly (dopamine) block copolymers that inhibits angiogenesis in the chicken ex ovo
chorioallantoic membrane assay [131]. Rocha et al., also developed epigallocatechin-3-
gallate incorporated polysaccharide nanoparticles which inhibited Du145 prostate cancer
cells in vitro [132]. Including their work, the authors hope to establish a new field for
antioxidant-based cancer therapeutics.
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